

Page 1238 CLEAN ENVIRONMENT COMMISSION Serge Scrafield - Chairman Laurie Streich - Commissioner Reg Nepinak - Commissioner Ian Gillies - Commissioner Cathy Johnson - Commission Secretary Cheyenne Halcrow - Administrative Assistant Mike Green - Counsel DEPARTMENT OF SUSTAINABLE DEVELOPMENT Elise Dagdick Tracey Braun MANITOBA HYDRO Doug Bedford - Counsel Janet Mayor - Counsel Shannon Johnson Maggie Bratland Glen Penner Shane Mailey Jennifer Moroz PARTICIPANTS CONSUMERS ASSOCIATION OF CANADA (Manitoba chapter) Gloria DeSorcy - Executive Director Joelle Pastora Sala - Counsel Max Griffin-Rill SOUTHERN CHIEFS' ORGANIZATION James Beddome - Counsel Grand Chief Daniels PEGUIS FIRST NATION Jared Whelan Wade Sutherland Den Valdron - Counsel MANITOBA METIS FEDERATION Jason Madden - Counsel Megan Strachan Marci Riel MANITOBA WILDLANDS Gaile Whelan Enns

Page 1239

PARTICIPANTS

SOUTHEAST STAKEHOLDERS COALITION Kevin Toyne - Counsel Monique Bedard Jim Teleglow

DAKOTA PLAINS WAHPETON OYATE Warren Mills John Stockwell Craig Blacksmith

INDEX OF PROCEEDINGS		Page 1240
Methodology and Approach Panel presentation:		
Ms. S. Coughlin Mr. J. Howell	1244	
Questions by Mr. Toyne Questions by Mr. Mills Questions by Ms. Pastora Sala Questions by Mr. Beddome Questions by Mr. Valdron Questions by Ms. Stachan Questions by CEC panel	1281 1287 1289 1318 1337 1360 1367	
Electromagnetic Frequencies Dr. Bailey presentation	1369	
Questions by Mr. Mills Questions by Mr. Toyne	1419 1440	
Socioeconomic Environment Panel	1465	
Butch Amundson Frank Bohlken Maggie Bratland Bryan Leece David McLeod David Whettler		

	INDEX OF EXHIBITS	Page 1241
MH-38	Methodology presentation	1574
MH-39	Dr. Bailey's presentation	1574
MH-40	Introduction socio-economic presentation	1574
MH-41	Part 1 land use presentation	1574
MH-42	Part 2 land use presentation	1574
MH-43	Part 1 agriculture presentation	1574
Mh-44	Part 2 agriculture presentation	1574
MH-45	Part 1, visual quality presentation	1575
MH-46	Part 2 visual quality presentation	1575
MH-47	Part 1 health presentation	1575

Page 1242

INDEX OF UNDERTAKINGS

MH-5	Advise Specific reference which	1318
	identifies Manitoba Hydro as a	
	whole to take into account	
	indigenous worldviews and legal	
	orders	

MH-6 Review contribution agreement and 1356 advise if Hydro will maintain log and provide report to Peguis on use of project data

Page 1243 TUESDAY, MAY 16, 2017 1 2 UPON COMMENCING AT 9:30 A.M. 3 4 THE CHAIRMAN: Good morning, everyone. Welcome to the continuation of our hearings into 5 the Manitoba-Minnesota Transmission Project. We б 7 will be moving today to a new presentation on 8 methodology from the Manitoba Hydro team. So they will do a presentation and then we will have the 9 questions afterwards. 10 11 So with that, I'll turn it over to Hydro, unless are there any housekeeping matters 12 we need to deal with first? 13 MS. JOHNSON: I'll have to swear them 14 in first. Could you state your names for the 15 16 record, please? 17 MR. HOWELL: Yeah, my name is James 18 Howell. 19 MS. JOHNSON: Ms. Coughlin is already sworn in on a previous panel. 20 21 MS. COUGHLIN: I am, yes. (Methodolgy Panel sworn) 22 23 THE CHAIRMAN: All right, thank you. 24 And we'll move into the presentation then. 25 MS. COUGHLIN: Thank you and good

		D 4044
1	morning. So yes, my name is Sarah Coughlin and	Page 1244
2	I'm senior environmental specialist in Licensing	
3	and Environmental Assessment at Manitoba Hydro.	
4	And yes, you heard from me earlier in the	
5	engagement panel.	
6	And joining me today is Jim Howell.	
7	He's senior principal of Environmental Services	
8	with Stantec. Although I notice on the outline on	
9	people's tables, he's labelled as James Howell.	
10	He tells me that's his official name.	
11	So today we're going to share some	
12	information about the methodology and the approach	
13	taken for the Manitoba-Minnesota Transmission	
14	Project environmental assessment. So details on	
15	the methodology can be found in chapter 7 of the	
16	Environmental Impact Statement. And we'll be	
17	providing an overview today.	
18	We're going to talk about regulatory	
19	requirements, the approach to the assessment, some	
20	lessons learned, engagement and Aboriginal	
21	traditional knowledge, how we assessed effects,	
22	and confidence and monitoring.	
23	So the MMTP EIS was prepared to meet	
24	Manitoba's Environment Act, as well as the	
25	requirements set out in the National Energy Board	

		Dago 12/5
1	filing manual, National Energy Board regulations,	Fage 1245
2	and the Canadian Environmental Assessment Act	
3	2012.	
4	And just to get to basics,	
5	environmental assessment, simply put, is a process	
6	intended to understand the effects of a project on	
7	people and the environment. So the assessment	
8	process is used to help make decisions about the	
9	project. And the approach used to better	
10	understand how people and the environment are	
11	potentially affected and how to convey decisions	
12	about the project were guided by a few key	
13	understandings.	
14	So we wanted to learn from past	
15	projects and assessments. We wanted to be	
16	adaptive and responsive as we heard concerns	
17	throughout the process, and not just at the	
18	beginning. We wanted to understand perspectives	
19	from those included in the First Nations and Metis	
20	engagement process and the public engagement	
21	process. We used a valued component approach to	
22	understand effects to the people and environment,	
23	which is the standard approach in Canada.	
24	However, we wanted to be clear about what we knew	
25	and share information in a way that was	

		Dogo 1046
1	understandable to all audiences. We're going to	Page 1246
2	talk to you about how we described a clear pathway	
3	of effect, thresholds and criteria, how we used	
4	iterative scoping when we were assessing and	
5	monitoring as well, and how we recognized linkages	
6	throughout the assessment. And we wanted to be	
7	considerate of the principles and goals of	
8	sustainable development. So I hope this	
9	presentation will explain how the above was	
10	accomplished.	
11	&&& So guiding the assessment at the	
12	onset was the understanding that we wanted to	
13	learn from past experiences. So valuable guidance	
14	was shared in past CEC reports, through past	
15	projects, and we wanted to incorporate this into	
16	the assessment. And this slide you'll see is	
17	common in many of the presentations that you'll	
18	hear throughout this hearing, and we have included	
19	those learnings in the assessment process as well.	
20	So at the beginning of each engagement and valued	
21	component chapter, we discussed how we have	
22	learned from the past and how those learnings have	
23	influenced the assessment.	
24	So we have included learnings	
25	regarding assessment methodology within this	

		Page 1247
1	presentation, including valued component selection	1 490 1247
2	and other scoping practices, and cumulative	
3	effects assessment.	
4	So as you heard last week, throughout	
5	the assessment, opportunities for engagement were	
6	provided to landowners, the public, First Nations,	
7	the Dakota people, the Metis, and stakeholders, in	
8	order to gather and understand local interests and	
9	concerns and obtain feedback for use in the route	
10	selection environmental assessment process.	
11	We were broad in our engagement and	
12	strove to be adaptive and responsive as concerns	
13	were shared throughout the process and not just at	
14	the beginning. People and communities who did not	
15	participate early in the process, but wanted to	
16	get involved later, were invited to participate	
17	throughout the assessment.	
18	So we wanted this assessment to be	
19	readable and understood by a non-technical	
20	audience. So the language in the assessment is	
21	intended to be straightforward and we tried to	
22	limit the amount of jargon through all of our	
23	documents. Plain language documents and visuals	
24	were used throughout. And here's a few examples.	
25	This is a valued component handout that was	

1 provided at engagement events, and this is a 2 poster that was provided to communities who are 3 participating. This is one of the learnings from 4 the Keeyask process is that colourful posters were 5 valued by communities, and so we created these and 6 provided them at First Nation community events. 7 We also provided summaries of details of the 8 project itself. 9 So different platforms were used to 10 share information in a format preferred by 11 audiences, including sharing details on route 12 information through videos, and using field tours 13 to see areas of concern in person, and sharing 14 concerns and goals over feasts. So much of how 15 this was achieved was shared in both engagement 16 presentations that you have heard previously. 17 We wanted to demonstrate transparency 18 and decision-making and process. So this doesn't 19 necessarily mean that everyone agreed with all 20 detailed meeting notes were provided, route 21 perspectives were balanced were shared. So		De	ac 1040
poster that was provided to communities who are participating. This is one of the learnings from the Keeyask process is that colourful posters were valued by communities, and so we created these and provided them at First Nation community events. We also provided summaries of details of the project itself. So different platforms were used to share information in a format preferred by audiences, including sharing details on route information through videos, and using field tours to see areas of concern in person, and sharing concerns and goals over feasts. So much of how this was achieved was shared in both engagement presentations that you have heard previously. We wanted to demonstrate transparency and decision-making and process. So this doesn't necessarily mean that everyone agreed with all decisions, but the methods on how different perspectives were balanced were shared. So detailed meeting notes were provided, route modifications were shared over multiple rounds of engagement, and the specifics on how we evaluated routes were described, and process decisions in	1	provided at engagement events, and this is a	ge 1248
3 participating. This is one of the learnings from 4 the Keeyask process is that colourful posters were 5 valued by communities, and so we created these and 6 provided them at First Nation community events. 7 We also provided summaries of details of the 8 project itself. 9 So different platforms were used to 10 share information in a format preferred by 11 audiences, including sharing details on route 12 information through videos, and using field tours 13 to see areas of concern in person, and sharing 14 concerns and goals over feasts. So much of how 15 this was achieved was shared in both engagement 16 presentations that you have heard previously. 17 We wanted to demonstrate transparency 18 and decision-making and process. So this doesn't 19 necessarily mean that everyone agreed with all 20 decisions, but the methods on how different 21 perspectives were balanced were shared. So 22 detailed meeting notes were provided, route 23 modifications were shared over multiple rounds of 24 engagement, and the specifics on how we evaluated 25 routes were described, and process decisions in	2	poster that was provided to communities who are	
the Keeyask process is that colourful posters were valued by communities, and so we created these and provided them at First Nation community events. We also provided summaries of details of the project itself. So different platforms were used to share information in a format preferred by audiences, including sharing details on route information through videos, and using field tours to see areas of concern in person, and sharing concerns and goals over feasts. So much of how this was achieved was shared in both engagement presentations that you have heard previously. We wanted to demonstrate transparency and decision-making and process. So this doesn't necessarily mean that everyone agreed with all decisions, but the methods on how different perspectives were balanced were shared. So detailed meeting notes were provided, route modifications were shared over multiple rounds of engagement, and the specifics on how we evaluated routes were described, and process decisions in	3	participating. This is one of the learnings from	
 valued by communities, and so we created these and provided them at First Nation community events. We also provided summaries of details of the project itself. So different platforms were used to share information in a format preferred by audiences, including sharing details on route information through videos, and using field tours to see areas of concern in person, and sharing concerns and goals over feasts. So much of how this was achieved was shared in both engagement presentations that you have heard previously. We wanted to demonstrate transparency and decision-making and process. So this doesn't necessarily mean that everyone agreed with all decisions, but the methods on how different perspectives were balanced were shared. So detailed meeting notes were provided, route modifications were shared over multiple rounds of engagement, and the specifics on how we evaluated routes were described, and process decisions in 	4	the Keeyask process is that colourful posters were	
6 provided them at First Nation community events. 7 We also provided summaries of details of the 8 project itself. 9 So different platforms were used to 10 share information in a format preferred by 11 audiences, including sharing details on route 12 information through videos, and using field tours 13 to see areas of concern in person, and sharing 14 concerns and goals over feasts. So much of how 15 this was achieved was shared in both engagement 16 presentations that you have heard previously. 17 We wanted to demonstrate transparency 18 and decision-making and process. So this doesn't 19 necessarily mean that everyone agreed with all 20 detailed meeting notes were provided, route 23 modifications were shared over multiple rounds of 24 engagement, and the specifics on how we evaluated 25 routes were described, and process decisions in	5	valued by communities, and so we created these and	
We also provided summaries of details of the project itself. So different platforms were used to share information in a format preferred by audiences, including sharing details on route information through videos, and using field tours to see areas of concern in person, and sharing concerns and goals over feasts. So much of how this was achieved was shared in both engagement presentations that you have heard previously. We wanted to demonstrate transparency and decision-making and process. So this doesn't necessarily mean that everyone agreed with all decisions, but the methods on how different perspectives were balanced were shared. So detailed meeting notes were provided, route modifications were shared over multiple rounds of engagement, and the specifics on how we evaluated routes were described, and process decisions in	6	provided them at First Nation community events.	
 8 project itself. 9 So different platforms were used to 10 share information in a format preferred by 11 audiences, including sharing details on route 12 information through videos, and using field tours 13 to see areas of concern in person, and sharing 14 concerns and goals over feasts. So much of how 15 this was achieved was shared in both engagement 16 presentations that you have heard previously. 17 We wanted to demonstrate transparency 18 and decision-making and process. So this doesn't 19 necessarily mean that everyone agreed with all 20 detailed meeting notes were provided, route 23 modifications were shared over multiple rounds of 24 engagement, and the specifics on how we evaluated 25 routes were described, and process decisions in 	7	We also provided summaries of details of the	
9 So different platforms were used to 10 share information in a format preferred by 11 audiences, including sharing details on route 12 information through videos, and using field tours 13 to see areas of concern in person, and sharing 14 concerns and goals over feasts. So much of how 15 this was achieved was shared in both engagement 16 presentations that you have heard previously. 17 We wanted to demonstrate transparency 18 and decision-making and process. So this doesn't 19 necessarily mean that everyone agreed with all 20 decisions, but the methods on how different 21 perspectives were balanced were shared. So 22 detailed meeting notes were provided, route 23 modifications were shared over multiple rounds of 24 engagement, and the specifics on how we evaluated 25 routes were described, and process decisions in	8	project itself.	
10 share information in a format preferred by 11 audiences, including sharing details on route 12 information through videos, and using field tours 13 to see areas of concern in person, and sharing 14 concerns and goals over feasts. So much of how 15 this was achieved was shared in both engagement 16 presentations that you have heard previously. 17 We wanted to demonstrate transparency 18 and decision-making and process. So this doesn't 19 necessarily mean that everyone agreed with all 20 detailed meeting notes were provided, route 23 modifications were shared over multiple rounds of 24 engagement, and the specifics on how we evaluated 25 routes were described, and process decisions in	9	So different platforms were used to	
11audiences, including sharing details on route12information through videos, and using field tours13to see areas of concern in person, and sharing14concerns and goals over feasts. So much of how15this was achieved was shared in both engagement16presentations that you have heard previously.17We wanted to demonstrate transparency18and decision-making and process. So this doesn't19necessarily mean that everyone agreed with all20decisions, but the methods on how different21perspectives were balanced were shared. So22detailed meeting notes were provided, route23modifications were shared over multiple rounds of24engagement, and the specifics on how we evaluated25routes were described, and process decisions in	10	share information in a format preferred by	
12 information through videos, and using field tours 13 to see areas of concern in person, and sharing 14 concerns and goals over feasts. So much of how 15 this was achieved was shared in both engagement 16 presentations that you have heard previously. 17 We wanted to demonstrate transparency 18 and decision-making and process. So this doesn't 19 necessarily mean that everyone agreed with all 20 decisions, but the methods on how different 21 perspectives were balanced were shared. So 22 detailed meeting notes were provided, route 23 modifications were shared over multiple rounds of 24 engagement, and the specifics on how we evaluated 25 routes were described, and process decisions in	11	audiences, including sharing details on route	
to see areas of concern in person, and sharing concerns and goals over feasts. So much of how this was achieved was shared in both engagement presentations that you have heard previously. We wanted to demonstrate transparency and decision-making and process. So this doesn't necessarily mean that everyone agreed with all decisions, but the methods on how different perspectives were balanced were shared. So detailed meeting notes were provided, route modifications were shared over multiple rounds of engagement, and the specifics on how we evaluated routes were described, and process decisions in	12	information through videos, and using field tours	
14 concerns and goals over feasts. So much of how 15 this was achieved was shared in both engagement 16 presentations that you have heard previously. 17 We wanted to demonstrate transparency 18 and decision-making and process. So this doesn't 19 necessarily mean that everyone agreed with all 20 decisions, but the methods on how different 21 perspectives were balanced were shared. So 22 detailed meeting notes were provided, route 23 modifications were shared over multiple rounds of 24 engagement, and the specifics on how we evaluated 25 routes were described, and process decisions in	13	to see areas of concern in person, and sharing	
this was achieved was shared in both engagement presentations that you have heard previously. We wanted to demonstrate transparency and decision-making and process. So this doesn't necessarily mean that everyone agreed with all decisions, but the methods on how different perspectives were balanced were shared. So detailed meeting notes were provided, route modifications were shared over multiple rounds of engagement, and the specifics on how we evaluated routes were described, and process decisions in	14	concerns and goals over feasts. So much of how	
16 presentations that you have heard previously. 17 We wanted to demonstrate transparency 18 and decision-making and process. So this doesn't 19 necessarily mean that everyone agreed with all 20 decisions, but the methods on how different 21 perspectives were balanced were shared. So 22 detailed meeting notes were provided, route 23 modifications were shared over multiple rounds of 24 engagement, and the specifics on how we evaluated 25 routes were described, and process decisions in	15	this was achieved was shared in both engagement	
17We wanted to demonstrate transparency18and decision-making and process. So this doesn't19necessarily mean that everyone agreed with all20decisions, but the methods on how different21perspectives were balanced were shared. So22detailed meeting notes were provided, route23modifications were shared over multiple rounds of24engagement, and the specifics on how we evaluated25routes were described, and process decisions in	16	presentations that you have heard previously.	
18 and decision-making and process. So this doesn't 19 necessarily mean that everyone agreed with all 20 decisions, but the methods on how different 21 perspectives were balanced were shared. So 22 detailed meeting notes were provided, route 23 modifications were shared over multiple rounds of 24 engagement, and the specifics on how we evaluated 25 routes were described, and process decisions in	17	We wanted to demonstrate transparency	
19 necessarily mean that everyone agreed with all 20 decisions, but the methods on how different 21 perspectives were balanced were shared. So 22 detailed meeting notes were provided, route 23 modifications were shared over multiple rounds of 24 engagement, and the specifics on how we evaluated 25 routes were described, and process decisions in	18	and decision-making and process. So this doesn't	
20 decisions, but the methods on how different 21 perspectives were balanced were shared. So 22 detailed meeting notes were provided, route 23 modifications were shared over multiple rounds of 24 engagement, and the specifics on how we evaluated 25 routes were described, and process decisions in	19	necessarily mean that everyone agreed with all	
21 perspectives were balanced were shared. So 22 detailed meeting notes were provided, route 23 modifications were shared over multiple rounds of 24 engagement, and the specifics on how we evaluated 25 routes were described, and process decisions in	20	decisions, but the methods on how different	
detailed meeting notes were provided, route modifications were shared over multiple rounds of engagement, and the specifics on how we evaluated routes were described, and process decisions in	21	perspectives were balanced were shared. So	
23 modifications were shared over multiple rounds of 24 engagement, and the specifics on how we evaluated 25 routes were described, and process decisions in	22	detailed meeting notes were provided, route	
24 engagement, and the specifics on how we evaluated 25 routes were described, and process decisions in	23	modifications were shared over multiple rounds of	
25 routes were described, and process decisions in	24	engagement, and the specifics on how we evaluated	
	25	routes were described, and process decisions in	

		Page 1249
1	the EIS were made clear through pathway diagrams,	
2	like what you see here.	
3	So concerns and values shared through	
4	both engagement processes, including self-directed	
5	studies completed by First Nations and the MMF,	
б	were considered and integrated in the assessment.	
7	Six communities provided Aboriginal traditional	
8	knowledge or self-directed studies prior to filing	
9	of the EIS. So these studies contributed to	
10	greater understanding of the study area, they	
11	contributed to project design, they helped	
12	identify project effects, and they helped in the	
13	development of relevant mitigation and monitoring	
14	plans.	
15	So assessment authors have indicated	
16	where traditional knowledge has been brought	
17	forward within each chapter, and much of what	
18	we've heard influenced the way in which	
19	communities were engaged. So youth and elder	
20	involvement was important to some, and field	
21	visits and tours were considered important to	
22	others. So ongoing and collaborative engagement	
23	was preferred.	
24	Feedback contributed to the way or	
25	manner in which communities were engaged, and it	

		Dama 1050
1	may not be limited to just the text in the	Page 1250
2	assessment.	
3	So concerns heard prior to filing of	
4	the assessment guided what was assessed, and	
5	information shared from TK studies completed after	
6	the filing of the EIS will be incorporated into	
7	the Environmental Protection Plan.	
8	So this slide describes the general	
9	process used to assess effects for both project	
10	and cumulative effects. So first we sought to	
11	understand the existing environment, and	
12	understanding the existing environment in which	
13	the project will be built helps us to know which	
14	components of the environment may be affected by	
15	the project. So we sought to understand, not just	
16	baseline conditions, but trends that may be	
17	occurring in the environment.	
18	So second, the project and cumulative	
19	effects were assessed, and Jim's going to describe	
20	how we did that in detail in a few moments.	
21	And third, we made conclusions about	
22	the effects of the projects and other projects and	
23	activities in the project area.	
24	So we were clear about the certainty	
25	of those conclusions and if those conclusions	

		Daga 1051
1	would hold true under future climate change	Page 1251
2	scenarios. So we proposed a robust follow-up and	
3	monitoring program as well. So today we're going	
4	to share with you a discussion on these first	
5	three steps of the process, and later on in the	
6	hearing you're going to hear in detail more	
7	discussion on the follow-up and monitoring	
8	program.	
9	So now I'll pass it over to Jim to	
10	continue.	
11	MR. HOWELL: Thank you, Sarah. Good	
12	morning panel members, ladies and gentlemen.	
13	As Sarah mentioned, my name is Jim	
14	Howell. I'm a senior principal with Stantec	
15	Consulting in Calgary. And I've been working with	
16	Manitoba Hydro on this project for the past three	
17	years, working on developing the methodology that	
18	we used, and reviewing sections, and also helping	
19	with the IR responses.	
20	So what we had to do to begin with,	
21	when we were doing the Environmental Assessment,	
22	we didn't run willy-nilly and start analyzing	
23	everything in the environment. What we had to do	
24	first was to do scoping exercises, where we looked	
25	at what is the scope of the project, what is the	

Page 1252 scope of the assessment going to be? 1 2 Scoping included understanding the 3 existing environment, listening to concerns and finding out how the perception of people's effects 4 of the project on the environment is going to be, 5 and how the project is interacting with people. 6 7 We selected our valued environmental components, 8 we identified boundaries within which to carry out the assessment, and established thresholds on 9 determining the impact of, the significance of the 10 11 effects. And this process was iterative. 12 And 13 so when we got more information over the course of our Environmental Assessment determination, we got 14 15 more information from the routing studies that 16 went on, we got more information from the engagement processes that went on, we got more 17 information from engineering design as it 18 progressed, and more information from the various 19 field studies that were carried out. We fine 20 21 tuned how our assessment was progressing. 2.2 So scoping, we have to understand the existing environment, and we have to keep in mind 23 24 that the existing environment, the way things are today, is a product of cumulative effects from the 25

Volume 6

		Dago 1253
1	past and the present activities and projects going	Fage 1255
2	on in the area.	
3	So understanding the existing	
4	environment, we accomplished that through a number	
5	of steps. There was a desktop review when we	
6	looked at existing literature to find out the	
7	status of environmental components, their	
8	distribution, existing plans and strategies that	
9	might be in place to manage different	
10	environmental components. We considered past	
11	effects. So we did look at what's happened to	
12	these environmental components over the course of	
13	time. What have been the trends and the health of	
14	the valued component? What would have been the	
15	drivers for a change in the environmental	
16	component?	
17	We carried out key person interviews.	
18	We distributed questionnaires at the public	
19	engagement meetings. We spoke to academics, we	
20	spoke to Provincial biologists, and we spoke to	
21	the public. And we did get additional information	
22	from these engagement outcomes that we had.	
23	Because sometimes people come up at an open house	
24	or a meeting and they provide us with more	
25	specific information around, for the area that	

	F	200 125/
1	they live in, that you don't necessarily find in	aye 1204
2	reports or even when we do our field studies. So	
3	we got additional information from that source.	
4	And then, of course, we carried out	
5	the field surveys that had been discussed when we	
6	talked about routing last week. So we had our	
7	wildlife surveys looking at mammals, looking at	
8	birds, looking at vegetation surveys. We had	
9	heritage resource surveys. So we got more	
10	complete information on what was happening in the	
11	project area.	
12	So scoping, we used, as Sarah	
13	mentioned, a valued component approach. And this	
14	is the standard approach in Canada. It's been the	
15	approach for the last 25 plus years in	
16	environmental assessment, following the	
17	publication of the Beanlands and Dunker report	
18	back in the '80s. And this approach recognizes	
19	that it's not wise, nor is it possible to study	
20	everything in the environment, and it doesn't	
21	really help us understand what the effects of the	
22	project are going to be. So we focus on the	
23	important aspects of the environment and those	
24	things that are going to be affected by the	
25	project.	

		Page 1255
1	So valued components were selected.	1 490 1200
2	Understanding that this project spans a highly	
3	developed prairie environment and a less developed	
4	transition zone between the prairie and boreal	
5	forest, assessors considered the different aspects	
6	of the existing environment in these areas and the	
7	components may already be stressed.	
8	Valued components were selected based	
9	on the following criteria: They were a broad	
10	ecological or human environment component that	
11	might be affected by the project; they are a part	
12	of the heritage of First Nations and Metis, or a	
13	part of their current use for lands and	
14	traditional purposes; they are of scientific,	
15	historical or archeological importance; and they	
16	have been identified as important by stakeholders	
17	or in other environmental assessments that have	
18	been done in the area.	
19	We address the environmental and	
20	socio-economic elements as listed in the National	
21	Energy Board Electricity Filing manual from	
22	May 2015, and outlined by Provincial guidance and	
23	regulatory documents. VCs, or valued components,	
24	suggested from the public engagement process and	
25	the First Nation and Metis engagement were	

		Page 1256
1	incorporated into the valued components that we	-
2	chose. Some of the elements were identified as	
3	valued components. And there's the list of the	
4	valued components there. We had fish and fish	
5	habitat, wildlife and wildlife habitat, vegetation	
6	and wetlands, traditional land and resource use,	
7	heritage resources, infrastructure and services,	
8	employment and economy, agriculture, land and	
9	resource use, visual quality, human health risk,	
10	and community health and well-being.	
11	Others were identified as pathway	
12	components. And the list here shows the pathway	
13	components. It doesn't show up that good on the	
14	slide I'm afraid, but these were things such as	
15	physical and meteorological environment, soils and	
16	soil productivity, water quality and quantity, air	
17	emissions, greenhouse gas emissions, climate	
18	change, the acoustic environment, and EMF and	
19	corona discharge. And the pathway components are	
20	used when changes to them are ultimately felt by	
21	the valued components. So the valued components	
22	are the receptors of changes in the pathway	
23	components. So if you take a look at taking air	
24	emissions, for instance, the receptor of the air	
25	emissions would be something like human health	

		Page 1257
1	risk. So it's the humans that are affected by	Tage 1207
2	that. Air by itself doesn't care if it's dirty,	
3	it's the receptors that we focus on.	
4	Learning from the Bipole III EIS, we	
5	reduced the number of VCs that we looked at from	
6	67 down to the 12 that we have here. So we're	
7	able to focus on the important issues that might	
8	be affected by the project.	
9	We also identified boundaries. So we	
10	had to focus on what were the physical boundaries	
11	that we're going to assess these changes in? So	
12	the project development area, or the PDA, is used	
13	to describe how the area physically disturbed by	
14	the project, and includes the right-of-way and the	
15	area taken up by the three station modifications,	
16	the marshaling yards, the access roads, and the	
17	PDA was the same for all of the valued components.	
18	The LAA, or the local assessment area,	
19	is the area in which project effects on a valued	
20	component are likely to occur. The regional	
21	assessment area, or the RAA, is a larger area and	
22	is intended to provide context for determining the	
23	significance of project effects, and the effects	
24	of past, present and future projects on those	
25	valued components. So the RAA was the area in	

		Dogo 1050
1	which we assess cumulative effects.	Page 1258
2	Assessment areas vary between valued	
3	components to appropriately reflect the extent of	
4	the project effects on that component. For	
5	instance, the local assessment area for fish and	
6	fish habitat is different from the local	
7	assessment area for infrastructure and services.	
8	The assessment areas that we defined	
9	were large enough to capture the effects of the	
10	project, but not so large as to mask the effects	
11	of the project by making them so large that any	
12	effect to the project would be such a small	
13	percentage of that area.	
14	Temporal boundaries as well were	
15	chosen, and these looked at project phases such as	
16	construction and operation, but we also tailored	
17	them to specific valued components where this was	
18	applicable. For example, we looked at fish and	
19	wildlife life cycles, and we also looked at past	
20	temporal boundaries, like what happened over the	
21	last 100 to 150 years.	
22	When we talk about the current or	
23	present conditions, we refer to what has happened	
24	in the last 25 years, or one generation. Now, for	
25	traditional lands and resource use, our	

		Page 1250
1	understanding of current may not be the same as	Fage 1239
2	other worldviews. The boundary for past	
3	traditional land and resource use information is	
4	limited only by the living memory of the people,	
5	the traditional knowledge holders who contributed	
б	information to our assessment.	
7	Future use, as far as traditional land	
8	and resource use goes, refers to the ability of	
9	the First Nations and Metis to continue the use of	
10	lands and resources for traditional purposes	
11	beyond the life of the project.	
12	Thresholds and significance. So prior	
13	to assessing the project effects, thresholds for	
14	determining significance were established for each	
15	valued component. This is often challenging as	
16	there are limited thresholds for many of the	
17	components assessed. This is common certainly for	
18	assessments in Manitoba and for many areas across	
19	Canada. So thresholds were developed for all but	
20	one of the valued components. And that was the	
21	traditional land and resource use, we didn't have	
22	thresholds for them.	
23	Without Manitoba specific thresholds,	
24	we have used thresholds established in other	
25	jurisdictions such as in Alberta or Saskatchewan,	

		Dogo 1060
1	and fully recognizing that there might be limits	Page 1260
2	to their applicability here in Manitoba.	
3	For example, Manitoba does not publish	
4	limits for the minimum amount of grassland needed	
5	to support populations of wildlife. We looked in	
6	the literature and saw that there's a guidance	
7	document in Ontario called How Much Habitat Is	
8	Enough? And so we looked at that and we saw, is	
9	that going to be applicable here? The discipline	
10	specialists looked at any thresholds from other	
11	areas to determine whether they think they're	
12	going to be representative of what the situation	
13	is here in Manitoba, and we use them.	
14	So following the scoping of figuring	
15	out what we were going to look at and when we	
16	did that, as well, during scoping we had several	
17	meetings with the various disciplines where we had	
18	what we call story board sessions, where they	
19	presented how they were going to go about	
20	assessing effects, what their plan is, and how	
21	there might be interaction between one discipline	
22	and another one. So that people have sort of this	
23	idea in mind when they go about to do their work.	
24	So again, when we started assessing	
25	project and cumulative effects, it was an	

		Page 1261
1	iterative process. We revised things, we upgraded	Tage 1201
2	things as we got more information, as information	
3	came in from different disciplines, and we	
4	expanded or altered what we were doing in the	
5	field. There might be something that one	
б	discipline found in the field and we had to go out	
7	and have an extra look at that area.	
8	So assessing the effects, going	
9	through steps, we described the existing	
10	environment. And as I mentioned earlier, the	
11	existing environment, remember, is the product of	
12	cumulative effects from the past and present	
13	activities in that area, and this is, yeah, to	
14	describe how the component has changed over the	
15	past 100 to 200 years.	
16	Project components were, and	
17	activities were described, and how these	
18	components interact with the biophysical and human	
19	environment components were identified.	
20	We looked at pathways of effect, or	
21	how the effect may occur as a result of project	
22	interactions with the environment. So this is	
23	sort of the first cut in saying here's what the	
24	project effects might be. We identified, when we	
25	were looking at pathways of effect, what	

		Dago 1262
1	measurable parameters there were, what were we	Page 1262
2	going to measure about these effects so that we	
3	could actually determine if there had been a	
4	change, if there had been an environmental effect.	
5	We looked at mitigation to address	
6	these effects. And then after mitigation was	
7	applied, what are the residual effects? And these	
8	were described, and linkages to other valued	
9	components were included or described during these	
10	studies too.	
11	So the procedure was followed for each	
12	valued component. Okay. So we had a consistent	
13	approach throughout the assessment of all the	
14	valued components. So I'll explain a little bit	
15	about these steps after describing, what we did	
16	after we described the existing environment	
17	specific to each valued component.	
18	So to begin the assessment of the	
19	project on the valued components, we first	
20	identified the project components and activities	
21	that may interact with the valued components. So	
22	here we have a list of project components and	
23	activities that would interact with our valued	
24	components. So we have various components and	
25	activities during the construction phase, the	

		Dago 1262
1	right-of-way clearing, access route to the sites,	Fage 1203
2	tower construction and stringing, station	
3	preparation, station equipment installation, and	
4	we also included operation activities as well. So	
5	we've got our vegetation management, inspection	
6	patrols, station operations, the actual presence	
7	of the transmission line, and what happens when	
8	it's being operated.	
9	So we took those project activities	
10	and we saw what are the pathways of effect from	
11	them to affect our valued components?	
12	So we take an example of one of those.	
13	Let's look at walking through how pathways of	
14	effects affect vegetation and wetlands. And you	
15	see that they affect it in a number of ways.	
16	Various pathways or project components have	
17	pathways that affect fragmentation of intact areas	
18	of native vegetation, disturbance to native	
19	vegetation, disturbance to wetland function from	
20	clearing and surface disturbance, and introduction	
21	of invasive species.	
22	Now, with respect to fragmentation	
23	effect, large intact patches of vegetation and	
24	wetlands are important to the landscape elements	
25	as they support wildlife populations and maintain	

		D 4004
1	ecosystem functions. Also, there is a public	Page 1264
2	concern about forest fragmentation.	
3	So let's take a look at just the	
4	effects on vegetation and wetlands by	
5	fragmentation during right-of-way clearing. So we	
6	look at those, and the measurement of	
7	fragmentation from right-of-way clearing, we need	
8	to use a measurable parameter. So what we	
9	measured was the number of large intact patches of	
10	native vegetation classes. We next considered	
11	what mitigation measures could we use to	
12	ameliorate the effect.	
13	So we'll just step aside for a minute	
14	and talk about mitigation. Mitigation measures,	
15	if you remember, are what we use to eliminate,	
16	reduce, or control adverse effects so that they're	
17	not significant. And mitigative measures could	
18	include physical measures put in place intended to	
19	reduce effects, such as installing a silt fence,	
20	or installing bird diverters as this example here	
21	shows. We could reduce the size of the project	
22	activity. In the case here, we're reducing the	
23	area cleared in close proximity to waterways or	
24	limiting new access, or we could undertake	
25	activities in a less sensitive location or time	

		Dogo 1265
1	period, such as planning construction clearing	Page 1205
2	activities during frozen ground conditions, when	
3	effects on underlying vegetation are reduced, and	
4	many bird species are mitigated by having flown	
5	south for the winter, or scheduling work during	
6	non-critical life stages. So you wouldn't do work	
7	in streams if it's when the fish are spawning in a	
8	certain area, or carrying out some construction in	
9	areas when the birds are nesting. So we have to	
10	address those.	
11	The flexible nature of a transmission	
12	line routing allowed the project team to route the	
13	line to reduce effects to people and the	
14	environment. And of course, we addressed this,	
15	talked about this at length last week.	
16	Adjusting location of transmission	
17	line route was a fundamental tool to reduce	
18	effects of MMTP on the environment wherever	
19	possible.	
20	Some mitigation avoids effects	
21	completely, so routing to avoid a sensitive area.	
22	Some mitigation reduces the effect but you still	
23	have the effect. So we might during frozen ground	
24	conditions, carrying out construction at those	
25	periods, we reduce rutting and erosion but we	

		Daga 1000
1	might not totally eliminate it. So the effects	Page 1266
2	remaining after mitigation are considered residual	
3	effects. And these are the ones that we assess in	
4	the Environmental Assessment.	
5	So to go back to our example of the	
6	right-of-way clearing causing fragmentation, we	
7	use routing as a mitigative measure.	
8	During routing alteration we reduced	
9	the effect of fragmentation but not eliminate it,	
10	did not eliminate it, so we had a residual effect.	
11	And sometimes the residual effects on one valued	
12	component also affect another valued component.	
13	In our example here we reduced the effects on	
14	fragmentation on vegetation and wetlands, but we	
15	still resulted in an effect on traditional land	
16	resource use because of the fragmentation that	
17	occurred.	
18	So how do we characterize the residual	
19	effects? We used the list of variables or	
20	characterizations that have been common in Canada	
21	for characterizing residual effects for some time	
22	now. This came out from CEAA guidance, the CEAA	
23	agency guidance several years ago. And we looked	
24	at direction, magnitude, geographical extent,	
25	frequency, duration, reversibility, and ecological	

	Page 1267
1	or socio-economic context. And most of these are
2	fairly self-explanatory. Maybe a bit more
3	information on ecological or socio-economic
4	context. We looked at the general context or the
5	general characteristics of the area in which the
6	project is located. If we look at the ecological
7	context, is it a pristine area where no
8	development has happened at all, or is it an area
9	where there has been disturbance already?
10	On the socio-economic side, we looked
11	at, to put it in context, is it an area where the
12	socio-economic effect is going to be low
13	resilience or a high resilience? So, for example,
14	if you are adding workforce to an area and you're
15	going to put increased pressure on the health
16	services there, is there room in the health
17	services with hospital beds, et cetera, right now,
18	that it can absorb these extra people coming in,
19	or are they actually at their limit right now? So
20	we use that to describe the context for the
21	characterization of the environment effect on the
22	VC.
23	The criteria are described
24	quantitatively wherever possible, and clear
25	descriptions of what is considered high, medium

		Page 1268
1	and low are provided for each valued component.	5
2	And that's the one characteristic that changes the	
3	most throughout from valued component to valued	
4	component.	
5	The term negligible, as used in the	
б	environmental assessment, means that an effect	
7	cannot be discerned and characterized by any means	
8	and, therefore, no assessment of that effect	
9	exists.	
10	Assessing cumulative effects.	
11	Cumulative effects are those resulting from the	
12	residual effects of past, present and reasonably	
13	foreseeable future projects and activities,	
14	combined with the contribution of the project's	
15	residual effects.	
16	How cumulative effects are assessed is	
17	one of the areas where methodologically Manitoba	
18	Hydro has learned from past assessments. As I	
19	indicated earlier, we actually started addressing	
20	cumulative effects when we were talking about the	
21	existing environment. So we talked about what	
22	have been the cumulative effects since, over the	
23	last couple hundred years. These effects are	
24	largely the result of settlement in Southern	
25	Manitoba. The extent and nature of these past	

		Page 1260
1	changes were considered for each valued component.	Fage 1209
2	Trends and characteristics or conditions of the	
3	existing conditions and valued component condition	
4	over time were discussed, to recognize that the	
5	existing environment isn't necessarily the	
6	pristine baseline to which effects are compared.	
7	If the thresholds were closely reached or past	
8	effects had substantially affected valued	
9	component conditions, these effects were described	
10	in our assessment. For example, when discussing	
11	baseline conditions of moose, low population	
12	numbers in the study area were described and the	
13	drivers from past changes were discussed. The	
14	nature of these past drivers of change that would	
15	be affected by the project were also discussed.	
16	The way cumulative effects are	
17	described in environmental assessments aren't	
18	necessarily the way everyone may think of	
19	cumulative effects. The environmental effects of	
20	concern to some participants in the engagement	
21	process are not necessarily just the project's	
22	contribution and the effects of future projects on	
23	the existing environment, they are the cumulative	
24	effects, some people feel they are the cumulative	
25	effects of everything that's happened up until	

Page 1270

1 now.

For example, changes in Southern
Manitoba over the past 150 years have been quite
dramatic.

5 Here is an image created by Irene Hanuta during her Ph.D. thesis, where she created 6 7 a map from Land Survey of Canada information in 8 the 1870s. The area south of Winnipeg was just prairie, which is the light coloured area, or 9 forest, the green coloured area in the figure 10 11 there. Then if we look at the same area again in 1995, you see that most of the area has been 12 converted to cropland, so it's agriculture for the 13 14 most part there.

15 Much of the prairie region of Southern Manitoba has changed from a grassland environment 16 to an agriculture environment since settlement 17 over the last century and a half. The cumulative 18 effects of some environmental components in the 19 20 region would likely be characterized from a 21 predevelopment standpoint as having experienced significant change, for example, those tied to 22 natural environment and aesthetics. We have 23 qualitatively acknowledged overall cumulative 24 effects throughout the Environmental Impact 25

		Page 1271
1	Statement, and supplemented by quantification of	1 490 1271
2	cumulative effects on current conditions, and an	
3	analysis of the project's contribution to these	
4	cumulative effects.	
5	This discussion is also well-described	
6	in a lot of the traditional knowledge reports,	
7	where they talk about the change that has occurred	
8	over the past century, century and a half.	
9	When we describe the residual effects	
10	of the project, we are adding them to the past	
11	cumulative effects that define the existing	
12	environment. Spatial and temporal boundaries of	
13	other current projects are considered. Those that	
14	overlap with MMTPs are described and assessed.	
15	Also, the effect of future projects are	
16	considered. Again, those that are reasonably	
17	foreseeable and overlap spatially and temporally	
18	with MMTP are assessed.	
19	This was done by bringing forward	
20	those project's residual effects that have the	
21	potential to interact with residual and	
22	environmental effects of other projects, and	
23	conducting an analysis very similar to what we did	
24	for the project effects. The residual cumulative	
25	effects were described. The thresholds used to	

		Dogo 1272
1	determine if project effects exceeded a level of	Page 1272
2	concern were also used for cumulative effects.	
3	Then an analysis of the project's contribution to	
4	the cumulative effects were described. As we	
5	discussed, we included qualitative descriptions of	
6	the environment prior to settlement for valued	
7	components, if that information was available.	
8	I will turn things back to Sarah to	
9	continue.	
10	MS. COUGHLIN: Thanks, Jim.	
11	So when contemplating past, present	
12	and reasonably foreseeable future projects, we	
13	looked at general activities that take place on	
14	the landscape, and specific projects. And we	
15	wanted to be inclusive in our approach, and	
16	included certain perspective and speculative, some	
17	speculative projects in our cumulative effects	
18	assessment. So some of the general activities	
19	considered are listed here, agriculture,	
20	residential development, roads, the airports and	
21	the floodway, which is fairly specific,	
22	recreational activities, domestic and commercial	
23	resource use activities, pipelines and	
24	transmission lines.	
25	Here is a list of some of the more	
		Page 1273
----	--	-----------
1	specific projects that were considered. I was	Tage 1275
2	going to point these out, but I feel like I might	
3	be lasering Mr. Nepinak's eyes if I do this.	
4	So I'll start at 12:00 o'clock. We	
5	considered the Northwest Winnipeg Natural Gas	
б	Project, the Oakbank Corridor, the Richer South	
7	Station to Spruce Station Transmission speculative	
8	project, which is part of the Energy East Pipeline	
9	Project, the Piney Pine Creek Border Airport	
10	Expansion, gas upgrade projects, the St. Vital	
11	Transmission Complex, the South End Water	
12	Treatment Control Centre Upgrade, the St. Norbert	
13	Bypass, Bipole III, the Dorsey to Portage	
14	Transmission Line, and the Headingley Bypass.	
15	There is a detailed map of this in the	
16	figure of the environmental assessment methods	
17	chapter.	
18	So the third step of the process,	
19	conclusions and prediction confidence, included	
20	discussion on determining significance, how we	
21	reconsidered conclusions, prediction confidence,	
22	and how climate change was considered in the	
23	assessment. So I'll describe these.	
24	So when determining significance, the	
25	EIS includes a determination of the significance	

	D	aga 1974
1	of residual effects. So, in general, significant	age 1274
2	effects are those that are likely to be of	
3	sufficient magnitude, duration, extent or	
4	irreversibility to cause a change in that valued	
5	component that will alter its state or integrity	
б	beyond an acceptable level.	
7	So the significance of project	
8	environmental effects was determined using the	
9	criteria to describe residual effects, and	
10	standards and thresholds that are specific to each	
11	valued component that Jim described earlier, and	
12	the measurable parameters used to assess the	
13	environmental effect.	
14	So there are, as Jim described, few	
15	legal or regulatory levels or thresholds set in	
16	Manitoba, or really elsewhere in Canada. So	
17	professional judgment was also used to determine	
18	significance.	
19	So thresholds were not set for	
20	traditional land and resource use, as a defined	
21	limit or level did not align well with the more	
22	holistic approach preferred by those involved in	
23	the First Nations and Metis engagement process.	
24	So the judgment shared through other	
25	worldviews, including those shared through	

		Page 1275
1	Aboriginal traditional knowledge reports, also	Fage 1275
2	helped inform significance conclusions, where most	
3	shared conclusions that indicated a significant	
4	change of the landscape condition over time, as	
5	Jim described.	
6	So some traditional knowledge reports	
7	or self-directed studies were received after the	
8	filing of the Environmental Impact Statement. So	
9	information and potentially environmentally	
10	sensitive sites will be included in the	
11	Environmental Protection Plan. So discipline	
12	leads reviewed each of these reports that came in	
13	after and reconsidered their original conclusions	
14	with this new information that was provided, and	
15	their conclusions as a result of this review did	
16	not change. So we received a part 2 of the	
17	Sagkeeng First Nation report, we received the	
18	Dakota Plains Wahpeton First Nations report, we	
19	received a draft Dakota Tipi report, and the MMF	
20	study report.	
21	So the confidence of predictions was	
22	also described in each chapter of the assessment.	
23	So the age of data and date availability, the	
24	sensitivity of the environment, how well we	
25	understood the activities effect in the	

204-782-4664

Reid Reporting Services

		Page
1	environment, were all used to describe the	i age
2	certainty of the conclusions made throughout the	
3	assessment.	
4	The sensitivity of the conclusion to	
5	future climate change was also described. So	
6	Manitoba Hydro undertook a historic and future	
7	climate change study for the project, which	
8	identifies the range of possible changes to	
9	climatic parameters. So some of the parameters	
10	contemplated were temperature, wind speed and	
11	precipitation. So these three future climate	
12	change scenarios were considered for 2020, 2050	
13	and 2080, with a 1.5, and a 2.9 or a 4.1 degree	
14	increase respectively in temperature. And	
15	conditions were described under these scenarios	
16	generally, and assessment practitioners were asked	
17	to determine if their significance conclusions	
18	would change based on these new conclusions or	
19	conditions.	
20	So for example, in the vegetation and	
21	wetlands chapter, total growing season	
22	precipitation is projected to increase by	
23	somewhere between 1.5 and 2.8 per cent. However	
24	precipitation amounts are predicted to be lower in	
25	July, based on the scenarios considered. So	

		Dago 1277
1	potential water deficit for vegetation and	Faye 12/1
2	wetlands are discussed within the chapter, and of	
3	course there's great uncertainty around these	
4	predictions, so that uncertainty is also	
5	described.	
6	So effects of the environment of the	
7	project were also assessed. So potential	
8	environmental changes and hazards may include wind	
9	and severe precipitation, and ice storms and	
10	flooding, and fires, and even earthquakes. So the	
11	influence that these environmental changes and	
12	hazards may have on the project were predicted and	
13	described, as well as the measures taken to avoid	
14	potential adverse effects.	
15	So the uncertainty associated with	
16	these conclusions and other sources of uncertainty	
17	were described in each assessment chapter of the	
18	EIS. So with greater uncertainty and less	
19	predictability of reports, monitoring approaches	
20	proposed to manage that uncertainty.	
21	So this program, like I say, will be	
22	described in more detail in a following	
23	presentation, but will include discussion on the	
24	Construction Environmental Protection Plan, which	
25	will describe how we will implement mitigation	

Page 1278

1	measures. It will describe the monitoring
2	initiatives, including the environmental
3	monitoring plan, and how we will be adaptive in
4	our follow-up and monitoring program.
5	So, Manitoba Hydro maintains its own
б	sustainable development policy and complementary
7	principles, based on the principles and guidelines
8	of the sustainable development adopted by the
9	Manitoba Roundtable on the Environment and the
10	Economy. So basically what these principles do is
11	understand that, through our decisions and
12	actions, we endeavour to meet the needs of the
13	present without compromising the ability of future
14	generations to meet their needs.
15	So an analysis of how the MMTP and the
16	assessment of the project meet both the Provincial
17	guidelines and policies created under their
18	framework for the Sustainable Development Act and
19	the Federal Sustainable Development Act could all
20	be found in chapter 23 of the assessment.
21	In general, the Sustainable
22	Development requires the integration of social,
23	environmental and economic considerations in their
24	decision-making. And these principles have been
25	incorporated into the project planning, design,

	Page 1279
1	construction, and operation of MMTP, as well as in
2	preparation of the EIS.
3	So with broad engagement, and
4	scientific rigger, and the integration of
5	indigenous knowledge, and the efficient use of
б	resources, and the nature of a transmission line
7	conveying clean hydroelectric electricity, results
8	in low greenhouse gas emissions and the
9	displacement of even further greenhouse gas in
10	other jurisdictions. And finally, the robust
11	routing process that considered environmental,
12	social, and economic considerations in
13	decision-making, make this project meet the
14	principles and goals of sustainable development.
15	So in the presentations that will
16	follow, the EMF presentation, so the
17	socio-economic and the biophysical presentations,
18	they're all going to describe the following
19	topics. They'll provide an overview, they'll
20	describe what they heard, what they assessed. And
21	Jim and I described in detail today how we
22	assessed. So the presentations won't cover the
23	how in detail. They will continue to describe key
24	findings, they will describe mitigation monitoring
25	and follow-up, and they will present their

		Dago 1280
1	conclusions. And that concludes our presentation.	Faye 1200
2	Thank you.	
3	THE CHAIRMAN: Thank you very much for	
4	that presentation. So now we'll turn to the	
5	questioning.	
6	Just a little further clarification to	
7	my comments yesterday about timing and	
8	questioning, keeping in mind we're looking at the	
9	overall schedule of the project, trying to be fair	
10	to everyone, and yet keep us moving at the same	
11	time. I would urge you all some of you have,	
12	but I would urge all of you to speak to the	
13	secretary about time frames for questioning on	
14	each presentation. If you can do one or two in	
15	advance, that would be good too. It helps our	
16	planning a little bit, so that would be great.	
17	Secondly, we have a fallback in the	
18	guidelines of 15 minutes, if there's no discussion	
19	with the secretary. Obviously for some of you	
20	that would be inadequate on particular topics, it	
21	may be adequate for others, so if you want to	
22	leave it that way you can, of course. Otherwise	
23	I'd urge you to speak with the secretary. We'll	
24	be reasonable, obviously, in the allocation of	
25	time, and it will be more for some groups on some	

		D
1	subjects, offset by other groups on other	Page
2	subjects.	
3	I would also remind Hydro in answering	
4	the questions, we covered that yesterday as well,	
5	that if the answer can't be produced fairly	
6	rapidly, if you could take it under advisement and	
7	bring it back, even if it's later in the same set	
8	of questioning, that would be fine, and probably	
9	preferable. So other questions can be asked in	
10	the meantime.	
11	All right. With all that as	
12	background, we will turn today to I believe it was	
13	Manitoba Wildlands, who I believe is not here	
14	today, so I will turn to the Southeast	
15	Stakeholders Coalition to start us off. Thank	
16	you. Sorry, I should have said Mr. Toyne.	
17	MR. TOYNE: Thank you very much,	
18	Mr. Chair. Since Mr. Matthewson is not on this	
19	panel, I don't have all that many questions, I	
20	apologize.	
21	MS. COUGHLIN: No, that's great.	
22	MR. TOYNE: And given that I've asked	
23	a significant number of questions of some of the	
24	other panels, I suspect from here on in I'll be	
25	relatively brief.	

		Page 1282
1	So I've got a couple of questions	Faye 1202
2	about how this methodology of assessment works in	
3	practice. And I appreciate that some of what I'm	
4	going to ask can be developed a little bit more	
5	with another panel.	
6	So are one or both of the panelists	
7	aware of something called the Fournier farm? Is	
8	that a phrase that's familiar to one or both of	
9	you?	
10	MS. COUGHLIN: Like a particular	
11	property?	
12	MR. TOYNE: Yes.	
13	MS. COUGHLIN: Yeah.	
14	MR. TOYNE: Okay. Just so it's clear	
15	for those who may not have read through all of the	
16	hundreds of IRs that the Coalition delivered, just	
17	a little bit northeast of La Broquerie there's a	
18	property owned by the Fournier family, and there	
19	was a bit of a yeah, sort of in between PDA and	
20	La Broquerie, there was a bit of an issue that's	
21	recently been resolved with respect to whether or	
22	not the Fournier farm was accurately described as	
23	a centennial farm. So I don't know, sir, if that	
24	helps refresh your memory at all?	
25	MR. HOWELL: Yeah, I recall that.	

		Page 1283
1	Thank you.	1 490 1200
2	MR. TOYNE: Okay. So let me give you	
3	a bit of background on my couple of questions, and	
4	then this will all be over fairly quickly.	
5	So Manitoba Hydro initially denied	
6	that the Fournier farm was a centennial farm, but	
7	then as a result of some of the queries made by	
8	the Coalition, Manitoba Hydro eventually admitted	
9	that it was a centennial farm. But Manitoba Hydro	
10	continues to deny that the centennial farm falls	
11	within the LAA, that's the Local Assessment Area.	
12	And Manitoba Hydro continues to deny that the	
13	Fournier farm falls within the LLA because the	
14	actual farm buildings are just outside of the LLA,	
15	notwithstanding that the actual real estate of the	
16	farm falls, at least in part within the LLA. So	
17	that's the background to my question.	
18	So it strikes me that, in theory, the	
19	way to properly identify and assess the different	
20	effects and impacts that have to be taken into	
21	account, they have to be properly labelled, and	
22	that they have to actually be properly taken into	
23	account. And this is an example of Hydro trying	
24	to avoid taking into account an impact on a	
25	landowner by mislabeling and then by denying the	

		Dogo
1	impact to avoid having to take that impact into	Fage
2	account in this very fancy methodology that you've	
3	described.	
4	So does that mislabeling of impacts	
5	and then denying that they exist, is that a formal	
б	part of this methodology, or is that just one	
7	example of Manitoba Hydro not following the	
8	methodology that you have described this morning?	
9	MS. COUGHLIN: Do you want to share	
10	the IR number on that?	
11	MR. TOYNE: The initial IR, so the	
12	first time we asked Hydro to confirm that it's a	
13	centennial farm was 217. So we then had to ask a	
14	second follow-up to get Hydro to confirm the	
15	obvious, and that IR is 360.	
16	MS. COUGHLIN: We have a lovely fellow	
17	that's coming to talk about heritage resources	
18	during the socio-economic presentation, and I'm	
19	not trying to dodge the question, but he knows	
20	this situation in detail. And I think it might be	
21	a better use of everybody's time, rather than to	
22	watch us fumble through, to talk to him directly.	
23	So can we redirect that question to the socio-ec	
24	panel.	
25	MR. TOYNE: I do have specific	

		Dere 1005
1	questions about why it was Manitoba Hydro denied	Page 1285
2	the obvious for so long, and I will ask those at	
3	the appropriate time. But at the more theoretical	
4	level that you've described, I'm just trying to	
5	figure out, is mislabeling effects one of the ways	
6	that Hydro can avoid taking them into account in	
7	this assessment process? Like is that part of	
8	Hydro's formal approach to environmental	
9	assessments, or is this just a one-off, hopefully,	
10	or some other	
11	MS. COUGHLIN: No, that is not part of	
12	our formal approach.	
13	MR. TOYNE: All right. So denying	
14	sort of obvious impacts so that they don't have to	
15	be taken into account in this assessment	
16	methodology, is that a formal part of Hydro's	
17	approach to environmental assessment, or is that	
18	sort of specific to this one particular property?	
19	MR. HOWELL: I think in that case it	
20	was a case of misidentification of whether or not	
21	it was a Centennial farm. Again, our colleague	
22	Mr. McLeod will address the confusion that arose	
23	there. And certainly when we define Local	
24	Assessment Areas, it's the area in which effects	
25	of the project will be felt. So we don't adjust	

		Pana
1	Local Assessment Areas or Regional Assessment	raye
2	Areas to try to avoid assessing or concluding what	
3	the project effect might be.	
4	MR. TOYNE: Right. I wasn't	
5	suggesting that Hydro was, you know, either	
6	growing or shrinking the boundaries of the LLA to	
7	avoid it. What I'm suggesting is that Hydro	
8	simply mislabeled something and then refused to	
9	admit the obvious about the impact on it, to avoid	
10	it being taken into account in the assessment	
11	process. So it's a different type of criticism,	
12	but I take your point.	
13	Unless the panel has anything else to	
14	say about that, I don't have any further questions	
15	on this issue.	
16	MS. COUGHLIN: No, I think you have	
17	mischaracterized our intent, and I think this	
18	question is better addressed to the heritage	
19	resource expert.	
20	MR. TOYNE: All right. Mr. Chair, I	
21	don't have any further questions for this panel.	
22	THE CHAIRMAN: Thank you very much,	
23	Mr. Toyne. That's more than timely actually.	
24	Thank you.	
25	Next we'll turn to Dakota Plains	

		Page 1287
1	Wahpeton Oyate, Mr. Mills.	1 age 1207
2	MR. MILLS: Good morning,	
3	Mr. Chairman. I apologize for being tardy today,	
4	I was reading CVs.	
5	We have two questions. You make	
6	reference to your inclusion of the ATK studies	
7	that you did receive, and we're wondering to what	
8	extent you reviewed and understood them? Are you	
9	familiar with the within the Golder ATK for	
10	Dakota Plains there's a, figure 1 was a map that	
11	indicated the Dakota traditional territory. This	
12	was a document, we understand, originally produced	
13	in 1857. Did you review that and understand the	
14	ramifications of that map?	
15	MS. COUGHLIN: Yes, I have the map in	
16	front of me and we reviewed it when it came in.	
17	MR. MILLS: Okay. Excuse me, I'm just	
18	slow scrolling through that report. We just had	
19	one other quick question.	
20	The summary 6.0, you reviewed and	
21	appreciated the statement that Dakota Plains	
22	members had been practising TLU activities in the	
23	project area since Dakota people first occupied	
24	the land, probably prior to 1200 A.D.?	
25	MS. COUGHLIN: Sorry, which line are	

Page 1288 you referring to? I've got the section opened up 1 2 here. 3 MR. MILLS: I'm in the summary, I believe it's page 17. 4 5 MS. COUGHLIN: Yeah, I'm there. I'm just wondering which exact line. I don't see б 7 those words specifically. MR. MILLS: 6.0 summary, it confirms 8 and concludes the Dakota Plains Wahpeton Nation 9 members have been practising TLU activities in the 10 11 project area since the Dakota people first occupied this region prior to 1200 A.D. 12 13 MS. COUGHLIN: In a general sense that wording is generally included, that's not the 14 15 exact text but... 16 MR. MILLS: But you came upon it and you included it? 17 18 MS. COUGHLIN: Yes. 19 MR. MILLS: Thank you. Those are all my questions. 20 21 THE CHAIRMAN: Thank you very much, Mr. Mills, for another very timely presentation or 22 questioning. Thank you. 23 24 Next we'll turn to the Consumers Association of Canada, Ms. Pastora Sala. 25

		Dago 1280
1	MS. PASTORA SALA: Good morning,	Fage 1209
2	Mr. Chair, members of the panel, I believe I have	
3	approximately half an hour of questions, give or	
4	take 10 minutes. Would that be okay?	
5	THE CHAIRMAN: That's what I have	
6	noted, yes.	
7	MS. PASTORA SALA: Thank you. Good	
8	morning, Mr. Howell and Ms. Coughlin.	
9	MS. COUGHLIN: Good morning.	
10	MS. PASTORA SALA: I will take turns	
11	asking each of you questions. I will try to	
12	address you when I'm asking you a question. But	
13	if I'm asking the wrong person, please feel free	
14	to correct me.	
15	And so, Ms. Coughlin, you are an	
16	environmental specialist in the major projects	
17	assessment and licensing at Manitoba Hydro;	
18	correct?	
19	MS. COUGHLIN: I am in the licensing	
20	and environmental assessment group and	
21	transmission.	
22	MS. PASTORA SALA: And transmission,	
23	sorry. And you're a member of the International	
24	Association for Impact Assessment?	
25	MS. COUGHLIN: Yes.	

		Page 1290
1	MS. PASTORA SALA: And would it be	1 age 1230
2	fair to assume that through your work and your	
3	affiliation with the IAIA, you are familiar with	
4	the general themes and the literature on	
5	cumulative effects in Canada?	
6	MS. COUGHLIN: Yes.	
7	MS. PASTORA SALA: And Mr. Howell, you	
8	are the senior principal at Stantec; correct?	
9	MR. HOWELL: I am a senior principal	
10	at Stantec.	
11	MS. PASTORA SALA: Pardon me, a senior	
12	principal at Stantec. And it would be fair to say	
13	that you are also, based on your position at	
14	Stantec, generally familiar with the themes in the	
15	literature on cumulative effects?	
16	MR. HOWELL: I am, yes.	
17	MS. PASTORA SALA: So Ms. Coughlin,	
18	I'm going to start with a few questions for you.	
19	Cumulative effects are changes to the environment	
20	that are caused by an action in combination with	
21	other past, present and future actions. Would you	
22	agree with that?	
23	MS. COUGHLIN: I agree.	
24	MS. PASTORA SALA: Similarly, Manitoba	
25	Hydro has defined cumulative effects at page 7-20	

		Dege 1201
1	of the MMTP EIS, as those resulting from the	Page 1291
2	residual effects of past, present and reasonable	
3	foreseeable future projects and activities,	
4	combined with the contribution of the project's	
5	residual effects; correct?	
6	MS. COUGHLIN: Yes, that sounds like	
7	our definition.	
8	MS. PASTORA SALA: And you would agree	
9	that cumulative effects are also often referred to	
10	as death by a thousand cuts, or tyranny of small	
11	decisions?	
12	MS. COUGHLIN: That's right, yes.	
13	MS. PASTORA SALA: And often	
14	cumulative effects are unintentional, but can	
15	result in conditions that are neither optimal, nor	
16	desirable?	
17	MS. COUGHLIN: I agree.	
18	MS. PASTORA SALA: Given Manitoba	
19	Hydro has committed to learning from past	
20	projects, I assume you are familiar with the work	
21	of Drs. Brown, Noble, and Jill Blakley, or	
22	formerly Jill Gunn.	
23	MS. COUGHLIN: Yes.	
24	MS. PASTORA SALA: And Manitoba Hydro	
25	is aware that Drs. Noble and Blakley are leading	

	Da	ao 1202
1	experts on cumulative effects in Canada and also	ge 1292
2	internationally well known?	
3	MS. COUGHLIN: Yes.	
4	MS. PASTORA SALA: And you would be	
5	aware that Drs. Noble and Blakley were retained by	
б	CAC Manitoba and provided evidence to the Clean	
7	Environment Commission on cumulative effects in	
8	both Bipole III and Keeyask hearings?	
9	MS. COUGHLIN: Yes.	
10	MS. PASTORA SALA: In the EIS for the	
11	MMTP, Manitoba Hydro indicates on several	
12	occasions that it has learned from past projects	
13	and builds in improvements where possible;	
14	correct?	
15	MS. COUGHLIN: That's correct.	
16	MS. PASTORA SALA: And as mentioned	
17	during Mr. Howell's presentation, one of the areas	
18	Manitoba Hydro has stated it has learned from past	
19	projects has been cumulative effects?	
20	MS. COUGHLIN: That's correct.	
21	MS. PASTORA SALA: And another has	
22	been the development of the Environmental	
23	Protection Plan?	
24	MS. COUGHLIN: Yes.	
25	MS. PASTORA SALA: Mr. Howell, during	

		Page 1293
1	your presentation you mentioned speaking with	1 490 1200
2	academics. Did you speak with any academics with	
3	an expertise in cumulative effects in preparation	
4	for your work?	
5	MR. HOWELL: I spoke to some academic	
6	related people that I work with, that are	
7	cumulative effects specialists, such as	
8	Mr. Hegmann, that has appeared before the other	
9	hearings.	
10	MS. PASTORA SALA: So Mr. George	
11	Hegmann was consulted with respect to the	
12	cumulative effects relating to the MMTP project?	
13	MR. HOWELL: Oh, yes.	
14	MS. PASTORA SALA: Thank you.	
15	Ms. Coughlin, did Manitoba Hydro	
16	specifically retain any cumulative effects experts	
17	for the MMTP?	
18	MS. COUGHLIN: Yes, Jim Howell, right	
19	here.	
20	MS. PASTORA SALA: Mr. Howell, have	
21	you had any publications on cumulative effects?	
22	MR. HOWELL: No, I have not.	
23	MS. COUGHLIN: Also, George Hegmann is	
24	at Stantec, who has had publications.	
25	MS. PASTORA SALA: Thank you.	

		Page 1294
1	And Mr. Howell and Ms. Coughlin, you	r ugo 1204
2	would have reviewed the recommendations of the CEC	
3	relating to cumulative effects in past hearings,	
4	such as Bipole III Transmission Line and the	
5	Keeyask Generation Project?	
6	MR. HOWELL: Yes, we have.	
7	MS. COUGHLIN: Yes, we have.	
8	MS. PASTORA SALA: Thank you. Sorry,	
9	I need you to confirm for the monitor.	
10	We will come back to these	
11	recommendations, but first I'd like to have a	
12	brief discussion with Ms. Coughlin on some basic	
13	principles relating to cumulative effects and	
14	monitoring and follow up.	
15	So Ms. Coughlin, would it be accurate	
16	to say that the MMTP EIS does not identify a	
17	definition for uncertainty?	
18	MS. COUGHLIN: We may not have. Is it	
19	not in the glossary? In the interest of speeding	
20	up this process, I would go right now and check in	
21	the glossary. Is it not in there? Are you	
22	pulling from the glossary?	
23	MS. PASTORA SALA: Yes.	
24	MS. COUGHLIN: Okay. So I guess it	
25	might not be defined.	

	Page 1295
1	MS. PASTORA SALA: For the purposes of
2	the following question, I will use a plain
3	language definition of uncertainty, which has been
4	provided to Manitoba Hydro and the CEC in previous
5	hearings by Drs. Patricia Fitzpatrick and Alan
6	Diduck, and that definition is by former United
7	States Secretary of Defense, Donald Rumsfeld, who
8	stated:
9	"There are known knowns, there are
10	things we know that we know. There
11	are known unknowns. That is to say,
12	there are things we know now that we
13	don't know. But there are also
14	unknown unknowns. There are things we
15	know we don't know."
16	I just want to say for the record, I have heard
17	Dr. Patricia Fitzpatrick say that a number of
18	times and I didn't realize how difficult it was to
19	say.
20	Would you agree with that definition,
21	Ms. Coughlin?
22	MS. COUGHLIN: Yes, I've heard that
23	definition.
24	MS. PASTORA SALA: Would you agree
25	that uncertainty is inherent to resource

Page 1296 1 management? 2 MS. COUGHLIN: Yes. 3 MS. PASTORA SALA: Would you agree that uncertainty in resource management stems from 4 several sources, such as a variability in the 5 natural environment? 6 7 MS. COUGHLIN: Yes. Uncertainty 8 stems, or uncertainty originates in many fields of study, it's not just inherent to natural resource 9 10 management. 11 MS. PASTORA SALA: Yeah, sorry, I'm just focusing on resource management for now. 12 13 And so you'd agree that uncertainty can stem from variability in the natural 14 15 environment. And what about human impacts on the environment? 16 17 MS. COUGHLIN: Yes. 18 MS. PASTORA SALA: A lack of knowledge about how ecosystems are managed? 19 20 MS. COUGHLIN: Yes. 21 MS. PASTORA SALA: Multiple social and political goals which impact resource management 22 at any given time? 23 24 MS. COUGHLIN: Yes. 25 MS. PASTORA SALA: Imperfect sampling

		Page 1297
1	and modeling techniques, among others?	1 490 1201
2	MS. COUGHLIN: Yes.	
3	MS. PASTORA SALA: And you would also	
4	agree that despite certain levels of uncertainty,	
5	many development projects must proceed?	
б	MS. COUGHLIN: Yes, using what we call	
7	is the precautionary approach, which is an	
8	approach that we've adopted.	
9	MS. PASTORA SALA: Yes, and you have	
10	almost anticipated my next question.	
11	Ms. Coughlin. I was going to ask you whether	
12	Manitoba Hydro would be aware that there are some	
13	methods and systems in resource management for	
14	dealing with uncertainty?	
15	MS. COUGHLIN: Yes, I am aware.	
16	MS. PASTORA SALA: And some of those	
17	ways, in addition to what you've already	
18	mentioned, is to explicitly identify the areas of	
19	uncertainty?	
20	MS. COUGHLIN: Yes, we have identified	
21	many areas of uncertainty through chapters and the	
22	Environmental Assessment.	
23	MS. PASTORA SALA: And another is to	
24	explicitly identify a plan to address those	
25	uncertainties?	

		Dogo 1209
1	MS. COUGHLIN: Yes, we have identified	Page 1298
2	robust follow-up and monitoring program.	
3	MS. PASTORA SALA: And another is to	
4	monitor potential impacts of the development of	
5	those certain uncertain elements?	
6	MS. COUGHLIN: That's what I have just	
7	said.	
8	MS. PASTORA SALA: Ms. Coughlin, would	
9	it be correct to say that uncertainty was not	
10	explicitly identified in the EIS as one of the	
11	factors used for the selection of valued	
12	components?	
13	MS. COUGHLIN: No, I disagree with	
14	that. Where there's no information, that is	
15	something that we contemplated. In fact, that's	
16	something that was contemplated quite	
17	substantially by the Manitoba Metis Federation.	
18	So they had a discussion on whether or not	
19	information was available for the Metis specific	
20	interests that they considered.	
21	MS. PASTORA SALA: Can you point	
22	specifically in the EIS where uncertainty is	
23	explicitly identified as one of the factors used	
24	for the selection of the valued components? It	
25	was not excluded pardon me, it was not included	

		Page 1299
1	in one of the elements in table 7-1, which	
2	identifies the rationale for including VCs.	
3	MS. COUGHLIN: It may not have been	
4	listed as one of the rationales for included VCs.	
5	MS. PASTORA SALA: So it was not	
6	explicitly identified in the EIS?	
7	MS. COUGHLIN: That could be true.	
8	MS. PASTORA SALA: Ms. Coughlin, would	
9	you agree that follow-up and monitoring is	
10	important too if we're dealing with uncertainties	
11	in environmental management?	
12	MS. COUGHLIN: Yes.	
13	MS. PASTORA SALA: And would you agree	
14	that employing adaptive management in follow-up	
15	and monitoring is important for managing	
16	uncertainties in environmental management?	
17	MS. COUGHLIN: Yes.	
18	MS. PASTORA SALA: I'm now moving to a	
19	discussion on cumulative effects.	
20	Would it be accurate to say that the	
21	construction of the MMTP will be affecting a	
22	variety of lands in Manitoba, including areas	
23	where there are existing corridors, areas being	
24	used for agriculture, rural residential and Crown	
25	lands?	

		Dogo 1200
1	MS. COUGHLIN: Yes.	Fage 1500
2	MS. PASTORA SALA: But overall the	
3	project is located in an area that has experienced	
4	substantial and ongoing landscape changes?	
5	MS. COUGHLIN: Yes.	
6	MS. PASTORA SALA: And it has been	
7	considerably disturbed by past and present	
8	physical activities?	
9	MS. COUGHLIN: Yes.	
10	MS. PASTORA SALA: And as stated	
11	earlier by Mr. Howell, it is located in a highly	
12	developed prairie environment?	
13	MS. COUGHLIN: That's correct.	
14	MS. PASTORA SALA: Earlier in the	
15	discussion I indicated that we would be coming	
16	back to the CEC recommendations from past	
17	projects. So Ms. Coughlin, would it be fair to	
18	assume that you're aware of CEC, the CEC reports	
19	on Bipole III and the non-licensing recommendation	
20	11.1, which states would you like me to give	
21	you a moment to get it?	
22	MS. COUGHLIN: Do you want to read it	
23	while Brett's grabbing it?	
24	MS. PASTORA SALA: "Manitoba Hydro	
25	implement a cumulative effects	

		Page 1201
1	assessment approach that goes beyond	Fage 1501
2	the minimal standards of the 1999 CEAA	
3	guidelines and is more in line with	
4	current best practices."	
5	MS. COUGHLIN: Yes.	
6	MS. PASTORA SALA: And that at	
7	minimum you know what, I don't need to go	
8	there. It does go further but I won't read the	
9	rest.	
10	And in terms of the best practices for	
11	cumulative effects assessment methodology,	
12	Manitoba Hydro would be aware that it typically	
13	unfolds in four stages: First being scoping, the	
14	second being retrospective analysis, the third	
15	being prospective analysis, and the fourth being	
16	management of significant adverse cumulative	
17	effects?	
18	MS. COUGHLIN: I believe that's how	
19	Gunn and Noble describe it, yes.	
20	MS. PASTORA SALA: And in addition to	
21	Drs. Blakley and Noble, similar standards are	
22	established in the literature and good practice	
23	CEAA guidance, which is relied upon by Manitoba	
24	Hydro?	
25	MS. COUGHLIN: Yes.	

1	Page 1302
T	MS. PASIORA SALA: And in the absence
2	of any of these components of the criteria, a
3	CEAA, a Cumulative Effects Assessment is
4	incomplete?
5	MS. COUGHLIN: Yes.
6	MS. PASTORA SALA: And so I will be
7	going through some of these essential components
8	of Cumulative Effects Assessment, and I will be
9	asking you whether or not you agree with the
10	description I am providing.
11	MS. COUGHLIN: Okay.
12	MS. PASTORA SALA: Is it consistent
13	with your understanding that the cumulative
14	effects scoping elements determines that it will
15	be included and what will be excluded from the
16	assessment?
17	MS. COUGHLIN: So just to
18	contextualize the assessment, it included
19	contributions from a variety of indigenous
20	communities and organizations. And so information
21	included in those reports was not necessarily
22	dictated by the scoping practice that you are
23	referring to. So information and content in those
24	documents is a valuable component of the
25	Environmental Assessment and has been included

		Page 1303
1	within VEC chapters, and wasn't necessarily part	Tage 1000
2	of that initial scoping process.	
3	MS. PASTORA SALA: So Ms. Coughlin,	
4	I'm just asking you to agree with basic principles	
5	of cumulative effects. And I have just said that	
6	scoping determines what's included and excluded in	
7	the assessment?	
8	MS. COUGHLIN: That's right. And I'm	
9	saying that in the scoping portion of our	
10	assessment, it didn't necessarily exclude what	
11	communities wanted to include in their traditional	
12	knowledge studies. So it wasn't entirely	
13	exclusive, as you're describing it.	
14	MS. PASTORA SALA: I'm going to put it	
15	another way. The scoping exercise can identify	
16	also which other projects and actions, past,	
17	present and future, will be included when	
18	evaluating a project's contribution to cumulative	
19	effects. Could you agree with that?	
20	MS. COUGHLIN: Yes.	
21	MS. PASTORA SALA: In terms of scoping	
22	for MMTP, would it be accurate to say that the	
23	effects of other projects or disturbances was not	
24	consistently and explicitly considered as a	
25	rationale for the inclusion of VCs in the EIS for	

Page 1304 1 MMTP? 2 MS. COUGHLIN: I would disagree with 3 that. 4 MS. PASTORA SALA: Why? 5 MS. COUGHLIN: So you're saying, did we not include VCs based on what future projects 6 7 there might be? Could you rephrase your question 8 I quess? MS. PASTORA SALA: So the effects of 9 other projects or disturbances was not 10 11 consistently and explicitly considered as rationale for including a VC in the EIS? 12 13 MR. HOWELL: We included as VCs any aspects of the project that might overlap, either 14 15 spatially or temporally, with other future 16 projects. 17 MS. COUGHLIN: So a good example of that is when we talk about fragmentation and 18 intactness in vegetation and wetlands, where we go 19 quite beyond the project area to describe 20 characteristics of that condition. 21 22 MS. PASTORA SALA: Thank you. And Ms. Coughlin, would you agree that, in terms of 23 24 the retrospective analysis, it focuses on 25 determining baseline conditions, how conditions

		Page 1305
1	have changed over time, whether that change is	Fage 1505
2	significant to this sustainability of the	
3	environmental components of concern, and whether	
4	and how that change is attributed or connected to	
5	past and present development activities?	
6	MS. COUGHLIN: Yes.	
7	MS. PASTORA SALA: And under a	
8	prospective analysis, the discussion is centered	
9	on identifying scenarios which serve to assess	
10	potential impacts or responses to disturbances in	
11	the future, including disturbances directly	
12	attributed to the proposed project and other	
13	present and future projects and actions within the	
14	project's regional environment.	
15	MS. COUGHLIN: I think Lorne Grieg,	
16	another expert in the field of cumulative effects,	
17	describes scenarios slightly differently than what	
18	you've described. So I think what you're pulling	
19	from is the Gunn description. Is that correct?	
20	MS. PASTORA SALA: That's correct, and	
21	I'm asking whether you would agree?	
22	MS. COUGHLIN: Yeah, I would pull out	
23	scenarios, because sometimes they can be quite	
24	complex, so I might not include them in a	
25	prospective analysis. But I think in the way	

1		Page 1306
T	we're commonly understanding scenarios, like the	
2	scenarios that we've describe in our climate	
3	change section, that that could be grouped the way	
4	you have phrased it.	
5	MS. PASTORA SALA: And in the MMTP	
6	EIS, Manitoba Hydro indicates that it has	
7	described in existing conditions in each of the	
8	VCs; correct?	
9	MS. COUGHLIN: Yes.	
10	MS. PASTORA SALA: Would it be fair to	
11	say that Manitoba Hydro did not include an	
12	analysis of future conditions without the proposed	
13	projects, and in combination with effects of other	
14	future project and activities?	
15	MS. COUGHLIN: We talk about the	
16	project's contribution to cumulative effects, to	
17	future effects, so that in essence is talking	
18	about with and without the project and the future	
19	conditions. It's a different way of phrasing it.	
20	MS. PASTORA SALA: Can you repeat	
21	that?	
22	MS. COUGHLIN: So we talk about the	
23	project's contribution of cumulative effects to	
24	the future, and that could be another way of	
25	phrasing what you're asking. Maybe Jim can	

		Page 1307
1	characterize this.	Fage 1507
2	MR. HOWELL: No.	
3	MS. PASTORA SALA: So your assessment	
4	includes future conditions without the proposed	
5	projects?	
6	MS. COUGHLIN: Not specifically	
7	without.	
8	MS. PASTORA SALA: Okay. That's what	
9	I was asking.	
10	MS. COUGHLIN: Right. But when we	
11	talk about the project's contribution to future	
12	effects, that's a way of describing what you're	
13	asking, just using different terminology.	
14	MS. PASTORA SALA: Okay. Sorry, I	
15	think I was just focusing on the without, but I	
16	think I understand what you're saying. Thank you.	
17	Would you be aware that the management	
18	stage is designed to identify appropriate	
19	mitigation and monitoring actions for those	
20	components subject to cumulative effects?	
21	MS. COUGHLIN: What do you mean by	
22	management phase?	
23	MS. PASTORA SALA: So the management	
24	analysis would require Manitoba Hydro, for	
25	example, to identify significance of the MMTP's	

Page 1308
cumulative effects. It is the fourth step in the
best practice approach of cumulative effects.
MS. COUGHLIN: Okay. Are you talking
about like in the follow-up and monitoring
program?
MS. PASTORA SALA: Right.
MS. COUGHLIN: Okay, yes.
MS. PASTORA SALA: And so this is done
through each of the VCs in the MMTP EIS?
MS. COUGHLIN: This is done according
to what is outlined in the follow-up and
monitoring sections of the environmental
assessment as well as in the environmental
protection program.
MS. PASTORA SALA: Yeah, okay, thank
you.
And just to finish off, I want to move
away now from cumulative effects and speak a
little bit about relationships. So these
questions are going to be for Ms. Coughlin.
So mindful of the comments of Manitoba
Hydro's legal counsel in the opening statement
relating to its commitment to learning, and to the
Truth and Reconciliation Commission, specifically
call to action 45, which calls for the respect of

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

		Dogo 1210
1	recommendation is that:	Page 1310
2	"The Minister should support these	
3	long-standing and successful methods	
4	of the Cree indigenous worldview by	
5	incorporating Ke nocominanak, or A	
6	Grandmothers Circle, with a mission to	
7	overseeing safeguarding the	
8	environment."	
9	Recognizing the CEC recommendation was	
10	directed to the Minister, has Manitoba Hydro	
11	considered creating a Ke nocominanak Grandmothers	
12	Circle?	
13	MS. COUGHLIN: I'm familiar, I don't	
14	think we need to wait for Brett to bring it up,	
15	I'm familiar with that passage. The Aski	
16	worldview was something that was discussed quite a	
17	bit in the Keeyask. And of course in this	
18	project, we have multiple worldviews. So we have	
19	the Anishinaabe, the Dakota people, we have a	
20	variety of different participants in the process.	
21	And one of the things that we've talked about with	
22	Dakota, with Chief Pasche, Dakota Tipi First	
23	Nation, is he's requested to have a pipe ceremony	
24	prior to construction. And so that's something	
25	that we have talked to one of the construction	

		Page 1211
1	guys about, and he'd like to have that undertaken	Fage 1511
2	before we begin.	
3	So we haven't had someone ask	
4	specifically about having a grandmothers circle,	
5	but I think that's sort of akin to what you're	
6	asking.	
7	MS. PASTORA SALA: I just for the	
8	record would want to point out that I would	
9	disagree that it would be akin to what I am	
10	asking, but I'm going to specifically ask if	
11	Manitoba Hydro has followed up with the Minister	
12	to see if they will be implementing a Ke	
13	nocominanak or circle of grandmothers?	
14	MS. COUGHLIN: I have not followed up	
15	with the Minister, and I don't know if anybody	
16	else at Hydro has followed up with the Minister to	
17	find out if we should be having	
18	MS. PASTORA SALA: Would it be	
19	possible to get an undertaking to know whether or	
20	not Manitoba Hydro has followed up with the	
21	Minister to see if they will be implementing a	
22	circle of grandmothers?	
23	MS. MAYOR: Manitoba is not prepared	
24	to provide an undertaking of their communications	
25	with the Minister.	

		Page 1312
1	MS. COUGHLIN: And you recognize we	
2	have broader than just Cree worldviews involved in	
3	this process.	
4	MS. PASTORA SALA: I recognize that.	
5	I'm just referring to the recommendation from	
6	Keeyask, given that Manitoba Hydro has indicated	
7	that it has learned from past processes.	
8	THE CHAIRMAN: I wonder if I could ask	
9	a background question first? Was this a CEC	
10	recommendation or not?	
11	MS. PASTORA SALA: Yes. I believe	
12	Mr. Nepinak could also tell you a little bit more	
13	about it.	
14	THE CHAIRMAN: All right. So CEC	
15	recommendation, and you're asking whether that	
16	recommendation was followed up by Manitoba Hydro;	
17	is that accurate?	
18	MS. PASTORA SALA: That's accurate.	
19	THE CHAIRMAN: So, sorry, one more	
20	question of clarification. Was that a	
21	non-licensing recommendation? I assume so,	
22	because I don't think that would be part of a	
23	licence?	
24	MS. PASTORA SALA: Yes.	
25	THE CHAIRMAN: It was. Manitoba	

Volume 6

1	Hydro?	Page 1313
2	MS. MAYOR: The specific question was	
3	whether Manitoba Hydro had followed up with the	
4	Minister, which is something that Manitoba Hydro	
5	is not prepared to share in terms of	
6	communications with the Minister. If there was a	
7	question whether Manitoba Hydro has taken any	
8	steps on the Keeyask project, that again, I mean,	
9	it's so broad, we have 6,000 employees. So what	
10	work has been done, not an easy undertaking. I	
11	think Ms. Coughlin has answered it with respect to	
12	the MMTP project and what we're doing on that	
13	particular project, which is the most relevant to	
14	this particular panel.	
15	THE CHAIRMAN: Is your question	
16	related to the grandmothers circle? Is that	
17	somehow tied to this project, or is it simply a	
18	follow-up to recommendations on a previous	
19	project?	
20	MS. PASTORA SALA: During Manitoba	
21	Hydro's legal counsel's opening statement, and I'm	
22	going to read from the transcript, they indicated	
23	that:	
24	"Since 2004, all of us have watched	
25	the work of the Truth and	

		Dago 1214
1	Reconciliation Commission of Canada	Faye 1314
2	and have received its report. Call to	
3	action 45 of that report, although	
4	directed specifically to the	
5	Government of Canada, has some useful	
б	guidance for our work here. It	
7	recommends that indigenous laws and	
8	legal traditions be recognized and	
9	integrated in processes that involve	
10	land claims and other constructive	
11	agreements."	
12	Then legal counsel goes on to describe the	
13	importance of indigenous legal traditions. It	
14	describes Anishinaabe law as being all about	
15	relationships, and describes that with	
16	relationships comes responsibilities. With	
17	responsibilities comes actions required. And what	
18	I'm asking is whether or not Manitoba Hydro has	
19	followed up on one of the previous recommendations	
20	in CEC report from Keeyask. So I would say that	
21	it is directly related to this project.	
22	THE CHAIRMAN: All right. Would Hydro	
23	then be prepared to discuss that recommendation in	
24	relationship to this project, not overall, because	
25	I don't think we're here to do a checklist on what	

	Page 1315
1	was followed up or not on a different project, but
2	would it be possible to discuss and I'm
3	assuming the recommendation was specific to the
4	grandmothers circle; is that accurate? Sorry,
5	were you going to answer that?
6	MS. PASTORA SALA: I'm sorry, your
7	question was whether or not
8	THE CHAIRMAN: The question was
9	whether the recommendation was specific to the
10	grandmothers circle?
11	MS. PASTORA SALA: Would you like me
12	to read the recommendation again?
13	THE CHAIRMAN: No, just answer that
14	part of it, does it reference a grandmothers
15	circle?
16	MS. PASTORA SALA: Yes.
17	THE CHAIRMAN: It does specifically.
18	Would Hydro be willing to come back
19	with a response on whether that particular
20	recommendation, related to the grandmothers
21	circle, was considered as part of the MMTP
22	process, recognizing that you have mentioned at
23	least one other traditional activity that has been
24	included, and perhaps there are others, but on
25	that specific one? Thanks.

316

		Dogo 1
1	MS. COUGHLIN: We have not included	Page
2	that particular grandmothers circle in this	
3	project, but I think we could probably speak to	
4	the first part of that recommendation. The	
5	essence and the substance of what you're getting	
6	at is we have tried to adopt a process of being	
7	respective to other worldviews and being	
8	considerate of practices that are inclusive. So	
9	we can speak to those conversations that we had	
10	and the processes that we have been respectful of	
11	for this project, no one has specifically asked us	
12	for a grandmothers circle, from the people that we	
13	have been working with, to the best of my	
14	knowledge. But we can speak to what we have	
15	heard.	
16	MS. PASTORA SALA: Mr. Chair, I'm	
17	unclear about whether or not Manitoba Hydro will	
18	be following up with the Minister or indicating	
19	whether or not they have followed up with the	
20	Minister on the recommendation. Before I respond	
21	to Ms. Coughlin's comment, I would like to clarify	
22	for the record.	
23	THE CHAIRMAN: I think what we heard	
24	from Hydro was that the discussions or	
25	recommendations or communication with the	

	Page 1317
1	Minister, they are not prepared to share here. So
2	whether that discussion has taken place or not,
3	I'm assuming what's behind it is, are they
4	applying that recommendation to this project? And
5	I think they have answered that question saying
6	that specific recommendation, no, but they have
7	done other traditional activities.
8	MS. PASTORA SALA: Okay. Thank you.
9	Ms. Coughlin, could you point me to an
10	expressed written policy or practice requiring
11	Manitoba Hydro to take into account indigenous
12	worldviews or legal orders?
13	MS. COUGHLIN: Cultural Heritage and
14	Resource Protection Plan.
15	MS. PASTORA SALA: It specifically
16	identifies Manitoba Hydro as a whole to take into
17	account indigenous worldviews and legal orders?
18	MS. COUGHLIN: Perhaps not in those
19	exact words, but it is considerate of practices
20	and measures that we can take to be respective of
21	those practices.
22	MS. PASTORA SALA: Could you point me
23	to a specific reference within that?
24	MS. COUGHLIN: I don't have it here
25	but we could, we could undertake to do that.

		Page 1318
1	MS. PASTORA SALA: Thank you. Those	r ago roro
2	are my questions.	
3	(UNDERTAKING # MH-5: Advise Specific reference	
4	which identifies Manitoba Hydro as a whole to take	
5	into account indigenous worldviews and legal	
6	orders)	
7	THE CHAIRMAN: Thank you very much.	
8	Also right on schedule, so thank you. Except for	
9	the five minutes I took up.	
10	All right. We're scheduled for a	
11	break, we're just a little bit past it. So we	
12	will come back here at 11:25. Thank you.	
13	(PROCEEDINGS RECESSED AT 11:09 A.M.	
14	AND RECONVENED AT 11:25 A.M.)	
15	THE CHAIRMAN: Okay. Welcome back	
16	everyone. So we're going to return to questioning	
17	on the methodology section, and I believe we're	
18	now with the Southern Chiefs' Organization,	
19	Mr. Beddome.	
20	MR. BEDDOME: James Beddome for the	
21	record, for the Southern Chiefs Organization.	
22	Thank you very much, Mr. Chair, the rest of the	
23	panel, and the Hydro Panel that's up there today,	
24	thank you very much, Ms. Coughlin and Mr. Howell,	
25	for being here today.	

		Dago 1210
1	I'm going to try to be as quick as I	Fage 1318
2	can because I'm mindful of our timeline. So first	
3	question I think would be for Mr. Howell. Could	
4	you explain to me how First Nations were involved	
5	in the scoping process?	
б	MR. HOWELL: In the actual scoping	
7	process, when we developed the valued components,	
8	the items that were included as valued components	
9	included items that First Nations had brought up,	
10	or did bring up afterwards.	
11	MS. COUGHLIN: I can add to	
12	Mr. Howell's response. As part of the engagement	
13	team, we went and spoke to people and asked people	
14	what they cared about, and what they valued, and	
15	what they were concerned about. And we asked them	
16	to consider some of the valued components before	
17	they were valued components, through meetings.	
18	And those understandings were shared with us and	
19	that contributed to scoping of the assessment.	
20	MR. BEDDOME: And when you say you met	
21	with people, who did you meet with specifically?	
22	MS. COUGHLIN: Participants in the	
23	First Nation and Metis engagement process, as well	
24	as the public through public events.	
25	MR. BEDDOME: Now, you comment on how	

	Page 1320
1	you have a sorry, I want to use the right word
2	in your slide here broad and adaptive
3	engagement. That's from slide 7. You would agree
4	with that, right, that you made that comment?
5	MS. COUGHLIN: Yes.
6	MR. BEDDOME: It seems like in some
7	cases, though, and I understand there would be
8	adaptive engagement, after the fact some First
9	Nations would have reached out to you and
10	expressed an interest and you subsequently would
11	have included them in the project, particularly a
12	good example being maybe Black River. Would that
13	not be fair to say?
14	MS. COUGHLIN: Yes.
15	MR. BEDDOME: But if they weren't on
16	the identified list of First Nations and they
17	didn't subsequently reach out to you, then they
18	weren't included in that scoping process.
19	MS. COUGHLIN: Some communities
20	reached out to other First Nations. So for
21	example, Swan Lake let us know that Shoal Lake 39
22	and 40 were interested in the process, and so we
23	shortly thereafter included them in the engagement
24	process.
25	MR. BEDDOME: Thank you. So this

		Dogo 1221
1	should be really easy, but if you need a	Page 1321
2	reference, you can turn to slide 16 in your	
3	presentation. That's where you outline the valued	
4	components, as well as the pathway components.	
5	And I don't even know if you need to	
6	flip to it, but I just want to establish that two	
7	of the valued components that you identified were	
8	traditional land and resource use and heritage	
9	resources?	
10	MR. HOWELL: That's correct.	
11	MR. BEDDOME: Now, is heritage	
12	resources inclusive of First Nation heritage	
13	resources, or is it separate or in addition to?	
14	MS. COUGHLIN: Well, I think the	
15	reason we are wavering is we think that heritage	
16	resources are best described by First Nations in	
17	their own community reports. So although there is	
18	reference made, I believe subject to check, in the	
19	heritage resource chapter, I believe the best way	
20	of conveying that information is through	
21	self-directed studies from the communities	
22	themselves.	
23	MR. BEDDOME: Okay. Now, it's the	
24	next slide actually, at 17, you discuss a bit	
25	about spatial and temporal boundaries.	

		Page 1322
1	Specifically in reference to traditional land and	Fage 1522
2	resource use, I guess, wanting you to comment on	
3	what those spatial and temporal boundaries were,	
4	and I'd just like to note, and I can certainly	
5	reference the Stantec socioeconomic report,	
б	perhaps it might come up in a later panel, but	
7	that well, maybe I'll back up. You'd be aware	
8	that many First Nations people didn't live on	
9	their home reserve. That would be correct?	
10	MS. COUGHLIN: Yes.	
11	MR. BEDDOME: So my question	
12	specifically on that is how you took into account	
13	traditional land and resource use in terms of	
14	boundaries, when you would know that, you know,	
15	you might have someone from one First Nation who	
16	is living in Steinbach, but they might be from	
17	Waywayseecappo let's say, right? So how did you	
18	take that into account when taking a look at	
19	spatial and temporal boundaries?	
20	MS. COUGHLIN: We assumed use of the	
21	area. So I guess you could say we did this in a	
22	few ways. When we spoke with communities, we	
23	asked them sort of the preferred method of	
24	engagement. So if that included speaking to	
25	community members in areas outside of the home	

		Page 1323
1	community, we did that. So that gave us a broader	1 age 1525
2	audience to engage with. And in the traditional	
3	land resource use assessments, you'll hear about,	
4	in the near future Bruce Amundson will talk about	
5	how we assumed use of the RAA and LAA.	
6	MR. BEDDOME: So I take it I can save	
7	some of my questions for that panel then.	
8	MS. COUGHLIN: You can, but we can try	
9	here as well.	
10	MR. BEDDOME: Well, you know, I just	
11	want to be mindful of the time. So I guess I'm	
12	asking whether you think it's better directed to	
13	that panel or yourself then, perhaps that's a	
14	better way of phrasing what I was getting at?	
15	MS. COUGHLIN: Sure. Okay.	
16	MR. BEDDOME: So am I better to direct	
17	it to that panel or yourself?	
18	MS. COUGHLIN: Can I understand the	
19	nature of your questions? Maybe that will help.	
20	If they are about the assessment process	
21	specifically, maybe Jim and I can take a stab.	
22	MR. BEDDOME: Okay. I think most of	
23	them will be for the panel directly. Thank you	
24	for that. I want to move on and I do appreciate	
25	that.	

		Page 1324
1	Now, I really appreciated the image	Tugo To24
2	that you had at slide 29. My version only has the	
3	afterwards impact. So if you just go to slide 29?	
4	So if you go back, you gave a citation, Irene	
5	Hanuta, I just want to make sure I get that	
6	citation correct, and make sure I spelled the name	
7	correct. I think it's actually in your reference	
8	materials, in your outline, but if I can just	
9	confirm that citation?	
10	MR. HOWELL: Yeah, it's H-A-N-U-T-A.	
11	MR. BEDDOME: H-A-N-U-T-A. Thank you,	
12	I actually did spell it wrong, thank you for	
13	correcting that for me.	
14	Now, as I understood it, Mr. Howell,	
15	you used this in reference of cumulative impacts	
16	and you talked about how there have indeed been	
17	significant changes to Southern Manitoba over the	
18	past 150 years. That would be a correct	
19	statement; right?	
20	MR. HOWELL: That's correct.	
21	MR. BEDDOME: But in terms of the	
22	cumulative effects, you were trying to be project	
23	specific; correct?	
24	MR. HOWELL: That's correct.	
25	MR. BEDDOME: So would I be correct in	

		Page 1325
1	assuming that basically, in essence what you are	Fage 1525
2	saying is these 150 years of changes, they're not	
3	Manitoba Hydro's problem?	
4	MR. HOWELL: No. We put the	
5	cumulative effects assessment for a project such	
6	as this into the context of what are the	
7	cumulative effects that have identified the	
8	existing environment, and then adding the project	
9	and foreseeable future projects on.	
10	If we want to look at something that	
11	is not a project centric cumulative effects	
12	assessment, we then look at something, something	
13	that should be addressed in a regional	
14	environmental assessment or a strategic impact	
15	assessment. But for the purposes of a project,	
16	it's project centric.	
17	MR. BEDDOME: It's project centric, so	
18	then to a certain extent it is Manitoba Hydro's	
19	concern then?	
20	MS. COUGHLIN: One of the things we	
21	did is we made sure to include both an	
22	understanding of the project's contribution to	
23	cumulative effects, as well as a discussion in	
24	some chapters on what people typically think of	
25	the term cumulative effects. So, an example of	

		Dago 1326
1	that is in the vegetation and wetlands chapter,	Fage 1520
2	where they describe some of this change that	
3	you're seeing in Dr. Hanuka's map in front of you.	
4	And it's one of the reasons we went to Dr. Gordon	
5	Goldsborough and asked him, is there good imagery	
6	that can show what we're hearing is described,	
7	through community reports and through what we	
8	heard, to illustrate this change that's happened	
9	in Southern Manitoba over the last 150 years or	
10	so?	
11	MR. BEDDOME: And just to be clear,	
12	the cumulative effects then is project specific,	
13	it's not Hydro specific, so it's not looking at	
14	all Hydro projects in the region, it's	
15	specifically focused on the Manitoba-Minnesota	
16	Transmission Project; correct?	
17	MR. HOWELL: No.	
18	MS. COUGHLIN: No, that's not what	
19	we're saying.	
20	MR. HOWELL: What we're looking at is	
21	we looked at the other projects that are existing	
22	or foreseeable, and that forms the basis for the	
23	cumulative effects assessment.	
24	So we're not excluding Manitoba Hydro	
25	projects. As in the figure that Ms. Coughlin	

		Dece 1007
1	showed, we've got Manitoba Hydro projects included	Page 1327
2	in that, in the cumulative effects assessment.	
3	MR. BEDDOME: And I'm going to return	
4	to that, I guess no, I'll move on. I don't	
5	think we need to belabour the point. It's	
б	effectively as it's a comment you made,	
7	Mr. Howell. It's effectively as I sort of heard	
8	it, you recognize these 150 year impacts. But as	
9	I was to get it, they are beyond Hydro's scope,	
10	but maybe I'm not hearing you correctly.	
11	MR. HOWELL: No, what we have done, we	
12	have included where we have qualitative	
13	information on effects over the last 100 to 150	
14	years. So we did put it into that context. But	
15	then we're looking at comparing cumulative effects	
16	to the existing conditions and foreseeable future	
17	conditions.	
18	MR. BEDDOME: Oh, okay. So I think	
19	that helps me. So it's, basically, your baseline	
20	would have been, you know, 2015, 2016 Manitoba,	
21	rather than going back 100 or 150 years. That	
22	would be a correct way of putting it?	
23	MR. HOWELL: For the	
24	MS. COUGHLIN: No, that's not	
25	sorry, that's not correct.	

1	So one of the examples that I can	Page 1328
2	show, because we're talking about landscape change	
3	in general, one of the valued components that most	
4	directly reflects this is vegetation and wetlands.	
5	And in that chapter we discuss more recent or more	
б	present day changes over the last 40 years. But	
7	then there is also reference to the dramatic	
8	changes that you see here in front of you. So you	
9	see this 150 year change. That's also discussed.	
10	So, yeah, that characterizes both time frames.	
11	MR. BEDDOME: Fair enough. Thank you	
12	very much for that.	
13	Now, I just want to refer you to	
14	7.3.2.4.2 of the EIS, which you can find at 7-17	
15	of the EIS. 7.3.2.4.2, sorry, a lot of points	
16	there. It's in the middle of the page at 7-17 of	
17	the EIS.	
18	MS. COUGHLIN: Okay, yes.	
19	MR. BEDDOME: And in the middle of the	
20	first paragraph, and I'll just read what it says:	
21	"For example, current and present use	
22	of lands for traditional land and	
23	resource use has been defined for this	
24	assessment as within the last 25 years	
25	or one generation."	

Page 1329 1 Do you see that? 2 MS. COUGHLIN: I do. 3 MR. BEDDOME: And I would submit to you that from a First Nation perspective, they 4 don't just look at one generation but they tend to 5 look at seven generations. And I would ask you 6 7 why your analysis didn't take a broader timeline 8 into account? 9 MS. COUGHLIN: Because that knowledge is passed down through oral traditions. The 10 11 knowledge taken from one person is actually an accumulation of knowledge passed down from past 12 generations. So that one person tells a story 13 that's reflective of generations in the past. 14 15 The NEB electricity filing manual 16 actually specifies this 25-year time frame specifically, and that rationale underpins that 17 18 timeline. 19 MR. BEDDOME: I see. So the 25 years came from the NEB guidance? 20 21 MS. COUGHLIN: As well as the understanding that I described before that. 22 MR. BEDDOME: And thank you for that. 23 24 I do appreciate that, how information is passed on 25 through oral tradition and from generation to

		Dege 1220
1	generation. It just seemed to me, on one hand	Page 1330
2	we're talking about the 150 years of changes, and	
3	then we're only looking at 25 years of use. So it	
4	just seemed that part of that, would you not agree	
5	part of that oral tradition that's passed down is	
б	how these changes have happened over 150 years.	
7	MS. COUGHLIN: I would agree that the	
8	oral tradition that is passed down through	
9	generations can extend way beyond 150 years.	
10	MR. BEDDOME: And still at page 7-17,	
11	I just note that the effects of decommissioning	
12	are not going to be assessed at all, and that will	
13	be dealt with via whatever regulatory framework at	
14	the time. I would suggest to you that a better	
15	environmental assessment and cumulative effects	
16	assessment would have taken decommissioning into	
17	account. How do you respond to that?	
18	MS. COUGHLIN: Projects like this	
19	transmission line have a very long life span	
20	anticipated for it. And as we know, and as we	
21	have experienced over this last year, there has	
22	been fairly rapid change in the environmental	
23	assessment landscape. There's discussion	
24	documents abound right now on changes in the	
25	process. And we feel like a thorough and	

	Page 1221
1	respective discussion on decommissioning of the
2	project will be best done under the regulatory
3	regime of the time, which will be way into the
4	future.
5	MR. BEDDOME: I guess my comment,
6	though, would be that there might be some value in
7	assessing what needs to be done in terms of
8	decommissioning. Would you not agree?
9	MR. HOWELL: Yeah. For long-term
10	projects such as the transmission lines, as
11	Ms. Coughlin mentioned, we wait to see what the
12	law is at that time, what the common practices
13	are. If we go back, you know, 50, 60, 70 years
14	ago and what practices were followed then, it's
15	entirely different from what would be done now.
16	If the project were to be decommissioned today, an
17	existing line, it would be a lot different than
18	how one was decommissioned 30, 40 years ago.
19	MR. BEDDOME: And I can appreciate
20	that. But my point, I guess just to be clear,
21	isn't that things won't change in the future and
22	we shouldn't consider that, and I have a follow-up
23	question, but it's more about how there could be a
24	value in assessing that at the outset here. But I
25	take your point.

		Daga 4000
1	The follow-up question I guess I would	Page 1332
2	have, and perhaps you can answer, maybe you can't,	
3	would Manitoba Hydro be willing to consider a	
4	licensing condition which mandated some sort of	
5	public process when decommissioning was to take	
6	place, be it 100 years from now, be it 200 years	
7	from now?	
8	MS. COUGHLIN: I think that would be	
9	so speculative. It might be a better use of	
10	resources to use the knowledge at the time and the	
11	best practices developed between now and then to	
12	decommission the project with the resources we'll	
13	have available, and the understanding and	
14	increased knowledge we'll have at that time. I	
15	think that's a fairly commonly held practice.	
16	MR. BEDDOME: I agree, but my point is	
17	allowing a process for some sort of public	
18	engagement or some sort of public review, similar	
19	to what we have today.	
20	MS. COUGHLIN: We are open to	
21	engagement throughout, so I think we have made	
22	that point earlier in the hearing.	
23	MR. BEDDOME: Okay. Well, this kind	
24	of comes to a general point, and I imagine I'll	
25	return to it with other panels, but it seems	

		Page 1333
1	and you commented on this I think on the	
2	conclusions after the effect, which you have a	
3	slide there with a number of First Nations. But	
4	it seems that often the Aboriginal traditional	
5	knowledge, it's incorporated into the	
6	Environmental Protection Plan, but it's not	
7	necessarily as incorporated into the scoping, into	
8	the routing, or even into the EIS if the reports	
9	aren't submitted in time. Do you see that	
10	concern? Do you see how in many cases the	
11	recommendations are effectively pushed into the	
12	Environmental Protection Plan?	
13	MS. COUGHLIN: I disagree with that	
14	premise. We had an IR on this actually, well,	
15	similar to what you're asking. So we selected one	
16	value component chapter and just identified all of	
17	the locations where traditional knowledge was	
18	included or referenced in that chapter. And I	
19	believe that IR was something like four pages	
20	long, just to list all the references where	
21	traditional knowledge was incorporated. And	
22	that's just the references of where it was	
23	incorporated.	
24	So, no, I don't agree with the premise	
25	of your question.	

		1221 ane
1	MR. BEDDOME: Fair enough. And you	age 1004
2	indicated you're trying to learn from past	
3	projects, and so you'd be familiar with the Bipole	
4	III recommendations from the Clean Environment	
5	Commission from June 2013; correct?	
6	MS. COUGHLIN: Yes.	
7	MR. BEDDOME: And I don't need to	
8	belabour it because we have been here before,	
9	Ms. Coughlin, but just you would then be aware	
10	that one of the recommendations that clearly came	
11	through was an earlier engagement with indigenous	
12	people and indigenous knowledge within the	
13	environmental assessment process; correct?	
14	MS. COUGHLIN: Yes, and we have an	
15	undertaking on that.	
16	MR. BEDDOME: And my last line of	
17	questioning, if you could turn yourself to slide	
18	32? Now, you mention the Richer South station to	
19	Spruce Station transmission; correct?	
20	MS. COUGHLIN: Yes, that's correct.	
21	MR. BEDDOME: And that would be part	
22	of the Energy East Pipeline Project you indicated;	
23	correct?	
24	MS. COUGHLIN: Yes. At the time when	
25	we were preparing the assessment it was, but this	

		Page 1335
1	is one of the projects that was under the category	Tage 1000
2	of speculative. So we don't know a lot of details	
3	about this. But to be inclusive in our	
4	prospective analysis, we wanted to include	
5	projects that weren't just defined or in a	
6	regulatory review.	
7	MR. BEDDOME: Fair enough. And I'm	
8	not sure if you're able to answer this question,	
9	but I'm just curious, so we have the speculative	
10	project, the purple line crossing across the blue	
11	line there, that would be a new transmission line.	
12	Would that connect with at all, with the	
13	Manitoba-Minnesota Transmission Project? Like I	
14	see they run over each other. I'm wondering if	
15	there is any potential interconnection between the	
16	two?	
17	MS. COUGHLIN: I don't know. Like	
18	this was a project that we were quite speculative,	
19	we don't have a lot of details. It would	
20	essentially run in that area, maybe. So we wanted	
21	to include that as a potential change that might	
22	happen in the future, but I don't know details	
23	about the project because they simply don't exist	
24	yet.	
25	MR. BEDDOME: Fair enough. I guess	

		Page 1336
1	the reason I'm asking is, you comment about	Fage 1550
2	sustainable development and the fact that Manitoba	
3	Hydro wants to use its clean green energy to	
4	displace other fuel sources. And I'm just, you	
5	know, just trying to get a sense as to whether the	
6	Manitoba-Minnesota Transmission Project may in	
7	fact be complementary to an interconnection with	
8	the Energy East Pipeline Project. I can just see	
9	that having some consideration for cumulative	
10	impacts. Are you able to answer that question or	
11	not?	
12	MS. COUGHLIN: No, I'm not.	
13	MR. BEDDOME: I suppose it's too	
14	speculative for Manitoba Hydro to be able to	
15	answer that?	
16	MS. COUGHLIN: Yes.	
17	MR. BEDDOME: That's all the questions	
18	I have. Thank you very much for your time,	
19	Ms. Coughlin and Mr. Howell.	
20	MS. COUGHLIN: Thank you.	
21	THE CHAIRMAN: Thank you, Mr. Beddome.	
22	And once again, a very timely set of questions.	
23	Thank you.	
24	All right. We'll now turn to Peguis	
25	First Nation and Mr. Valdron.	

		Dece 1007
1	MR. VALDRON: Thank you very much,	Page 1337
2	Mr. Chairman. Once again for the monitor, Den	
3	Valdron representing Peguis First Nation.	
4	All right. Now, I apologize for the	
5	use of the laptop, it's just in low light my eyes	
б	aren't terribly good, so I had to jot down my	
7	questions and stuff on the screen. So it doesn't	
8	mean that I've got like a whole giant list. Okay.	
9	It's just an aid.	
10	All right. Now, to start off, thank	
11	you very much for coming here, I hope that my	
12	questions will be simple and straightforward and	
13	easy for you to understand. I think that works	
14	for everyone.	
15	I understand that in terms of what	
16	you're doing, you're touching on stuff that shows	
17	up in other places. So if you feel that one of	
18	these questions is perhaps properly, more properly	
19	answered in some later panel, that's okay with me.	
20	You just say so, and then I'll go to town on those	
21	guys.	
22	MS. COUGHLIN: Understood.	
23	MR. VALDRON: And I will be medieval.	
24	So let's just jump in on this. All right.	
25	Now, I enjoyed your presentation very	

		Dago 1338
1	much in terms of methodology. You talked about	Fage 1550
2	experience and consultations on Bipole and Keeyask	
3	which informed your process. And I guess one of	
4	the questions I have is, how informed was it?	
5	Were Bipole and Keeyask used to actually make	
6	decisions, such as whether or not to engage at	
7	different points, or whether some subject areas	
8	would or would not be covered? How thoroughly has	
9	Bipole shaped what was the choices that you made	
10	going in?	
11	MS. COUGHLIN: The learnings from	
12	Bipole and Keeyask and other projects were both	
13	small and large. We understood different ways	
14	that certain communities have preferences for how	
15	to work within Manitoba Hydro. We understood sort	
16	of changes in practice that we might want to	
17	adopt. We understood the ways of presenting	
18	materials, and a vast range of learnings that we	
19	have described in the first part of each chapter	
20	of, each valued component chapter and each	
21	engagement chapter of the environmental	
22	assessment.	
23	MR. VALDRON: Okay. So, for instance,	
24	in Bipole you identified 67 valued components, and	
25	for this process, this was reduced to 12. How do	

		Page 1339
1	you do that? I mean, were some valued components	Tage 1000
2	dismissed as irrelevant and weren't even brought	
3	into this process, or did you consolidate a bunch?	
4	If you deleted some, how did you make the decision	
5	as to which ones to delete? What was the process	
6	for discarding valued components?	
7	MS. COUGHLIN: One of the	
8	recommendations from the Bipole III report was to	
9	use more of an ecosystem approach. I don't have	
10	the condition in front of me. I'm sure Brett will	
11	find it right away here. But it asked how we	
12	could be more inclusive or bigger picture, in	
13	essence, if I was to boil it down.	
14	So one of the things we did is we	
15	sought to have valued components that were just	
16	that, were more inclusive. So you'll see a valued	
17	component that describes wildlife and wildlife	
18	habitat. And under that you'll see descriptions	
19	of focal species and focal species assemblages,	
20	and we describe the connections between those	
21	focal species and habitat connections. So it	
22	allows us to describe both species specific	
23	details and connections to habitat, and make those	
24	broader ecosystem connections that non-licensing	
25	recommendation advised us to do.	

		Page 1340
1	MR. VALDRON: Okay. So if I'm	Tugo Toro
2	understanding that answer, then what you're saying	
3	is that the 67 valued components from say Bipole	
4	were incorporated into the 12 valued added	
5	components. If I went searching those 12, I can	
б	trace every one of them back to the 67?	
7	MS. COUGHLIN: No, that's not what	
8	we're saying.	
9	MR. VALDRON: No? Then I got it	
10	wrong. Clarify it for me.	
11	MS. COUGHLIN: So they asked us to	
12	use Brett is just getting the recommendation	
13	so they asked us to use a more ecological	
14	approach, rather than the very specific valued	
15	component approach that was taken. So what we did	
16	is we used broader valued components, where a	
17	discussion on how specific species that are	
18	relative to the Manitoba-Minnesota Transmission	
19	Project area could interact with our habitat and	
20	could interact more broadly within that	
21	particular I'm talking about biophysical value	
22	components primarily because this is where it most	
23	applies. So some of the differences is that in	
24	the Bipole III Environmental Assessment, they	
25	included species that wouldn't necessarily occur	

		Page 13/1
1	in the MMTP project region. So that could be why	Fage 1541
2	they wouldn't exactly be reflected in the MMTP	
3	Environmental Assessment. So they wouldn't be a	
4	one for one, like what you described.	
5	MR. VALDRON: Okay. So not a one for	
6	one, but some incorporation. Or were you simply	
7	taking a different approach to determining valued	
8	components than in Bipole? I'm sorry if I seem	
9	dense, I'm just trying to not my area.	
10	MS. COUGHLIN: No, that's a good	
11	question. It's a different approach. But what I	
12	want to convey is that we didn't lose the specific	
13	species understanding. If you turn to the	
14	wildlife chapter, there's a table that talks about	
15	specific wildlife species that were discussed	
16	within the chapter, as well as species	
17	assemblages. So although we have those broader	
18	higher level ecosystem principles that are	
19	discussed, like in vegetation and wetlands they	
20	talk about intactness and fragmentation and	
21	habitat loss, we also include discussion on	
22	specific species that inhabit the area of this	
23	project, not Bipole III.	
24	MR. VALDRON: Okay. I notice your	
25	friend has passed you something.	

1	MC COUCHING Yooh So this is the	Page 1342
Ŧ	MS. COUGHLIN: Yeall. SO UILS IS UIE	
2	exact wording of the recommendation. So Manitoba	
3	Hydro undertake and that's not the right one.	
4	MR. VALDRON: Okay. Well, he tried,	
5	we give him points for that.	
6	All right. Now, you have identified	
7	12 valued components and provided a list. I guess	
8	my next question is, does that list reflect the	
9	sorting of priorities? Are some valued components	
10	prioritized over others? If so, how are these	
11	priorities established? And if there is	
12	prioritization of one over the other, where does	
13	traditional interest, the interest of First	
14	Nations in terms of hunting, gathering, fishing,	
15	trapping, fall in terms of those priorities?	
16	MS. COUGHLIN: We haven't made a	
17	prioritization.	
18	MR. VALDRON: So the list that was up	
19	on the screen, that doesn't reflect any internal	
20	prioritization in that list, it was just some	
21	random assembly?	
22	MS. COUGHLIN: It might have been	
23	alphabetical? No, it was biophysical and then	
24	socio-ec, that was the organization.	
25	MR. VALDRON: Okay. Biophysical and	

343

	Page	1
1	socio-economic, but that didn't represent any kind	
2	of prioritization of one over the other?	
3	MS. COUGHLIN: It did not.	
4	MR. VALDRON: See, simple question,	
5	simple answer.	
6	All right. Now, on to cumulative	
7	effects. All right. Now just to clarify, I'm	
8	wondering how cumulative effects impact on	
9	decision-making with respect to residual effects?	
10	Is it integrated? And I'll give you an example,	
11	because I'm trying to follow along here. For	
12	instance, let's suppose there's a marshland, the	
13	project is going to be going through the marshland	
14	possibly. You examine cumulative effects, you	
15	find that over the last 100 years, the marshland	
16	has been badly affected, it's lost 90 per cent of	
17	its area, the wildlife population is decimated,	
18	what's left is highly stressed. So now you come	
19	to residual effects and planning. So I guess the	
20	question is, how does that cumulative effect get	
21	integrated? I mean, recognizing that cumulative	
22	effect, do you avoid the marshland altogether, or	
23	do you assume that, hey, we can't do anymore	
24	damage than is already done, full steam ahead? Do	
25	vulnerabilities identified in cumulative effects	

		Page 13//
1	require greater concern or care?	Tage 1044
2	MS. COUGHLIN: Yeah, there's a few	
3	questions wrapped up in that one question you've	
4	asked so	
5	MR. VALDRON: It all comes back to the	
6	big question, so go for it.	
7	MS. COUGHLIN: Okay. So one of the	
8	things we do in our routing process is we have a	
9	discussion and an understanding of different	
10	considerations. So that particular scenario that	
11	you have described is a marshland or a wetland,	
12	that would have been discussed during our routing	
13	process and the vegetation and wetlands person	
14	would have described concerns that he had in areas	
15	throughout the project area. And he may have	
16	identified marshlands that were of high value and	
17	marshlands that were of medium value, and	
18	marshlands that might have been at lower value.	
19	And so presumably marshlands that were of higher	
20	value, which is not the one that you are	
21	describing, would have been put in an area that	
22	they considered an area that we would like to not	
23	route. And so that consideration would have been	
24	contemplated, with many other considerations,	
25	through the routing process to arrive at our final	
Page 1345 preferred route. 1 And then once we have arrived at that 2 3 final preferred route, the discipline lead for vegetation and wetlands, say that the route went 4 through that degraded marshland that you 5 described, they would have described effects of 6 the transmission line to that degraded wetland. 7 8 And the process over time of how the wetland was degraded would be a cumulation of events that have 9 happened in the past. And those events in this 10 11 imagined wetland condition might have been from a variety of reasons. And understanding trends that 12 might have lead to that condition would be 13 discussed and described in the cumulative effects 14 15 section of the -- or the existing conditions 16 actually section of the assessment. Does that answer your question? 17 18 MR. VALDRON: Yes, thank you. That's actually a very good answer. It's nice to use a 19 specific example to sort of follow through as to 20 21 how the process works. 2.2 Okay. So with respect to cumulative effects, you put up a couple of maps showing the 23 24 changes over a great deal of time. And I think 25 that it's obvious from those maps that one major

1346

		D
1	cumulative effect has been massive loss of lands	Page
2	available for use and used for traditional	
3	activities by First Nations, hunting, fishing,	
4	trapping, gathering. TLRU I think is the acronym.	
5	I'm still wrestling with acronyms.	
6	You would agree that there's been a	
7	major loss of land use by First Nations; correct?	
8	MS. COUGHLIN: Yeah, there's been a	
9	major change in the landscape of Southern Manitoba	
10	over the last 150 years.	
11	MR. VALDRON: Okay. So given that	
12	we're dealing with First Nations which have	
13	suffered a major loss of land use, given the	
14	potential of this project to impact and cause	
15	continuing land use, how was the assessment of	
16	impacts there? Is this a situation where you're	
17	going, whoa, well, we might have some impact on	
18	land use, but very clearly there's been massive	
19	impacts in the past, so it's important to minimize	
20	any impact now?	
21	MS. COUGHLIN: So, Manitoba Hydro has	
22	recognized the value of using existing	
23	transmission corridors for this project. So the	
24	transmission line would be located in the South	
25	Loop transmission corridor, as well as the Riel to	

		Dago 13/7
1	Vivian transmission corridor. So understanding	Fage 1347
2	that use may occur throughout the project region,	
3	we have tried to take advantage of areas where we	
4	could route the project in those corridors to help	
5	minimize effect.	
6	MR. VALDRON: So with respect to parts	
7	that couldn't be routed through those corridors,	
8	is there a stronger stake in avoiding use of Crown	
9	land or avoiding impacting First Nations'	
10	activities?	
11	MS. COUGHLIN: No. We understand that	
12	traditional use activities can continue to take	
13	place once the transmission line is in place and	
14	that, I believe the number is 30 per cent of the	
15	route goes through Crown land, subject to check.	
16	But those activities can continue to take place	
17	along the line itself. And during construction or	
18	maintenance activities, those events are for	
19	short they're short in duration and infrequent.	
20	And beyond those times, access will not be	
21	restricted to the line.	
22	MR. VALDRON: Now, cumulative effects	
23	also, as I understood, incorporated future	
24	projects or future activities, not just from	
25	Hydro, from third parties. I was very impressed	

		Page 1348
1	by that, by the way. It probably would have taken	5
2	me a while to think of that myself. But it seems	
3	clear, looking at some of these descriptions, that	
4	many of these future projects and future impacts	
5	and effects would impact on traditional land use	
6	activities.	
7	Now, did your methodology take into	
8	account the risk or impact of these future losses	
9	on traditional land use activities in assessing a	
10	need to preserve and respect existing TLRU in this	
11	project?	
12	MS. COUGHLIN: Yes, we have a chapter	
13	on that, that one of our discipline leads will	
14	describe in detail in the biophysical panel, as	
15	well as many traditional uses are described in the	
16	self-directed studies that are part of the	
17	assessment.	
18	MR. VALDRON: All right. There are	
19	three time periods for monitoring,	
20	preconstruction, construction, operation; correct?	
21	MS. COUGHLIN: Correct.	
22	MR. VALDRON: Okay. You hesitated and	
23	looked thoughtful there, so I got scared for a	
24	second. Anyway, okay.	
25	So field studies, collection of data	

		Page 1240
1	about valued components are part of the	Faye 1549
2	<pre>monitoring; correct?</pre>	
3	MS. COUGHLIN: Yes, correct.	
4	MR. VALDRON: Okay. Good. And how	
5	will the six First Nation MMF land use studies be	
6	used in development of the monitoring plan for	
7	construction and monitoring plan for operation?	
8	MS. COUGHLIN: We've hosted a few	
9	community monitoring meetings, trying to	
10	understand what might be desired of the	
11	communities and organizations involved. And we	
12	haven't yet figured out what groups might want to	
13	monitor. So we will endeavour to work with	
14	communities to better understand that and develop	
15	a monitoring plan based on those understandings.	
16	So we're early days on that.	
17	MR. VALDRON: Okay. You haven't	
18	figured out what groups would want to be involved	
19	in monitoring?	
20	MS. COUGHLIN: We have invited those	
21	involved with the First Nations and Metis	
22	engagement process.	
23	MR. VALDRON: Okay. You've said that	
24	following the EIS, that ATK would be included in	
25	the Environmental Protection Plan. So will there	

		Dogo 1250
1	be follow-up on a continuing basis and will that	Page 1350
2	affect the EIS? If the EIS changes, then how does	
3	that get reflected in the follow-up mitigation	
4	monitoring?	
5	MS. COUGHLIN: Yeah, we anticipate	
6	engagement throughout project construction and	
7	operation. And so we open the door to concerns or	
8	issues that are brought to us throughout this	
9	process.	
10	MR. VALDRON: Okay. How does	
11	engagement actually result in changes or impacts	
12	following the project once you are in operations?	
13	How would that be incorporated? I mean, see, I	
14	guess the thing I'm wondering about is, you know,	
15	it's all very nice to have engagement, but if	
16	everything is established and nothing changes,	
17	then engagement doesn't really mean much. So how	
18	can engagement result in actually incorporating	
19	changes?	
20	MS. COUGHLIN: Okay. So maybe a	
21	specific example might help. So let's say once	
22	the project is in operation and it comes to our	
23	attention that there is a particular area that is	
24	preferred for gathering activities, we would	
25	identify that area as an environmentally sensitive	

351

		Dogo /
1	site and apply a buffer around that area. And the	Page
2	treatment of that area would be treated	
3	differently than other parts of the project.	
4	MR. VALDRON: Thank you. I find, by	
5	the way, that examples are very helpful in terms	
б	of conceptualizing. Not all of us are highly	
7	trained technicians or specialists in the field.	
8	Some of us are trained elsewhere. So examples	
9	really make things concrete and allow us to follow	
10	through.	
11	Anyway, so here is one, why did	
12	Manitoba Hydro not map or use all of the data from	
13	Peguis in your assessment of impact on traditional	
14	activities? Looking at chapter 11, you made three	
15	maps from data from Peguis, map 11.4, map 11.5,	
16	map 11.6, but they don't cover all the areas that	
17	Peguis gave data for. Looking at those maps, data	
18	for areas of importance, recreation, travel routes	
19	and occupancy were excluded, or not included.	
20	MS. COUGHLIN: We could probably	
21	describe that best in the traditional land and	
22	resource use chapter, he talks about travel ways	
23	and the importance of travel ways. Some of the	
24	information conveyed in the assessment is done	
25	through maps and some is done through discussion.	

		Dago 1352
1	So the information may have been included as a	Fage 1552
2	discussion point within the chapter itself.	
3	MR. VALDRON: But not within the maps	
4	themselves. Okay.	
5	Why does the EIS chapter 11 maps refer	
6	to Peguis First Nations report as an ATK study and	
7	not a land use and occupancy study? Peguis did	
8	conduct the land use and occupancy interview	
9	project, it wasn't an Aboriginal traditional	
10	knowledge study. In fact, if you look at the	
11	definitions later on, they are two different	
12	things.	
13	MS. COUGHLIN: Sometimes the term	
14	Aboriginal traditional knowledge is used as an	
15	umbrella term to capture the studies done as	
16	self-directed studies. So he may have been using	
17	it in that context.	
18	MR. VALDRON: So are land use and	
19	occupancy studies normally a subset of Aboriginal	
20	traditional knowledge?	
21	MS. COUGHLIN: I'm not outlining	
22	what's normally done, I'm just saying I think	
23	that's what was understood to be conveyed in that	
24	particular part of the assessment is the term was	
25	used as an umbrella term.	

	Page 1353
1	MR. VALDRON: Okay. Is it normally an
2	umbrella term?
3	MS. COUGHLIN: I think CEAA does,
4	subject to check. They use it as a way to
5	describe if we have the CEAA definition of
6	Aboriginal traditional knowledge, I think it is
7	inclusive to the types of studies that Peguis
8	submitted.
9	MR. VALDRON: Okay. I'll make it
10	really easy. Was it just sloppy or does this
11	represent the thinking?
12	MS. COUGHLIN: This represents the
13	thinking.
14	MR. VALDRON: Okay. How was the land
15	use and occupancy GIS data provided under funding
16	agreement used by Manitoba Hydro in the
17	development of the EIS? Peguis First Nation
18	undertook a land use and occupancy interview
19	project with funding from Hydro. Peguis filed
20	drafts, reports, materials. So how was it
21	incorporated or used to develop for the EIS? If
22	you can just describe that briefly, if you can?
23	MS. COUGHLIN: Do you want me to
24	describe how Peguis information informed the MMTP
25	EIS?

		Page 1354
1	MR. VALDRON: Yes.	Tage 1004
2	MS. COUGHLIN: That would take a long	
3	time, a very long time.	
4	MR. VALDRON: Okay. Should I be	
5	asking that in some other	
6	MS. COUGHLIN: No, I just think this	
7	is the appropriate venue, but you're going to hear	
8	how self-directed studies contributed to the	
9	understanding of VEC chapters over the next few	
10	days. But one IR in particular describes how	
11	information provided from a community to one	
12	chapter, the fish and fish habitat chapter, was	
13	informed from traditional knowledge studies. And	
14	in that chapter it describes a lot of Peguis	
15	information. So there's substantial input to the	
16	fish and fish habitat chapter, as I understand	
17	these are from Peguis First Nation.	
18	And I could go through chapter by	
19	chapter, but I think you'll hear about that in the	
20	next little while.	
21	MR. VALDRON: All right. Can you cite	
22	me the IR?	
23	MS. COUGHLIN: No. Brett's going to	
24	look for it right now and we'll get that to you	
25	shortly.	

_		Page 1355
1	MR. VALDRON: I'll tell you what, it's	
2	not going to be a big deal. Can I get an	
3	undertaking to get the IR?	
4	MS. COUGHLIN: You'll get it in the	
5	next little bit here.	
6	MR. VALDRON: All right.	
7	Now, this one's come up before. A	
8	couple of days ago we asked about whether Hydro	
9	was agreeable to maintain a log and provide a	
10	report to Peguis on its use of project data. And	
11	at that point the answer was kind of vague. I	
12	think the answer was, well, we don't see that was	
13	a problem. I just wanted to come back to it and	
14	ask, can we have this as commitment now?	
15	MS. COUGHLIN: I think I should	
16	probably refer to the agreement. So I think what	
17	I'll do is refresh my eyes and have a look at the	
18	contribution agreement, and we'll get back to you	
19	with a response on that.	
20	MR. VALDRON: Okay. Can I get that as	
21	an undertaking?	
22	MS. COUGHLIN: Yes.	
23	MR. VALDRON: Beautiful.	
24		
25		

Page 1356 (UNDERTAKING # MH-6: Review contribution 1 2 agreement and advise if Hydro will maintain log 3 and provide report to Peguis on use of project 4 data) 5 MR. VALDRON: Now, looking at the maps, they only show Peguis data. So I guess I 6 7 was wondering, was there map data from other 8 communities or was Peguis the only First Nation to provide GIS files or mapping data? 9 10 MS. COUGHLIN: I'm not sure which map 11 you're looking at? 12 MR. VALDRON: Maps 11, got it on a 13 note here, 11.4, 11.5, 11.6. MS. COUGHLIN: Yeah, there's literally 14 15 hundreds of maps in the MMTP EIS. 16 MR. VALDRON: I certainly know that. But is map data from other communities on other 17 18 maps, or was Peguis the only one that had GIS 19 files? MS. COUGHLIN: Pequis was not the only 20 community that had GIS files. The MMF had GIS 21 files as well. 22 23 MR. VALDRON: Okay. And are there 24 maps showing their data? 25 MS. COUGHLIN: Not in the EIS, because

		Dece 1057
1	they provided information beyond the EIS	Page 1357
2	submission date.	
3	MR. VALDRON: Okay. Would that data	
4	be available? And if so, where would it be	
5	available?	
6	MS. COUGHLIN: You could ask the MMF.	
7	MR. VALDRON: We might do that.	
8	All right. Now considering the	
9	cumulative effects assessment for value components	
10	relating to traditional land resource use, and the	
11	characterization of effects on known and assumed	
12	traditional land resource use sites, the quotation	
13	is:	
14	"The cumulative effects on TRLU are	
15	assessed as not significant."	
16	If the preferred route was moved east of Watson	
17	Wildlife Management Area, would this change, this	
18	assessment, would TRLU effects be assessed as not	
19	significant? I swear to God, when it gets to	
20	these acronyms I can't help but trip over my	
21	tongue. So I apologize for that.	
22	MS. COUGHLIN: Yeah, we haven't fully	
23	assessed that potential iteration of the route, so	
24	we'd have to reassess, yeah.	
25	MR. VALDRON: Okay. So definitely	

		Dago 1259
1	there would have to be some reassessment, but	Faye 1556
2	that's all you can say at this point. All right.	
3	If a First Nation provided Manitoba	
4	Hydro with additional information or studies	
5	related to traditional land use and resource use,	
6	would this data be used to develop an	
7	Environmental Protection Plan, monitoring plan,	
8	would that data be incorporated into the	
9	mitigation measures?	
10	MS. COUGHLIN: Yeah, I think we have	
11	stated that already.	
12	MR. VALDRON: Okay. And which	
13	Manitoba Hydro panel will discuss in detail the	
14	future proposed monitoring plans?	
15	MS. COUGHLIN: There's a panel that's	
16	going to describe follow-up monitoring. I think	
17	it's called I'll just go to it right now	
18	Environmental Protection Program and Conclusion.	
19	MR. VALDRON: So right at the end?	
20	MS. COUGHLIN: Yeah.	
21	MR. VALDRON: All right. And so the	
22	assessment right now of significance of impact is	
23	based on the preferred route only; correct?	
24	MS. COUGHLIN: Correct.	
25	MR. VALDRON: Okay. And what's the	

		Dogo 1250
1	RAA width, just for the record?	Page 1359
2	MS. COUGHLIN: It's dependent on the	
3	valued component.	
4	MR. VALDRON: Okay.	
5	MS. COUGHLIN: So for vegetation and	
б	wetlands, or for wildlife and wildlife habitat,	
7	it's 15 kilometres.	
8	MR. VALDRON: Okay. So I'm looking,	
9	it seems to be pretty much 15 kilometres broadly	
10	all through on that map there?	
11	MS. COUGHLIN: Yeah. It's like 15	
12	kilometres on each side.	
13	MR. VALDRON: It's 15 kilometres on	
14	each side. That was going to be my next question.	
15	All right. And if the preferred route	
16	had been to the east of Watson, would the	
17	significance of impact on traditional land use and	
18	resources have stayed low, or would it have been	
19	higher?	
20	MS. COUGHLIN: We have heard	
21	substantial concerns from communities engaged in	
22	the First Nation and Metis engagement process	
23	about concerns of going further east.	
24	MR. VALDRON: Okay. So that was very	
25	similar actually to a question I previously asked	

		Dogo 1260
1	you, but you are aware that there are substantial	Page 1360
2	concerns from First Nations then?	
3	MS. COUGHLIN: Yes, we are.	
4	MR. VALDRON: Okay. And it would be	
5	something that would have to be investigated very	
6	carefully if the preferred route moved?	
7	MS. COUGHLIN: Yes.	
8	MR. VALDRON: All right. Thank you	
9	very much. I appreciate your answering all of	
10	these questions and I appreciate your patience and	
11	the panel's patience.	
12	MS. COUGHLIN: Thank you.	
13	THE CHAIRMAN: Thank you very much.	
14	MR. VALDRON: No problem.	
15	THE CHAIRMAN: All right. That brings	
16	us to the last set of questions for this panel,	
17	and that would come from the Manitoba Metis	
18	Federation. Ms. Strachan.	
19	MS. STRACHAN: Good afternoon.	
20	So I just have a few fairly high level	
21	questions about the application of the	
22	methodology, and this primarily relates to how it	
23	was applied to valued components other than	
24	traditional land and resource use, because I	
25	understand the process there was slightly	

		Page 1361
1	different because there were no thresholds and	Fage 1501
2	that kind of thing. And I welcome either of the	
3	panelists to respond to my questions, as you deem	
4	appropriate.	
5	So I note on slide 11 of your	
6	presentation, under the heading Aboriginal	
7	traditional knowledge studies, there's a bullet	
8	point list. And on that list it says that these	
9	studies help to identify project effects. And so	
10	was ATK also used to help identify residual	
11	effects?	
12	MS. COUGHLIN: Yes.	
13	MS. STRACHAN: And so did ATK or	
14	Aboriginal worldviews inform the characterization	
15	of these residual effects?	
16	MS. COUGHLIN: Yes.	
17	MS. STRACHAN: So just to clarify with	
18	an example, it wasn't altogether clear to me when	
19	reading the EIS how it was taken into account.	
20	So, for instance, if you were characterizing the	
21	magnitude of a residual effect on habitat	
22	fragmentation, so ATK was considered by Hydro's	
23	team in determining, for instance, whether the	
24	magnitude was low, medium or high; is that what	
25	you're saying?	

		Page 1362
1	MS. COUGHLIN: We're just chatting.	-
2	So I think some of what you're asking is described	
3	best in the traditional land use chapter, but	
4	could you ask your question again, sorry?	
5	MS. STRACHAN: Sure. So, when I asked	
б	about the characterization of the residual	
7	effects, I meant that list of criteria, like	
8	magnitude, duration, frequency, that criteria that	
9	was applied to residual effects, and I'm wondering	
10	if in chapters other than traditional knowledge	
11	and land use, was ATK and Aboriginal worldviews	
12	taken into account when trying to assess those	
13	criteria? So, for instance, for magnitude,	
14	whether it was considered low, medium or high,	
15	were you considering ATK?	
16	MS. COUGHLIN: Yeah. So I guess I'll	
17	pull again from the vegetation of wetlands	
18	chapter. So in that section, we have a discussion	
19	on traditional plants and their effect. We also	
20	have a discussion on intactness. And intactness,	
21	or I think Mr. Mills refers to Mother Earth or the	
22	wholeness of things, so that wholeness and	
23	intactness is something that is contemplated in	
24	chapters other than the traditional land use	
25	chapter.	

1	Page 1363 MS. STRACHAN: Okay. So where ATK was
2	considered in assessing these criteria, we can
3	expect that would be explicitly stated then in the
4	EIS, in that relevant section?
5	MS. COUGHLIN: Yes.
6	MS. STRACHAN: So I understand from
7	the EIS and the presentation that a significant
8	residual environmental effect on a VC occurs if
9	the VC is altered beyond an acceptable threshold.
10	That's accurate?
11	MS. COUGHLIN: Yes. Yes.
12	MS. STRACHAN: And I understand that
13	where possible you used established thresholds,
14	but in many cases Manitoba hasn't established a
15	threshold for some of the VCs?
16	MS. COUGHLIN: That's correct.
17	MS. STRACHAN: So where there were no
18	thresholds established by regulation in Manitoba,
19	then your team tried to set thresholds through
20	consulting other jurisdictions or sources. That's
21	right?
22	MS. COUGHLIN: That's correct.
23	MS. STRACHAN: And so I note on slide
24	34 of your presentation, there are four bullet
25	points, again under the heading determining

		Dogo 1264
1	significance. And one of those bullet points said	Fage 1304
2	other worldviews. And I would assume that other	
3	worldviews would include Aboriginal worldviews.	
4	Is that correct?	
5	MS. COUGHLIN: Yes.	
6	MS. STRACHAN: So were Aboriginal	
7	world views considered when Manitoba Hydro's team	
8	was researching and setting the significance	
9	thresholds for VCs?	
10	MS. COUGHLIN: It was considered when	
11	we were discussing the cumulative effects of	
12	understanding from traditional knowledge studies.	
13	So many traditional knowledge studies talked about	
14	how effects are already significant. And so those	
15	understandings are conveyed within the traditional	
16	knowledge studies. And some of those	
17	understandings are also discussed again in the	
18	assessment chapters within each valued component,	
19	or within some valued component chapters.	
20	MS. STRACHAN: Just to clarify, I	
21	understand that before Manitoba Hydro conducted	
22	the EIS, they would have set these various	
23	significant thresholds. Is that correct?	
24	MS. COUGHLIN: That's correct.	
25	MS. STRACHAN: Okay. So when these	

	Dogo 1265
1	significance thresholds were being determined, was
2	any literature reviewed, or any Aboriginal
3	worldviews considered when setting those
4	significant thresholds?
5	MS. COUGHLIN: They were. And we have
6	included discussion on both our understanding of
7	how thresholds were surpassed from other
8	perspectives years ago. And that's described in
9	the conclusion, as well as in the veg. and
10	wetlands chapter.
11	MS. STRACHAN: Okay. So if an
12	Aboriginal worldview, or Aboriginal worldviews
13	were considered, we could expect that that would
14	be explicitly stated in the relevant section of
15	the EIS where the significant thresholds were
16	discussed?
17	MS. COUGHLIN: Maybe not necessarily
18	exactly in that section. So the definition of how
19	we understood significance from other worldviews
20	may not have been as explicitly defined in the
21	significance section for each VC chapter in the
22	assessment.
23	MS. STRACHAN: So if there was, for
24	instance, in the chapter where you're assessing
25	visual quality, I can't precisely remember the

		Dama 4000
1	three points that had to be met for significance	Page 1366
2	to be exceeded, but in that paragraph or the	
3	paragraphs that describe that, there is no	
4	description of how an Aboriginal worldview would	
5	have informed those criteria?	
6	MS. COUGHLIN: Yeah, it may not	
7	sorry to interrupt, but you're right, that's what	
8	I mean. It may not be exactly there.	
9	MS. STRACHAN: Okay. And if it isn't	
10	there, how do we know if it was considered or not?	
11	Can we assume that it wasn't part of setting those	
12	significant thresholds?	
13	MS. COUGHLIN: Well, other views were	
14	included within the Environmental Assessment	
15	through inclusion of the traditional knowledge	
16	studies that have become part of the assessment.	
17	They weren't necessarily, though, included in the	
18	discussion of the significance threshold.	
19	MS. STRACHAN: Okay. Thank you. And	
20	those are all of my questions. Thanks.	
21	THE CHAIRMAN: Thank you. Thanks	
22	again for timely set of questions and responses.	
23	Well, I believe that finishes all the	
24	intervenors' questioning on this chapter. So	
25	thank you, panel. And we will take a lunch break	

	E	2000 1367
1	and be back here at 1:30 for the next presentation	aye 1307
2	from Manitoba Hydro.	
3	Are there any detail issues or	
4	matters? No, okay. One moment, please.	
5	Okay, just to clarify here, we do have	
б	one or two questions related to the understanding	
7	of Mother Earth, and we're going to include that	
8	in some additional questions that we are going to	
9	have for Manitoba Hydro. We'll be circulating	
10	those to you in advance, and then reading them	
11	into the record and getting responses. So we'll	
12	just include that in there so that we don't delay	
13	too much. Unless, would Hydro prefer to answer it	
14	right now? We'll get the question on record right	
15	now. You would? Okay.	
16	So, Mr. Nepinak will go ahead now.	
17	MR. NEPINAK: Thank you very much for	
18	this.	
19	Ms. Coughlin, a couple of times you	
20	mentioned in answering the earlier question on,	
21	you mentioned Aski. Do you understand the word	
22	and what it means?	
23	MS. COUGHLIN: I mentioned that in	
24	reference to when the CAC was referencing the	
25	Keeyask document. And I think aski was later	

		Page 1368
1	referenced in that section.	Fage 1500
2	MR. NEPINAK: Yeah.	
3	MS. COUGHLIN: So I worked partially	
4	on Keeyask and I was part of conversations where	
5	they described what that means.	
6	MR. NEPINAK: Aski is basically Mother	
7	Earth.	
8	MS. COUGHLIN: Yeah.	
9	MR. NEPINAK: And Mother Earth is a	
10	term used by all people, all Aboriginal people	
11	describing Mother Earth, obviously. And then	
12	again you used it in answering this young lady	
13	here. And I'm sorry, I'm trying to form my	
14	question.	
15	So Mother Earth is about water,	
16	because there's so much water on the earth, you	
17	know. And our women are keepers of the water.	
18	And so when I wrote Ke nocominanak, it was they	
19	are the keepers of the water. The grandmothers	
20	were our, for all intents and purposes our	
21	government, our senate maybe you could say. And	
22	we went to them for clarification for everything.	
23	And that's not just Cree, but it's all Aboriginal	
24	people, to my understanding, the way I understand	
25	it. And I just wanted to clarify that, so that we	

Page 1369 all know when we talk about these things what 1 2 we're talking about, and not have any misguided knowledge about that, you know. 3 So I want to thank you. And I'm not 4 criticizing, believe me, I just want to make sure 5 that we all know what we're talking about, so we 6 7 can move forward in a good way. But thank you. MS. COUGHLIN: Thank you. 8 THE CHAIRMAN: All right. Thank you 9 both for that, and we will break for lunch and be 10 11 back here at 1:30. Thank you. 12 (Recessed at 12:32 p.m. to 1:30 p.m.) THE CHAIRMAN: All right. We will be 13 starting in about one minute. Thanks. 14 15 Okay. We will get going here. 16 So, our next panel presentation has to do with electromagnetic, and we will turn that 17 18 over to Hydro. 19 Is there anyone to be sworn in, Cathy? 20 MS. JOHNSON: Yes. William Bailey. 21 (Dr. William Bailey sworn) 2.2 THE CHAIRMAN: Okay, Mr. Bailey, go 23 ahead. MR. BAILEY: Members of the Commission 24 and audience, I will first give a brief 25

		Dece 1070
1	introduction to my background and experience and	Page 1370
2	then discuss the work that we did on this project.	
3	I have more than 30 years of	
4	experience in the field of bioelectric magnetics,	
5	particularly the aspects that involve evaluating	
б	the interactions of electromagnetic fields at	
7	various frequencies with the environment,	
8	including persons and animals.	
9	I trained at Dartmouth College, the	
10	University of Chicago, and the City University of	
11	New York, and completed two additional years of	
12	postdoctoral training under a National Institute	
13	of Health postdoctoral fellowship in	
14	neurochemistry. Following that, I was an	
15	assistant professor at the Rockefeller University	
16	in the field of neurochemistry, and following a	
17	number of years there, I headed the department of	
18	neuropharmacology and environmental toxicology at	
19	the New York State Institute for Basic Research.	
20	Because of my background and	
21	experience, I have often been asked to advise	
22	provincial, state, national, and international	
23	agencies on the status of research on electric and	
24	magnetic fields.	
25	The scope of our work, our remit was	

		Page 1371
1	to calculate the levels of electric and magnetic	Fage 15/1
2	fields, audible noise and radio noise associated	
3	with the existing transmission lines along the	
4	proposed project route, and also what the changes	
5	would be after the proposed line was constructed.	
6	And we compared these calculated	
7	values to standard references and guidelines to	
8	assess potential impacts. That report is	
9	contained in Section 2.8 of the environmental	
10	impact statement.	
11	In addition, we were asked to provide	
12	an overview of the current scientific research on	
13	electric and magnetic fields in health, in	
14	relationship to specific health effects. And we	
15	also discussed how these levels relate to	
16	guidelines and limits and governmental policies,	
17	and also describe research that has been conducted	
18	on the biological environment, including	
19	livestock, wildlife, and other species. And that	
20	is included in Section 2.7 of the Environmental	
21	Impact Statement.	
22	To continue, I would like to summarize	
23	our work in the slides you see before you. In	
24	particular, I'm providing highlights on topics	
25	covered in the EIS, you see here; and in addition,	

		Page 1372
1	I thought it was worthwhile to include some	Fage 1572
2	comments on international developments in the EMF	
3	health research.	
4	And then finally, at the end, I	
5	describe how our work is informed by this research	
6	in our assessment of the proposed transmission	
7	line.	
8	First, I think it is important to	
9	clarify what we mean by the term EMFs. If you go	
10	on the Internet, you can find EMF to refer to a	
11	great many things, including I think at some point	
12	a rock band. So I think it is important that we	
13	clarify what I mean by EMF when we use the term.	
14	Electromagnetic fields are one of the	
15	four forces of nature, accompanied by gravity and	
16	the nuclear strong and weak forces that are	
17	involved in binding atoms together.	
18	In terms of electromagnetic fields,	
19	it's difficult to talk about them in any single	
20	unified way because they are distinguished by	
21	their frequencies, and so the way in which the	
22	fields extend in space and the way they interact	
23	with the environment, including organisms, varies	
24	dramatically based upon the frequency.	
25	So in this slide I've displayed the	

		Page 1373
1	electromagnetic frequency spectrum at the top bar	Tage 1575
2	on the right hand side. You will see ten to the	
3	zero, and then ten to superscript 2, and that	
4	represents superscript 2 at ten represents	
5	100 hertz, or 100 times per second that field is	
6	varying. And then every time you increase that	
7	exponent by 2, the frequency is increasing by 100.	
8	And at the far right, you see an arrow	
9	coming from DC, pointing to the line, and that	
10	represents a static or direct current magnetic	
11	field, or electric field which is not varying in	
12	time, so it has a frequency of zero hertz.	
13	Just above that we see a reference to	
14	60-hertz electric and magnetic fields associated	
15	with our power system. These fall into the	
16	extremely low-frequency range. And at these low	
17	frequencies, the electric and magnetic fields can	
18	be treated as completely separate entities. So if	
19	we measure the electric field at a particular	
20	point in space at a frequency of 60 hertz, it	
21	tells us nothing about the magnitude of the	
22	electric field at that frequency.	
23	Now, that changes quite dramatically	
24	if you go to higher frequencies. You will see	
25	across the top the higher frequencies in the	

		Page 1374
1	millions and billions of hertz associated with	Fage 1374
2	AM radio and cellular telephones. Here, at a	
3	certain distance from the source, if you measure	
4	the magnetic field, you can calculate what the	
5	accompanying electric field is, or vice versa.	
6	So these are our radiating fields that	
7	start out at a point from the source and go out in	
8	straight lines. So the light in this room, and	
9	coming from the screen, are examples of	
10	electromagnetic fields that propagate away from	
11	the light bulb in a straight line. That does not	
12	describe the fields at lower frequencies around DC	
13	sources, or 60-hertz sources.	
14	The lower bar has an insert showing	
15	that in a certain frequency range of visible	
16	light, we have developed and as have other	
17	species sensory mechanisms, photo receptors	
18	that are capable of detecting a narrow range of	
19	frequencies which we see as light.	
20	And then if you go further up,	
21	starting in the high ultraviolet frequencies,	
22	going to the end of the scale on the left, you see	
23	frequencies that are associated with X-rays and	
24	gamma rays. And these frequencies have such high	
25	energies that they are actually capable of	

	Page 1375
1	breaking down chemical bonds. All the frequencies
2	below the ultraviolet range do not have that
3	capability.
4	So with the low-frequency 60-hertz
5	fields that are associated with the existing and
6	proposed lines, we have electric fields which are
7	associated with electric charges.
8	So if I hold up this pencil here,
9	there are electric charges on this pen. But
10	because they are evenly balanced in terms of the
11	number of positive and negative charges, if I
12	bring up an electric field meter, I will probably
13	measure nothing around this pen, or a very, very
14	low field.
15	If, however, I take this pen and I rub
16	it across certain materials or if I walk through
17	this room in the wintertime on certain rugs, I can
18	separate charges and produce very strong electric
19	fields. So walking across the carpet in the
20	wintertime might encounter electric fields of
21	twenty or thirty thousand kilovolts per metre,
22	because I have separated charges by means of the
23	friction between my shoes and the carpet.
24	We measure these fields, I forgot to
25	mention, in units of kilovolts per metre for large

		Dawa 4070
1	fields. And characteristically, these fields,	Page 1376
2	their strength diminishes in intensity as we move	
3	away from them.	
4	Another characteristic of electric	
5	fields is that common objects are able to shield	
6	or block these fields. So if I take an electric	
7	field meter and I start and I'm in a uniform	
8	field, and I start moving towards a tree or a	
9	shrub in that field, as I get closer and closer,	
10	the field will get weaker and weaker, and perhaps	
11	not even be measurable as we get close to that.	
12	So this has implications for	
13	transmission line right-of-way, where the presence	
14	of shrubbery at the edge of the right-of-way and	
15	beyond would block the electric fields. And a	
16	building, simple walls of a building are easily	
17	able to block almost all of an electric field from	
18	outside sources.	
19	But if we go to magnetic fields, these	
20	result not from the charges, per se, but when	
21	these charges are in motion, they are flowing	
22	through a conductor, or if these charges are	
23	moving in, let's say, at the molecular level in a	
24	permanent magnet, a magnetic field is produced.	
25	And we measure these in units of gauss, for very	

		Dece 1077
1	large fields, or in milligauss, for small fields.	Page 1377
2	These fields, too, diminish in	
3	intensity with distance from the source, but	
4	unlike the electric fields, they are not shielded	
5	or blocked by common objects such as trees, walls,	
6	and shrubs. So if I have a magnetic field meter	
7	and I put a block of wood around it, I put	
8	concrete around it, this magnetic field meter will	
9	read exactly the same whether that material is	
10	present or not. It would take some kind of	
11	specialized metallic covering, such as a plate of	
12	steel, or something like this, in order to deflect	
13	and attenuate the magnetic field.	
14	So what are the sources of magnetic	
15	fields that we encounter? Well, here is a	
16	ubiquitous source of magnetic fields, and that's a	
17	static magnetic field of the earth, which is	
18	caused by circulating iron in the earth, and	
19	ferromagnetic materials. And I saw in a	
20	scientific press release of a study today, they	
21	described the presence of these currents in the	
22	earth as being kind of like a lava lamp, and that	
23	there were changes in the weak changes in the	
24	magnetic field during the day, or during the year,	
25	due to these changes in the circulating currents	

		Page 1378
1	in the earth. And it is this static field which	Fage 1570
2	is what causes a compass needle to point north.	
3	And at the equator, the field is a value of about	
4	300 milligauss, and as you go further north or	
5	further south, the strength of this magnetic field	
6	increases to about 700 milligauss.	
7	Now, a man-made source that has become	
8	of increasing use in our society for diagnostic	
9	purposes in the health care industry are magnetic	
10	resonance image machines. And here is a picture	
11	of a typical machine.	
12	And there are three types of	
13	electromagnetic fields found in this machine. One	
14	is a static magnetic field in the range of 15 to	
15	40 million milligauss; much more intense than the	
16	earth's geomagnetic field. There is a gradient	
17	magnetic field; the operation of switching of the	
18	magnets produces an oscillating magnetic field	
19	that we have converted analytically to what is the	
20	equivalent at 60 hertz, and that's 479,000	
21	milligauss.	
22	And then finally there's an	
23	oscillating radio frequency field in the MRI	
24	device.	
25	Now, most pertinent to this project	

		Dogo 1270
1	are the extremely low-frequency fields at	Fage 1579
2	60 hertz, and this slide just sort of summarizes	
3	how electricity is generated, transformed to	
4	higher voltages to be carried on transmission	
5	lines across larger areas, and then the voltage is	
6	stepped down again to lower voltages and carried	
7	through neighborhoods on sub-transmission or	
8	distribution lines, and finally, at a pole	
9	transformer on the street, converted to the	
10	voltages we use in our home.	
11	And that's how we get the electric	
12	power into all of our homes, schools, and	
13	businesses. And in our homes, this is what	
14	provides power to these appliances.	
15	I've often asked about well, what	
16	are the levels of magnetic field that we encounter	
17	from various sources? And here I've put up a	
18	slide by David Savitz, a well known investigator	
19	in the field.	
20	And if you look at the bottom of the	
21	slide, here, you can see the going in this	
22	direction is the strength of the magnetic field	
23	increasing up to on this graph, a peak of about	
24	10,000 milligauss. And you can see for each one	
25	of these types of exposure here, there is a bar.	

		Page 1380
1	And this solid bar describes what are common range	i age i eee
2	of levels that would be encountered, and levels	
3	that are below that and above that are much less	
4	common.	
5	So starting here, within homes, we see	
6	away for appliances fields that are generally less	
7	than maybe 10 or 20 milligauss.	
8	Next to appliances, the fields can	
9	increase considerably, going into hundreds	
10	perhaps, in some appliances, over 1,000	
11	milligauss.	
12	And then we have electric blankets.	
13	Then, if you go to distribution of	
14	sub-transmission lines, you see that within the	
15	right-of-way, where you are closer to the	
16	conductor, the field levels are higher than they	
17	are at the edge of the right-of-way.	
18	Similarly for high-voltage	
19	transmission lines, within the right-of-way the	
20	fields are higher, in the hundreds of milligauss	
21	here, and at the edge of the right-of-way they are	
22	lower.	
23	And then finally, in offices and	
24	specialized site exposure environments, you have	
25	this range of levels.	
		Dago 1381
----	--	-----------
1	I think it is important to notice that	Fage 1501
2	the amount of overlap in exposures between what we	
3	have here for transmission lines, at the edge of	
4	the right-of-way, and distribution lines here, and	
5	with exposures that we have from appliances and	
6	other sources.	
7	To make it even clearer, how the	
8	fields change with distance and what kinds of	
9	field levels we encounter from appliances, here	
10	I've plotted from Gauger's research, this is going	
11	a distance away from the source, and this is the	
12	measured magnetic field right next to the	
13	appliance.	
14	And these are typical kinds of things	
15	that might be found in our homes. And you can see	
16	immediately that the fields are highest when you	
17	are closest to the device, here going from perhaps	
18	200 milligauss to a few thousand milligauss.	
19	But the other thing that's immediately	
20	apparent, as you move away from these appliances,	
21	that the fields diminish very quickly to much	
22	lower levels.	
23	Now, the questions began to be asked	
24	in the 1960s about whether workers in substations	
25	and high-voltage switch yards might be	

Page 1382 experiencing health effects from exposure to the 1 2 higher fields that were there. And then in the 1970s, studies were done in which it was suggested 3 that one explanation for the observation was that 4 magnetic fields from local distribution lines, or 5 transmission lines, or appliances in the home, 6 7 might be somehow having an influence on our 8 health. 9 And so I've laid out here how scientists go about answering a guestion like 10 11 this, whether it is electric or magnetic fields or whether it is something in our water supply, and 12 it starts with investigation, doing research 13 studies to find out what are the responses that we 14 15 observe in people, in organisms, to find 16 exposures. And then, having done that research, we spend a lot of time looking to see how all of 17 these studies fit together to give us a clearer 18 19 picture. It is kind of like fitting a puzzle 20 together. Each study gives you another piece of a 21 puzzle, but it is how you put those all together 22 into that puzzle that allows us to draw firm 23 24 conclusions. 25 Like any body of evidence, there is

		Dogo 1202
1	always variation, conflicting data. And so the	Page 1363
2	way that health and scientific agencies evaluate	
3	all of these studies is the "weight of the	
4	evidence" approach. That is, you assemble the	
5	body of all of the research, and you go through it	
6	to systematically evaluate the strengths and	
7	weaknesses of the studies.	
8	Some of the studies may not have been	
9	designed very well, and so they don't give you	
10	much information. Some studies may have too few	
11	subjects to be able to detect an effect, if it in	
12	fact existed; and other studies may suffer from	
13	other methodological problems.	
14	So, based upon that weight of the	
15	evidence, then we can characterize what are the	
16	potential facts of any exposure.	
17	And I point out that it is not often	
18	appreciated that science does have limitations.	
19	We can not guarantee safety, and we cannot prove	
20	that health effects do not exist. I can't prove	
21	that Winston Churchill isn't alive in South	
22	America. But as scientists, we can do experiments	
23	and test hypotheses and ultimately, based upon	
24	repeated testing, we can determine whether a	
25	exposure at some level is definitely hazardous,	

384

		Page 1
1	mildly hazardous, moderately, or somewhere down at	Faye
2	this end of the spectrum, either poses little or	
3	no hazard at all.	
4	And I said before, the evaluation of	
5	the evidence is done of various sources of	
6	information. And the three types that we use in	
7	health risk assessment are looking at epidemiology	
8	studies of human populations. These are basically	
9	statistical analyses of exposures that people have	
10	as groups, and how that relates to their health.	
11	So an example may be is that there is	
12	the observation that in some Mediterranean	
13	countries, the population has a lower risk of	
14	cardiovascular disease than other countries in the	
15	world, including North America. And so the idea	
16	was, well, what accounts for this? One hypothesis	
17	is that it is the Mediterranean diet that is	
18	responsible. But the question is and that's a	
19	statistical association between having a certain	
20	type of diet and the incidence of heart disease.	
21	But the question arises, what actually	
22	is the component of the Mediterranean diet, if it	
23	does have an effect on heart disease, which is	
24	involved. Is it drinking of red wine? Is it	
25	eating large amounts of vegetables? Is it having	

		Dogo 1205
1	more physical exercise than people in, perhaps,	Page 1365
2	other countries? It is not clear.	
3	And so epidemiology studies are	
4	looking at these broad trends, but it is very hard	
5	to parse out what are the factors that are causing	
6	these associations, and it's very difficult to	
7	draw conclusions about causation between these	
8	studies.	
9	You know, if I want to increase my	
10	son's college board scores, I don't just you	
11	know, have him go into the next town because those	
12	kids in that town have higher board scores, is not	
13	going to cause my son's scores to go up,	
14	necessarily. So we have to be careful about how	
15	we evaluate these associations in epidemiology	
16	studies.	
17	In contrast, experimental laboratory	
18	studies have some advantages. So if we do a study	
19	of animals in the laboratory, we can eliminate any	
20	kind of variation in the responses we observe due	
21	to genetic variation, because we can make sure	
22	that all of the animals have exactly the same	
23	genetic makeup. So if we do observe a difference	
24	in the experiment, we know that it is not due to	
25	genetics. And we can control the temperature, the	

		Page 1386
1	humidity, the air quality, all of these things.	Tage 1000
2	So we remove all of these extraneous variables,	
3	and we can just focus on the one factor that we	
4	are interested in. In this case, it might be	
5	electric or magnetic fields.	
6	And basically, these are the kinds of	
7	studies that are used to draw conclusions about	
8	cause and effect, and these are the studies that	
9	the safety of all of our drugs and medicines are	
10	based upon.	
11	So when you give your child an	
12	antibiotic, that antibiotic and the safety of that	
13	antibiotic has been thoroughly tested by	
14	experiments on animals, and then later clinical	
15	studies, to confirm that there is not something	
16	unusual that is peculiar to animals and not to	
17	humans.	
18	And then, finally, if we have a	
19	biological response or effect that is of interest	
20	to us, either for some beneficial effect or some	
21	investigation of adverse effect, then we can go	
22	into studies of cells and tissues and try and	
23	determine the mechanism that is responsible for	
24	that response.	
25	So when you start evaluating the	

		Daga 1387
1	studies, there is the take-home message, and that	Fage 1507
2	is that one epidemiology study is not enough to	
3	draw a conclusion. I would say that also applies	
4	to laboratory studies as well. All epidemiology	
5	studies are not created equal; they all have	
6	strengths and limitations. And a statistical	
7	association, by itself, does not provide evidence	
8	that there is a causal relationship between an	
9	exposure and a response in a population.	
10	The way that health agencies assess	
11	this evidence is by assembling blue-ribbon	
12	scientific panels. These panels may range from as	
13	few as eight or nine people to maybe over 30	
14	people that represent expertise in various	
15	scientific disciplines. It could be medicine,	
16	toxicology, exposure assessment, engineering with	
17	regard to exposure issues. And they follow a	
18	defined methodology, the "weight of the evidence"	
19	methodology I described, and their conclusions are	
20	hammered out in a consensus statement that is	
21	given out to the public.	
22	Here I've listed some of the reviews	
23	of EMF and health research by national and	
24	international agencies, going from 1998 to 2007.	
25	And here I've picked out of that group	

		Dago 1388
1	the report in 2005 from the Federal/Provincial	Fage 1500
2	Territorial Radiation Protection Committee that	
3	was established to help agencies here in Canada.	
4	And they performed a review of epidemiology and	
5	laboratory research studies on 60-hertz EMF, and	
6	here are their conclusions; that is, adverse	
7	effects from exposure to power frequency EMFs at	
8	levels normally encountered in homes, schools, and	
9	offices, have not been established.	
10	Since there is no conclusive evidence	
11	that exposure to EMFs at levels normally found in	
12	Canadian living and working environments is	
13	harmful, FPTRPC is of the opinion that moderate	
14	measures and participation in the process of	
15	acquiring new knowledge are sufficient. They are	
16	talking from a precautionary perspective.	
17	The next review appeared in 2007, by	
18	the World Health Organization, which is a very	
19	thorough and comprehensive review of all of the	
20	research at that time.	
21	And here is their conclusion.	
22	Consistent epidemiologic evidence suggests that	
23	chronic low-intensity ELF (extremely	
24	low-frequency) magnetic field exposure is	
25	associated with an increased risk of childhood	

		Page 1380
1	leukemia. However, the evidence of causal	Tage 1509
2	relationship is limited, and therefore exposure	
3	limits based upon epidemiological evidence are not	
4	recommended, but some precautionary measures are	
5	warranted.	
6	And then they go on the next slide to	
7	describe the precautionary mechanisms that they	
8	evaluated. And I pointed out here that in the	
9	centre paragraph:	
10	"Changes to engineering practice to	
11	reduce ELF exposure from equipment or	
12	devices should be considered, provided	
13	they yield other additional benefits,	
14	such as greater safety, or involve	
15	little or no cost."	
16	And the thinking there and they	
17	describe some of this in their report is that	
18	if you don't know that you have a health hazard,	
19	then you wouldn't want to spend more money	
20	preventing exposure to that than you do for things	
21	that you know are health hazards to the	
22	population.	
23	Skipping back a few slides here,	
24	because they got out of order in setting up.	
25	After the WHO report in 2007, three	

Volume 6

		Page 1300
1	major agencies have issued their reviews.	Tage 1000
2	The International Commission on	
3	Non-ionizing Radiation Protection this is an	
4	affiliate of the World Health Organization in	
5	2010 issued their assessment.	
6	The Swedish Radiation Safety Authority	
7	has continually, at frequent intervals, issued	
8	updates on their evaluation of the science.	
9	And most recently, a scientific	
10	committee of the European Commission in 2015 has	
11	issued a comprehensive review.	
12	Now I'm skipping back to a few slides	
13	ahead, to now this is the slide which shows the	
14	Scientific Committee on Emerging and Newly	
15	Identified Health Risks, and their evaluation of	
16	electromagnetic fields across a range of	
17	frequencies, including the extremely low	
18	frequencies at 60 hertz, static fields,	
19	combination of these fields with each other, and	
20	exposure to these fields with other environmental	
21	stressors. And then they talk about the research	
22	recommendations, which are summarized here on this	
23	slide.	
24	And with regarding epidemiology	
25	studies, they say that studies are consistent with	

		Page 1391
1	earlier findings of an increased risk of childhood	i age i coi
2	leukemia, with estimated daily average exposures	
3	above point 0.3 to 0.4 microtesla. And I will	
4	just tell you that that's the terminology that's	
5	used in Europe, and often by scientists. A	
6	microtesla can be converted to a milligauss by	
7	multiplying by 10, so that's exactly the same as	
8	exposure above 3 or 4 milligauss.	
9	They go on further to say that no	
10	mechanisms have been identified that would account	
11	for this statistical association, and there is no	
12	support from experimental studies, and that the	
13	shortcomings of the epidemiology work prevent a	
14	causal interpretation.	
15	They also talk about existing studies	
16	do not provide convincing evidence for causal	
17	relationship between ELF magnetic field exposure	
18	and self-reported symptoms by things like	
19	headache, or tiredness, or malaise.	
20	And they also comment that the	
21	epidemiology studies do not provide convincing	
22	evidence for an increased risk of	
23	neurodegenerative disease, or show an effect on	
24	reproductive functions.	
25	So I've tried to condense hundreds and	

Volume 6

		Dago 1202
1	hundreds of pages of these scientific reviews into	Fage 1392
2	a few general points. They all agree that there	
3	is little evidence that electric and magnetic	
4	fields are associated with adverse health effects.	
5	They believe that there is some epidemiological	
б	evidence for a statistical association of magnetic	
7	fields at high average levels with childhood	
8	leukemia. And we are talking about here not	
9	momentary exposures; we are talking about over	
10	periods of time of months to years. And I can	
11	come back and explain that a little more later if	
12	need be.	
13	And they agree that the laboratory	
14	data does not support a link between EMF and any	
15	adverse health effect, including leukemia, or they	
16	have not concluded that EMF is known to cause any	
17	disease.	
18	So here is where I'm going to digress	
19	for a little bit and just give you some updates	
20	about some recent international developments that	
21	shed light on this body of research. And first of	
22	all I'm going to talk about the epidemiology of	
23	childhood leukemia, because this is the area of	
24	research which has gathered the most interest and	
25	concern, and which there has been the most	

		Dogo 1202
1	consistent associations reported.	Page 1393
2	And it was these consistent	
3	associations that caused the working group that I	
4	was part of, assembled by the International Agency	
5	for Research on Cancer, to state that there was	
6	limited evidence for a relationship between	
7	long-term average exposure to magnetic fields and	
8	childhood leukemia.	
9	So in 2013 this is after the WHO	
10	review and so on there is a flurry of power	
11	line studies that came out. This one is called	
12	the GEOCAP study. And there is others here which	
13	are not showing well on the screen, but we will go	
14	through them separately.	
15	So, the first one that you saw was	
16	what is called a GEOCAP study, or the French power	
17	line study, in which these investigators did a	
18	typical epidemiology study for this literature.	
19	And basically the goal of these	
20	studies is to compare the exposures that people	
21	have in two groups. One group is assembled in	
22	this case, it was children with acute leukemia	
23	compare the exposures of that group to a	
24	comparable group of children without leukemia.	
25	And the idea is, if there is a very large	

Page 1394 difference in the exposure of these two groups, 1 2 then maybe that exposure has something to do with the disease. 3 And so in this study, the way they 4 tried to estimate or compare the exposure of these 5 two groups was by calculating the distance between 6 the residence where this child lived and the 7 8 nearest overhead high-voltage transmission line. And they looked at voltages of lines all the way 9 from 63 kV to 400 kV. Overall, they did not find 10 11 an association between distance to the transmission line and childhood leukemia. 12 One of the limitations of this and the 13 other studies that I'm going to be talking about 14 afterwards is that distance from a transmission 15 16 line is not a very exact way of estimating exposure to magnetic fields. Obviously, if you 17 are 100 feet from a transmission line that is 18 carrying a lot of current, the magnetic field is 19 going to be higher than if you are 100 feet away 20 from a transmission line that is carrying almost 21 no current. So based upon these studies, if you 2.2 are 100 feet away, they would be treated the same. 23 24 So that's a limitation of these type of studies, but they are still informative. 25

		Dogo 1205
1	Another study was done in Denmark, in	Page 1395
2	which Pederson and his colleagues compared the	
3	exposure of cases of leukemia with controls that	
4	were randomly selected from the population. And	
5	this was the residence at time of birth. And they	
6	looked at transmission lines with voltages between	
7	132 and 400 kilovolts. In this population, they	
8	did not see a relationship between childhood	
9	leukemia and living near a high-voltage	
10	transmission line.	
11	I think the next study is one of the	
12	most interesting of the studies because I think it	
13	really helps us understand not only something	
14	about this epidemiology literature but also the	
15	way that science progresses.	
16	So I'm going to back up a second here	
17	and talk about a study that was published in 2005	
18	by Dr. Draper and his colleagues at Oxford	
19	University in the United Kingdom.	
20	What they had reported was, looking at	
21	a large portion of the country, they compared the	
22	distances of the birth addresses of children who	
23	had leukemia and they compared it to other	
24	children. And what they reported was that there	
25	was an association that the odds of a child	

		Page 1396
1	living, having an exposure by living closer to a	r ugo roco
2	transmission line was greater for a child of	
3	leukemia than it was for a control. And this	
4	study got a lot of interest for a couple of	
5	reasons. First of all, it was done by an	
6	extremely highly regarded group of epidemiologists	
7	at Oxford University and also because they had	
8	this finding that this association extended out as	
9	far as, you know, hundreds of metres away from the	
10	line, at a distance where if you took a magnetic	
11	field meter, I don't care what kind of currents	
12	were flowing the line, you would not be able to	
13	measure a magnetic field. So they had some doubts	
14	that a magnetic field was responsible for this	
15	association. But that was just one possible	
16	explanation.	
17	So they went back and over the years	
18	they went back and calculated the magnetic fields	
19	to the residences and overall they found that	
20	there was a trend towards higher fields at	
21	people's houses living closer to the lines but the	
22	association was not statistically significant.	
23	And then here in this study in 2014 they gather 13	
24	more years of additional research, they included	
25	lower voltage lines down to 132 kV and they	

		Page 1307
1	included all of Scotland. So now they have 53,000	Tage 1337
2	odd cases of cancer to look at and 66,000	
3	controls. And they are comparing the distances of	
4	the children with and without cancer to	
5	transmission line distance. So here are the	
6	results that they show in this 2014 analysis.	
7	So, across the bottom you see the here	
8	are the years where they covered the studies and	
9	here are the odds ratios, sorry that's missing	
10	here. And what they report is in the 2005 study	
11	they were reporting on data gathered in this	
12	period of time and you can see that they have an	
13	association here of above 4, so this represents	
14	that children with leukemia had higher odds of	
15	living within 199 metres of an overhead	
16	transmission line than did the control children.	
17	But when they went and continued to	
18	gather data and analyze this population over time,	
19	what did they see, is that this association that	
20	was present in the 1960s, and for a period of time	
21	thereafterwards, diminished. And so in the most	
22	recent analysis, there is no association between	
23	living near a transmission line and whether or not	
24	a child has leukemia.	
25	And you can see if you look at	

		Page 1308
1	distances greater than 200 metres, where you	Fage 1390
2	wouldn't expect any magnetic field exposure, there	
3	has been essentially no change over this period of	
4	time.	
5	Now, the question, interesting	
6	question, is: What accounts for this? But	
7	clearly, the idea that in our society, as we build	
8	more and more power lines and as we use more and	
9	more electrical devices, that this association, if	
10	it is related to magnetic fields, would disappear,	
11	just is not credible.	
12	And so both in their 2014 study and in	
13	a 2015 study of underground lines and a 2016	
14	study, they continue to refine the argument that	
15	the pattern of these results do not fit the idea	
16	that magnetic fields were responsible for the	
17	association in the initial period that they	
18	observed, and rather that they were factors about	
19	the way that the population sorted out in those	
20	earlier periods, which accounts for the	
21	observation.	
22	The next study is more recent, from	
23	2016, in which investigators in California	
24	attempted to replicate the original Draper study.	
25	It took a long time for them 11 years to	

		Page 1300
1	assembling the study to replicate the 2005	Fage 1399
2	publication.	
3	And here they have a large number of	
4	cases of leukemia, central nervous system cancers,	
5	and they randomly selected the controls from the	
6	population individually, matched them for age and	
7	sex to the cases, and looked at the address at	
8	birth and the distances of the overhead	
9	transmission lines over a wide range of voltages,	
10	and did not report an association between distance	
11	to the transmission lines and whether or not the	
12	child had leukemia.	
13	So that is a perspective of how	
14	science has advanced over this period of time.	
15	And in these recent studies that have been done in	
16	the UK and France and Denmark, and this more	
17	limited study in California, that these	
18	associations have not been confirming some of the	
19	associations that have been suggested based upon	
20	earlier studies.	
21	And I didn't really focus on	
22	discussing the laboratory experimental studies,	
23	except I point out here that I think it is	
24	important for the public to understand that there	
25	has been important research done in the	

		Dogo 1400
1	laboratory. And this is what the World Health	Page 1400
2	Organization has and other agencies have	
3	pointed to as the lack of evidence supporting the	
4	idea from some epidemiology studies that magnetic	
5	fields were a cause of cancer.	
б	So here are studies in which	
7	animals in this case rats and mice have been	
8	exposed over their entire lifetime to high	
9	magnetic field levels at 50 hertz, which is the	
10	power frequency in Europe, or 60 hertz here in	
11	North America.	
12	And again, I'm sorry, these values are	
13	in units of millitesla. 5 millitesla is 50,000	
14	milligauss. So in the Yasui study in 1997, they	
15	exposed the animals to 50,000 milligauss over	
16	their entire lifetime. They sacrificed the	
17	animals and went through all of their tissues with	
18	a microscope, examining them, looking for elements	
19	of cancer or other toxic effects.	
20	Dr. Mandeville, in Quebec, did her	
21	study at fields going up to 20,000 milligauss, and	
22	two studies from the National Toxicology Program	
23	in the U.S. exposed rats and mice to fields up to	
24	10,000 milligauss. And overall, these studies did	
25	not see an increase in any type of cancer.	

		Page 1401
1	Now, more recently, studies have been	Tage 1401
2	done of Alzheimer's disease, and the early studies	
3	were done of workers in occupational environments.	
4	The difficulty with Alzheimer's disease is there	
5	is no firm diagnostic test while a person is	
6	alive, so that has been a difficulty in advancing	
7	research in this area.	
8	But in 2008, this study was published	
9	talking about Alzheimer's disease in Switzerland.	
10	And the design of this study was much like the	
11	previous studies that I talked about for childhood	
12	leukemia; they looked at the address of persons	
13	that had died on the death certificate, it	
14	identified where they lived at the time of	
15	death and they were trying to interpolate from	
16	the death certificate whether they had Alzheimer's	
17	or not. And then they compared that to how long	
18	they had lived or how close they had lived to	
19	overhead transmission lines.	
20	And you can see here, on this part of	
21	the slide, overall, there wasn't much of a	
22	relationship between distance from the nearest	
23	220 to 380 kV line, and their exposure, the	
24	distance from that. But if you looked at it	
25	5 years and 10 years and 15 years for people	

		Page 1402
1	living in the same location, it looked like that	Tage 1402
2	persons that were proportionally more persons	
3	with Alzheimer's disease living within 50 metres	
4	of these overhead lines. And so this only became	
5	really statistically significant for these	
6	longer-term periods.	
7	The difficulty here, we are dealing	
8	with mortality, and it is hard to distinguish	
9	deaths from Alzheimer's disease from other types	
10	of neurological disease. And so it wasn't until	
11	2013 that this study in Denmark attempted to	
12	replicate this earlier study with a more advanced	
13	study design.	
14	And they use the very good Danish	
15	registry to identify new cases. So these are	
16	people that had been specifically identified as	
17	having Alzheimer's disease. And they very	
18	carefully identified the addresses of these cases.	
19	They then looked at the distance to the lines, and	
20	also did comparisons of the estimated exposure.	
21	In this study, using this more advanced model,	
22	they reported no association.	
23	And here is a slide from their study.	
24	Let me just sort of unpack this a little bit here,	
25	because it is a lot of numbers.	

		Page 1/03
1	So this is here showing distances to	Fage 1403
2	the power lines, in metres. And this is the	
3	number of cases, the number of controls that were	
4	compared, and this is the odds ratio, or hazard	
5	ratio, here.	
б	And if you start out 200 to 600 metres	
7	away from the line, this is the reference group.	
8	So we are comparing how these numbers here compare	
9	to a reference group at this distance.	
10	And you can see that as you look at	
11	distances where these people lived, as you get	
12	closer and closer to the transmission line, these	
13	values are all about 1. So what they are	
14	reporting here is that there is no association	
15	that is different from what is present far away	
16	from the lines as you get closer to the lines.	
17	And I point out here, what this column	
18	here reports, 95 per cent confidence intervals.	
19	So just purely from a statistical point of view,	
20	you will expect some variation, like when you look	
21	at the results of polling for political	
22	preferences and so on. And so this gives the	
23	range, if you did repeated samples over and over	
24	again, in the long run, the range of values could	
25	be between in this range here. And none of these	

1404

		Daga
1	lower values is above 1.	Page
2	So this tells you that none of these	
3	associations that are reported here can be	
4	statistically distinguished from this association	
5	here.	
6	And then if you look at cumulative	
7	time within 50 metres of a power line,	
8	specifically, just taking this line here, and	
9	looking at number of years, going further away,	
10	you can see 1, 1.8; it jumps up a little to 1.79,	
11	and then after 10 years, it drops back down	
12	to .71.	
13	And none of these lower confidence	
14	levels here are above 1. And that tells us that	
15	there is not a reliable difference in these	
16	numbers here. Again, representing that there is	
17	not an association between Alzheimer's disease in	
18	the study and living for long periods of time near	
19	a transmission line.	
20	So, altogether, what we've reviewed so	
21	far is there is no conclusion from health or	
22	scientific agencies that EMF is a cause of a	
23	disease. There is no consistent association	
24	between magnetic fields and any disease, with the	
25	exception for the childhood leukemia studies which	

		Dama 1405
1	had been reviewed in earlier years.	Page 1405
2	And as I pointed out, these newer	
3	studies that were done in California and in other	
4	countries, in France and Denmark and so on, the	
5	association is weaker or non-existent, and both	
6	short and long-term animal studies as a whole do	
7	not show adverse effects, and laboratory studies	
8	of cells and tissues do not confirm a mechanism	
9	that would explain a causal relationship between	
10	weak magnetic fields and any disease.	
11	In this slide here, I apologize, the	
12	text that's quoted should be below the World	
13	Health Organization bullet. And I will read that,	
14	because if you go to the World Health Organization	
15	website, this is their current interpretation of	
16	the evidence. It says:	
17	"Based upon recent in-depth review of	
18	the scientific literature, the WHO	
19	concluded that current evidence does	
20	not confirm the existence of any	
21	health consequences from exposure to	
22	low-level electromagnetic fields."	
23	We also reviewed in our report	
24	research on livestock, wildlife, and plants.	
25	There is a wide range of types of studies that	

	Page 1406
1	have been done to look at this. These are studies
2	on farm, and observation of cattle living near
3	transmission lines; experimental studies of
4	cattle, sheep, and swine where animals had been
5	penned directly underneath the conductors and
6	compared to a control group living hundreds of
7	metres away.
8	It involved looking at the migration
9	patterns of elk and deer to see if noise or
10	electromagnetic fields might deter their
11	behaviour. Field studies of corn and soybeans,
12	and experimental studies of more than 70 different
13	plant species have been studied in the laboratory
14	to see if high levels of fields would affect their
15	productivity or health.
16	And overall, there is no effect of
17	400 kV, 500 kV, and 765 kV lines, or similar
18	levels of exposure in these studies.
19	I'm often asked questions about
20	"Well, you know, we hear about electromagnetic
21	interference from various kinds of sources; what
22	about power lines?"
23	And particularly more and more people
24	these days, as we live to longer periods of time,
25	we find more uses for them: implanted pacemakers

		Page 1407
1	are an example of a medical device that some of	Tuge 1407
2	you at my age who may remember that when microwave	
3	ovens first came out, you'd go into a cafeteria	
4	and there would be a sign next to the microwave	
5	oven that would say "Not to be used by persons	
б	with pacemakers."	
7	Well, you go around today, there are	
8	no longer any signs around microwave ovens, for	
9	two reasons. First of all, the microwave ovens	
10	are designed better today, so they don't leak	
11	radio frequency fields. And second of all,	
12	pacemakers have been considerably improved, and so	
13	they are shielded by metallic cases; they have	
14	built in filters to remove interference, and they	
15	have adjustable sensitivity settings, so that you	
16	can set the threshold for reaction of the	
17	pacemaker to above the kinds of background noise	
18	that a person might occur in their everyday	
19	environment.	
20	And we have searched databases in	
21	Canada, in the United Kingdom and the U.S.,	
22	looking for reports of interference of pacemakers	
23	by transmission lines. We have not found these	
24	reports, although there are all kinds of reports	
25	in these databases about electronic surveillance	

		Dogo 1400
1	systems at book stores, and other consumer	Page 1408
2	outlets, causing interference with pacemakers.	
3	There is the fellow who carried his	
4	stereo speakers from one room to another and	
5	inadvertently turned off the pacemaker, because	
6	the magnet of the speaker was strong enough to	
7	toggle off the pacemaker. The physicians use a	
8	magnet to turn a pacemaker on and off, and to	
9	adjust the sensitivity; and the magnetic field	
10	from the speaker was so strong that it turned off	
11	his pacemaker.	
12	So there are lots of other devices	
13	that have been reported as producing interference	
14	with pacemakers, but not high-voltage power lines.	
15	Now, how does this inform our	
16	assessment of this proposed transmission line	
17	project? Again, what we looked at in this project	
18	were two components: the transmission line	
19	itself, which is routed on an existing	
20	right-of-way, except for two sections, which in	
21	our reports we have labeled E1 and E2, E1	
22	corresponding to the self-supporting towers and E2	
23	to the guy-wired towers.	
24	And then, in order to accommodate this	
25	transmission line, there is going to be additional	

		Daga 1400
1	equipment installed at the Dorsey, Riel, and	Page 1409
2	Glenboro South stations.	
3	And here is the route. And this map,	
4	with our annotations on it showing the different	
5	sections we analyzed, going from A to E, gives you	
б	the key about how to relate the values in our	
7	tables to geographical locations along the route.	
8	Now, what we evaluated for the EIS was	
9	we calculated the electric field, and we also	
10	looked at what kind of currents would be induced	
11	on a very large object that was parked underneath	
12	the transmission line. We calculated the magnetic	
13	field. We calculated levels of audible noise due	
14	to the corona of the conductors, and also the	
15	radio noise associated with corona on the	
16	conductors.	
17	I won't go through the whole report;	
18	we'd be here a long time. But I singled out this	
19	section here, on Route G. And just to go back a	
20	second, Route G, as you can see here, is in this	
21	portion of the route.	
22	And here the existing transmission	
23	line is also a 500-kV line, the D602F. And in the	
24	proposed postconstruction configuration, the new	
25	line will be constructed adjacent to it.	

		Page 1410
1	Here is the graph from our report	Tugo 1410
2	showing the calculated fields from these existing	
3	lines, which are shown by this is the existing	
4	line here, shown in kind of gold colouring; and	
5	here is the calculated magnetic field or the	
6	electric field, I'm sorry coming from this line	
7	here.	
8	And as you can see, the peak is here,	
9	and it comes down, with distance going off in this	
10	direction, and the same thing is true there. And	
11	the peak calculated here is about 10 kV per metre.	
12	And this is based upon the preliminary design of	
13	the calculations.	
14	And as I will tell you in a moment,	
15	there has been further refinement in what is the	
16	height of these lines here that is going to make	
17	some adjustment to those values.	
18	And then here, you can see here the	
19	calculated values associated with the new line	
20	here.	
21	So you can see that the addition of	
22	the new line here increases the field on this	
23	portion of the right-of-way but has almost no	
24	influence here, at the edge of this right-of-way,	
25	and going in this direction, that the field at	

		Page 1411
1	this edge of the right-of-way is dominated by this	Tage 1411
2	existing transmission line.	
3	Here is a similar profile calculated	
4	for the magnetic field at average loading. And	
5	again you can see, here are the magnetic fields,	
6	both under existing and proposed conditions, are	
7	very similar above the existing line and going in	
8	this direction, away from that, and that the	
9	addition of the new line serves to increase the	
10	magnetic field here. And that magnetic field	
11	diminishes, and so it has a minimal effect at this	
12	edge of the right-of-way.	
13	I would point out that for reference,	
14	the limit I'm going to be talking about	
15	standards in a minute the standard, the limits	
16	for exposure, human exposure of the general public	
17	for electric fields, is calculated to be around	
18	27 to 34 kV per metre, depending upon which	
19	organization's guidelines you look at.	
20	For magnetic fields, it is between	
21	nine and twelve thousand milligauss. So you can	
22	see the electric here the magnetic fields are	
23	in the range the peak values are about 200,	
24	compared to this 9,000 and 12 000. So the values	
25	are both under the existing and proposed	

	Page 1/12
conditions are far lower than the guidelines.	Fage 1412
Here are the values for audible noise,	
in this section.	
This line shows audible noise due to	
the existing transmission line, and here is how	
that noise level will increase after the proposed	
line is installed. And you can see that there	
is much of the effect is related to the	
existing line at this edge of the right-of-way.	
And I also point out that these values	
are, in fair weather, well below what you might	
describe a quiet rural background as, so that at	
these levels, it is not clear, even in quiet	
backgrounds, whether these would be audible.	
Certainly difficult off the right-of-way.	
Like everything else in life, at low	
levels, we don't have much concerns about	
exposures. I get a kiss from my children on the	
cheek, and it is fine; somebody hits me with a	
hammer in the face, I'm hurting. And the	
fundamental concept of toxicology is that the dose	
makes the poison, and that as you keep increasing	
the exposures of almost anything that we encounter	
in life, at some level you will get some kind of	
untoward effect.	
1	in life, at some level you will get some kind of untoward effect.

		Page 1413
1	So EMF, like anything else scientists	i ugo i filo
2	have investigated, what are the highest levels	
3	that of exposure that can produce adverse	
4	effects? And then we establish exposure	
5	guidelines to prevent those effects from	
6	occurring, either in workers or the general	
7	population.	
8	There are two organizations that have	
9	published standards, the International Commission	
10	for Non-ionizing Radiation Protection and this	
11	is the guideline that has been adopted by all the	
12	members of the European Community, some 27	
13	countries. And the IEEE, International Committee	
14	for Electromagnetic Safety, has a similar	
15	guideline.	
16	Here I've compared the guidelines of	
17	these two organizations. The first is for	
18	controlled environments; that is perhaps workers	
19	at Manitoba Hydro.	
20	And here are the levels of recommended	
21	limits on exposure for magnetic field and electric	
22	field, and these are what are called reference	
23	levels. So if you have an electric field exposure	
24	below this value here, 8.3 kV per metre, you are	
25	guaranteed, for any configuration, any kind of way	

		Dago 1/1/
1	in which you might be in that environment, of	Fage 1414
2	being below the basic restriction, which is a	
3	internal electric field produced by these external	
4	exposures.	
5	And you can see, for the general	
6	public, these values are much lower; it goes from	
7	10,000 to 2,000; 27,100 for this guideline for	
8	ICES to the 9,000, and the same thing is true for	
9	the electric fields. Higher exposures are allowed	
10	for workers than they are for the general public.	
11	And for magnetic fields, all of the	
12	exposures are below this value; and for electric	
13	fields, the dew line exposures are below these	
14	values. And these are the reference values, so	
15	you are allowed to exceed these reference values	
16	if you've done further calculations to determine	
17	that the underlying basic restriction that is,	
18	the biological limit has not been exceeded.	
19	Now, when we were beginning to work	
20	with Manitoba Hydro in evaluating this project,	
21	when we did our initial calculations of the	
22	electric fields for the existing lines, the fact	
23	that the field levels had come up to about 10 kV $$	
24	per metre suggested to us it would be worthwhile	
25	for us to investigate whether that level of	

	Page 1415
1	exposure for this line would cause currents to be
2	induced on large vehicles parked underneath the
3	line that might give the potential to produce
4	something greater than a nuisance shock.
5	And so we evaluated this possibility
6	by assessing the amount of currents that would be
7	induced on the largest agricultural vehicle that
8	we could imagine might be underneath the line,
9	where agricultural operations were coming into
10	account. And in both Canada and the U.S., the
11	limit on that induced current, if you walked up
12	and grabbed a handle of a vehicle parked
13	underneath a line, the largest current that would
14	be allowed to flow through you to ground would be
15	5 milliamps.
16	So our calculation showed that for all
17	of the sections except F and G, these
18	induced-current values were quite low, and well
19	underneath that. But in sections F and G, the
20	induced current did not change as a result of the
21	project, but it was at we calculated at
22	5.6 milliamps above that limit.
23	Now, subsequently, Manitoba Hydro has
24	been working further on the design of their
25	facilities and have communicated to us that the

Volume 6

		Page 1416
1	preliminary conductor heights that we used for our	Tugo 1410
2	calculations of the electric and magnetic fields	
3	and other quantities in those sections of the	
4	right-of-way where the induced currents on	
5	vehicles was high, that those in the case of	
6	existing lines, that the minimum conductor height	
7	is now 14 metres, rather than the 10 metres we	
8	used in our calculations.	
9	And for the new line, that is	
10	increased a little bit, from 14.4 to 15.5 metres.	
11	And those elevations of the conductors would bring	
12	both the well, it would bring the existing	
13	lines in compliance with the CSA and the U.S.	
14	standards on induced currents.	
15	And so that was an issue that we	
16	identified, and that then has been looked further	
17	into by Manitoba Hydro.	
18	And the magnitude of this induced	
19	voltage or current depends upon the size of the	
20	vehicle; obviously, if you have a huge combine	
21	which is extending up in the air closer to the	
22	conductors, the induction will be larger.	
23	And our calculations were extremely	
24	conservative. If you were to have an issue where	
25	people were getting stronger something stronger	
		Page 1417
----	--	-----------
1	than a nuisance shock, there are various ways that	
2	that can be investigated and mitigated.	
3	So in conclusion, the EIS reports that	
4	the proposed project would increase EMF audible	
5	noise and radio noise on the transmission line	
б	right-of-way, but will result in only a small	
7	change in these parameters at the edge of the	
8	right-of-way and beyond.	
9	I point out that for the magnetic	
10	field, where the new line parallels an existing	
11	line, the largest increase at the edge of the	
12	right-of-way is only 3 milligauss. Where it is on	
13	a new section of right-of-way, not paralleling	
14	another transmission line, the magnetic field	
15	would increase to just 21 milligauss.	
16	And even for those few days of the	
17	year where the largest currents may be expected,	
18	the magnetic field at the edge of the	
19	right-of-way, in those sections where the new line	
20	is just by itself, would only increase to	
21	24 milligauss.	
22	And the electric field, similarly, at	
23	the edge of the right-of-way, increased quite	
24	little. For existing lines, it increases where	
25	you parallel existing lines, it increases by only	

	Page 1418
1	half a kilovolt per metre; and where the new line
2	is by itself, the field level, without any
3	background, increases to only .8 kV per metre.
4	With regard to the scientific
5	literature on electric and magnetic fields, the
б	current consensus among numerous national and
7	international agencies that have reviewed this
8	extensive body of research is there are no known
9	adverse health consequences of exposure to ELF EMF
10	at the levels generally found in residential and
11	occupational environments, including proximity to
12	electric transmission and distribution facilities.
13	Results from scientific research do not provide
14	evidence to alter this conclusion.
15	Thank you very much for your
16	attention, and I will welcome any questions or
17	comments.
18	THE CHAIRMAN: Thank you very much for
19	that presentation.
20	All right. For this afternoon's
21	questioning and we will begin the questioning,
22	and then find a logical break in the proceedings
23	for a stretch.
24	So I believe there may have been some
25	discussion between the Southeast Stakeholders

		Page 1/10
1	Coalition and Dakota Plains regarding who will	Faye 1419
2	start first. Is that true? And the decision	
3	okay. Dakota Plains.	
4	Mr. Mills.	
5	MR. MILLS: Do we have an additional	
6	microphone today, Mr. Chairman? It is a reading	
7	light. Wow. Thank you very much.	
8	Mr. Bailey, good afternoon.	
9	MR. BAILEY: Good afternoon.	
10	MR. MILLS: Thank you for your very	
11	complete presentation.	
12	Before we get started, I just have one	
13	quick question; perhaps you can help me. And we	
14	were wondering this at lunchtime: Does continuous	
15	exposure to multiple PowerPoint screens, combined	
16	with high-intensity WiFi and multiple LED light	
17	sources, pose any risk to my pacemaker, tinnitus,	
18	or Alzheimer's?	
19	MR. BAILEY: I think you'd have to	
20	parse it out by looking at each one of those	
21	sources independently, and I think that's a whole	
22	different topic.	
23	MR. MILLS: Thank you.	
24	Sir, we met before; we had this	
25	parallel conversation on Bipole. And we had	

	Page 1420
1	similar concerns for our First Nation client then,
2	and although the concerns remain, the information
3	seems to grow and get better, and we acknowledge
4	and appreciate that.
5	I reread our transcript of Bipole, and
б	I reread your Bipole report, and we certainly
7	reviewed this. Sir, we reviewed your CV, and I
8	have to tell you, we were considering asking the
9	CEC for additional funding in order to cover the
10	time that we spent doing that, but we sensed we
11	wouldn't have much success. Eight academic
12	appointments, five teaching appointments, four
13	prior experiences, 124 published documents, total
14	of 156 CV references. You certainly know what you
15	are talking about.
16	In reviewing your work, sir, and we
17	seemed to dig into it, somewhere I came upon a
18	quote of yours that where you said that you
19	were more concerned about I think you were
20	referencing your children, and you'd mentioned
21	them in this presentation; you were more concerned
22	about Lyme disease than about EMF. Do you
23	remember that quote?
24	MR. BAILEY: That is something that I
25	am concerned about. I don't remember specifically

		Page 1421
1	when or where I made that comment, but that's	Tage 1421
2	something that my evaluation of the scientific	
3	evidence has informed my concern, or lack of	
4	concern.	
5	MR. MILLS: I couldn't find it today,	
б	but I know that the reference somewhere was that	
7	you expressed that you were more concerned about	
8	the effect of Lyme disease on your family than on	
9	EMF, and I wondered what that concern might be.	
10	And just for your information, there	
11	were there are currently 4 million people in	
12	the United States with an increase of 300,000 per	
13	year affected by Lyme disease.	
14	Could you call up your Slide 23,	
15	please.	
16	MR. BAILEY: Which what's the	
17	MR. MILLS: I think it is the	
18	right-hand screen.	
19	MR. BAILEY: Oh, I see.	
20	MR. MILLS: I hope it's 23.	
21	MR. BAILEY: That one?	
22	MR. MILLS: Yes. Thank you.	
23	MR. BAILEY: Okay.	
24	MR. MILLS: In your work in this	
25	project, sir, did Hydro ask you to provide any	

1422

		Deee
1	input as to what they could do to possibly reduce	Page
2	EMF and/or corona noise radiated from this	
3	transmission line?	
4	MR. BAILEY: They asked us to you	
5	know, they gave us the information about the	
6	design of the line and the project, and asked us	
7	to review this. And one of the things that the	
8	first questions we asked was whether or not the	
9	planned phasing of the new line had been	
10	considered, so that the as to how it fit with	
11	adjacent lines. The reason is that electric and	
12	magnetic fields, unlike other things that we have	
13	in life, not only have a magnitude, but they have	
14	a direction.	
15	MR. MILLS: Sir, I apologize; I	
16	MR. BAILEY: So that's what we asked	
17	them about, and they told us that the design did	
18	incorporate what is called "optimal phasing" to	
19	minimize the magnetic fields to the new line. And	
20	that was an important factor.	
21	MR. MILLS: I'm sorry, the question	
22	is, did Hydro ask you to provide any input as to	
23	any techniques they could employ to reduce EMF	
24	and/or corona noise on this transmission line?	
25	MR. BAILEY: As I said, they had	

Volume 6

		Page 1423
1	already selected the optimal phasing, which is a	
2	technique for minimizing magnetic fields.	
3	Again	
4	MR. MILLS: So the answer would fairly	
5	be no, then?	
6	MR. BAILEY: We did not advise them	
7	further, because they had already selected.	
8	MR. MILLS: Thank you.	
9	Sir, are some of us more sensitive to	
10	EMF than others? Would children be more sensitive	
11	than you or I?	
12	MR. BAILEY: Let me unpack that. My	
13	response is no. And let me explain why.	
14	We know that exposure to electric and	
15	magnetic fields, as well known for well over	
16	100 years, are capable of inducing voltages and	
17	currents in the body, and that is what has been	
18	determined as a confirmed potential adverse effect	
19	at high levels.	
20	If you do the computations for the	
21	levels of fields that are induced in the body of	
22	larger people, that there are larger currents and	
23	voltages induced, and they are smaller for smaller	
24	people, and much smaller for children. So the	
25	exposure that children have to internal electric	

	Page 1424
1	fields from an external source will be, in general
2	terms, smaller than they would be for a large
3	adult.
4	And apart from that, I don't have
5	evidence that children have some kind of inherent
6	greater response to magnetic fields or electric
7	fields than adults.
8	MR. MILLS: Thank you.
9	Sir, does EMF increase as the load
10	down the line increases?
11	MR. BAILEY: Only the magnetic field
12	will increase directly with the load or the flow
13	of current on the line. The electric field would
14	not only increase a minor extent, and that
15	would just be accounted for by perhaps a greater
16	conductor sag, if the line was carrying higher
17	currents, but not primarily due to the operation
18	of the line.
19	MR. MILLS: Thank you.
20	What loads on this line did you assume
21	when you prepared your calculations?
22	MR. BAILEY: Okay, one moment.
23	MR. MILLS: I understand this is a
24	500-kVA line. Did you assume maximum load, did
25	you assume an average load, did you assume the

Volume 6

		Page 1425
1	sold load? What information do you base your	
2	conclusions on, in terms of the load down the	
3	line?	
4	MR. BAILEY: One moment.	
5	If you turn to Section 2.8 of the EIS,	
6	and appendix C, it says:	
7	"Summary of right-of-way	
8	configurations, line loading, and new	
9	structure diagrams."	
10	Table C2 has the line loadings of both	
11	existing and proposed conditions that were used	
12	for modeling the magnetic fields. And those were	
13	881 megawatts for the new line under average	
14	loading, and 1,000 megawatts at peak loading.	
15	MR. MILLS: So what percentage of	
16	potential maximum line loading are your	
17	calculations based on?	
18	MR. BAILEY: Our calculations are	
19	based upon the average, the expected average, and	
20	also the peak, and does not take into account the	
21	per cent of the time that the line is on I	
22	mean, the per cent of the time that it is under	
23	peak or average conditions.	
24	But in our experience, the time that a	
25	transmission line is at its peak loading is; for a	

		Page 1426
1	limited period of time, measured in hours, or	1 age 1420
2	perhaps a few days. And if you want an estimate	
3	of the magnetic field on any particular day, using	
4	the magnetic field calculated average loading is	
5	the best predictor.	
6	MR. MILLS: Sir, how accurately can	
7	EMS be measured? These figures that we refer to,	
8	is there a when you talk about a milligauss, is	
9	there a tolerance in those numbers, or does	
10	measurement equipment of EMFs provide a fairly	
11	accurate report?	
12	MR. BAILEY: Depends upon, in part,	
13	the quality of the meter you use, but you can	
14	quite accurately measure magnetic fields at	
15	virtually any resolution you want to. Most	
16	commonly, the resolution of the meters is about	
17	a tenth of a milligauss.	
18	MR. MILLS: I see. Is that expensive	
19	equipment?	
20	MR. BAILEY: It need not be expensive	
21	equipment to get a measurement of a tenth of a	
22	milligauss; but to be sure that that is actually	
23	the field of the frequency you are interested in	
24	might require a more expensive instrument.	
25	MR. MILLS: How difficult would it be	

427

		Dago
1	for Manitoba Hydro to survey the proposed route	Page
2	and establish the existing EMF levels along it?	
3	MR. BAILEY: One could go out and take	
4	those measurements along the existing route, but I	
5	will point out that measurements, by and large,	
6	are what we call spot measurements; so if you go	
7	out at 4:00 o'clock on a Friday afternoon and take	
8	a measurement at 100 feet from the existing line,	
9	you could come back a week later, a month later,	
10	and get perhaps a higher or a lower value.	
11	MR. MILLS: Okay. Thank you.	
12	You are a scientist; is there a	
13	protocol or an approach to pre-measuring the EMF	
14	levels along this line that would provide you with	
15	a standard or a baseline that you could refer	
16	against?	
17	MR. BAILEY: There are protocols for	
18	taking measurements along transmission lines that	
19	have been published by the IEEE, and are	
20	referenced in our report, but there is no	
21	particular application towards pre what you	
22	call preconstruction measurements. In some	
23	projects, we have done preconstruction	
24	measurements and found that those preconstruction	
25	measurements match pretty well with what we'd	

		Dago 1/28
1	calculated for those existing lines.	Fage 1420
2	So it can be done, but we haven't seen	
3	a case where it provided additional or	
4	particularly useful information, more than what we	
5	had obtained by modeling.	
6	MR. MILLS: Sir, our sense is that	
7	there is a great amount of concern, but the	
8	concern, as you've pointed out, is difficult to	
9	confirm. And we are wondering and we look	
10	around to other constituencies, and appropriately	
11	enough, in the case of the EMF on this line, we	
12	look no further than the U.S. permit on the line	
13	that this connects to. And Article 8 of that	
14	permit and just let me take you through this;	
15	bear with me.	
16	"Minnesota Power shall investigate any	
17	complaints from residents with regards	
18	to EMF interference identifiably	
19	caused by the operation of the	
20	facilities covered. Minnesota Power	
21	shall then take appropriate action as	
22	necessary to mitigate such situations,	
23	and complaints from individuals	
24	residing within a radius of the	
25	centerline of the transmission line	

		Dogo 1420
1	must be resolved. Minnesota Power	Page 1429
2	shall maintain written records of all	
3	complaints."	
4	Would it be it certainly seems to	
5	work for that constituency. Can you see anything	
б	that would prevent or yeah, prevent Manitoba	
7	Hydro, as we do with air and water and all kinds	
8	of other environmental variables, do you see any	
9	problem with, as a condition of the licence for	
10	this work, and in the face of all of the	
11	concern and I respect, arguably, in many cases	
12	unsubstantiated but in the face of all of the	
13	concern, would it be would you have any	
14	difficulty with supporting a licence condition	
15	that called for Manitoba Hydro to do a pre and	
16	post construction EMF reporting, as you have done	
17	on existing lines, you've shared with us, and for	
18	similar conditions within the operating licence to	
19	be embedded, including a requirement that Hydro	
20	mitigate any proven EMF effect of this line?	
21	And before you answer that, in the	
22	case of the American permit, they established a	
23	radius; but all of the information you've provided	
24	us with is that the further away you get, the	
25	least risk there is. So I'm not sure that even a	

		Dogo 1420
1	radius would need to be considered, in light of	Fage 1450
2	the fact that distance appears to eliminate EMF.	
3	So a simple question: What the United	
4	States permit does in requiring the utility to	
5	prior measure EMF and then report to any cause or	
6	concern, would you see a problem with that? Would	
7	it be possible, scientifically, today?	
8	MR. BAILEY: A moment, sir did you	
9	read part of the permit that called for the	
10	pre-construction measurements, or did you talk	
11	about other activities? I may have misheard you.	
12	MR. MILLS: I may have missed that.	
13	I'm referring to Article 8 of the Great Northern	
14	permit, which requires Minnesota Power to	
15	investigate any EMF complaints and to take	
16	appropriate action as necessary to mitigate any	
17	proven complaints.	
18	I am anticipating that in order to	
19	substantiate an EMF complaint, we would need a	
20	prior construction or baseline to measure against.	
21	And I'm asking your scientific advice and help	
22	in how would we describe that process? How	
23	would we put that together?	
24	MR. BAILEY: Okay. Thank you for	
25	clarifying your question.	

		Dogo 1421
1	Certainly what you read out, as a	Page 1431
2	requirement from the permit on the U.S. side of	
3	the line, seems to me pretty much standard utility	
4	practice. If people have complaints about a	
5	facility, in my experience, the utility is to	
6	investigate that complaint and deal with it. If	
7	that complaint was about EMF, it would be the	
8	way that you would go about investigating that,	
9	specifically, would be to go to the location where	
10	that complaint originated, whether it is the	
11	landowner or some portion of the right-of-way, and	
12	take measurements there to determine if there was	
13	anything unexpected.	
14	And a pre-measurement may or may not	
15	be at all helpful, because that pre-measurement	
16	may not have been taken at a location which was	
17	close to where the complaint arose, and so	
18	therefore would not be helpful; or that there	
19	might be site-specific conditions that might make	
20	the area where a concern or complaint originated	
21	to be different from what a standard	
22	pre-construction survey might mean.	
23	So, certainly a pre-construction	
24	survey can be done, but it wouldn't be something	
25	that would be particularly informative in terms of	

		Page 1432
1	addressing a complaint of a particular landowner.	0
2	MR. MILLS: I don't understand. If we	
3	did a pre-construction survey, and an affected	
4	landowner was shown that these are the EMF levels	
5	today, and three years later the line is built,	
6	and the affected landowner has concerns as to the	
7	EMF experiences they suspect they are having,	
8	would it not be very reasonable to compare pre and	
9	post and be able to say to the farm owner, "You	
10	are right", or "You are wrong"?	
11	EMF, it appears to me to be you've	
12	described that it's very measurable. You model	
13	it, you anticipate it, you measure it. You've	
14	told me the equipment is reasonably inexpensive.	
15	You've told me that you are able to measure it to	
16	very, very small increments. Why could we not	
17	just simply provide, as we do with water quality,	
18	pre and post, we do with air quality, pre and	
19	post, why don't we include that as a condition of	
20	this licence that Manitoba Hydro's EMF line pre	
21	and post is catalogued, independent third-party	
22	measurements? And if the land users or owner, if	
23	the hunter, the trapper, the fisherman, is	
24	concerned as to their EMF, and there is a	
25	reasonable basis for their concern, the permit	

		Page 1433
1	could require Manitoba Hydro to, in due course,	r ugo r ioo
2	measure and be able to say, "I'm sorry, but it	
3	was 10.6, and it is 11.2, and your concerns are	
4	unfounded."	
5	Couldn't we establish that in the	
6	permit, so that all of the shall I say	
7	"boogeyman" business around EMF could be quite	
8	simply measured and proved or disproved? And if	
9	it is proven that there is an EMF effect, a	
10	condition as Minnesota Power is required,	
11	complaints from individuals residing within	
12	one-half mile of the centre line of the	
13	transmission line must be resolved.	
14	It seems to me it is a let's put	
15	your money where your mouth is, to be coarse.	
16	MR. BAILEY: I think what you describe	
17	is extremely complicated, and not likely to be	
18	useful in resolving particular customer	
19	complaints.	
20	So this is a very long transmission	
21	line. One could not reasonably measure the	
22	magnetic field just by itself. Electric fields	
23	are complicated by vegetation and surrounding	
24	objects, and so those levels vary all over the	
25	place; but even magnetic fields, it may not even	

		Dago 1/2/
1	be possible at some locations to get to that	Fage 1434
2	location, reasonably, to take a measurement.	
3	I know my colleagues recently came	
4	back from a trip, and they had to and they were	
5	trying to do a profile near a transmission line,	
6	and they had to go around numerous bogs, starting	
7	on one side and then walking around to the other	
8	side and continuing the measurements, because they	
9	didn't have waders deep enough to get through the	
10	bog.	
11	So if a particular person on the land	
12	has a complaint, they should register it with	
13	Manitoba Hydro; and if it involves EMF, they	
14	would, through ongoing you know, engagement,	
15	they would address that complaint. If that	
16	required taking measurements of electric and/or	
17	magnetic fields at that particular location, it	
18	could certainly be done in a very expedited	
19	fashion.	
20	And that the I would just caution	
21	that measurements at a particular point in time	
22	can vary, and so that if the value was it could	
23	be 3 milligauss higher or 3 milligauss lower	
24	I'm speaking hypothetically here than what was	
25	calculated that distance in the report, I don't	

Volume 6

	Page 1435
1	think that would particularly be helpful to the
2	person.
3	I think what you would have to do is
4	do a very site-specific and detailed measurement
5	protocol, and hope that that would be useful in
б	resolving the complaint or questions from the
7	person.
8	THE CHAIRMAN: This is Serge
9	Scrafield, the Chair.
10	We are at little past 3:15 now. Are
11	you anticipating having a number of additional
12	questions?
13	MR. MILLS: A couple of minutes.
14	THE CHAIRMAN: Really? A couple of
15	minutes.
16	MR. MILLS: Yeah.
17	THE CHAIRMAN: Are you sure? Okay.
18	Thank you.
19	MR. MILLS: I guess, Mr. Bailey, we
20	can agree to disagree. But I observe that the
21	World Health Organization tells us that most
22	nations, most developed nations, have national
23	standards of electromagnetic fields. In order to
24	have standards, there must be measurements.
25	I just don't understand why we can

		Pana 1/136
1	establish national standards of measurement, but	Faye 1450
2	you are telling me it would be difficult or	
3	impossible for Manitoba Hydro to apply pre and	
4	post construction standards of measurement to a	
5	relatively short transmission line, using readily	
6	available, reasonably priced equipment, and at a	
7	time when Hydro is going to be all over this land	
8	anyway, I don't understand your reticence or your	
9	pushback on the concept of pre and post, and quite	
10	simply providing Manitoba Hydro with the	
11	information to tell the land user, landowner,	
12	farmer, that your fears are unfounded, or	
13	providing the information to the landowner, land	
14	user, farmer, that your fears are proven.	
15	And I would suggest that with the	
16	sniff of witchcraft that many of us sense to all	
17	of this, something that we don't understand, a	
18	protocol that would measure it and allow concerns	
19	to be spoken to.	
20	And I guess in closing, sir, I don't	
21	understand, with your high level of assurance that	
22	there are relatively little risk to this, why you	
23	wouldn't be all in on establishing a permitted	
24	requirement that would prove what is in fact your	
25	position.	

		Page 1437
1	MR. BAILEY: Sir, I think there is	Tuge 1407
2	just a bit of confusion here. I think what I've	
3	heard is, is it possible to take measurements pre	
4	and post of the transmission line to verify that	
5	the calculations that have been made that the	
6	line, if it is running at a certain load, will	
7	produce a certain milligauss value?	
8	That certainly can be done. And you	
9	would not measure every foot of the right-of-way	
10	for the whole length; you would do some	
11	representative profiles going across the line.	
12	And that certainly could be done.	
13	But what I'm saying, sir, is that that	
14	is a separate activity, and has a separate	
15	potential value than resolving individual you	
16	know, concerns or complaints at a particular	
17	location. And taking those measurements at a	
18	particular location would just verify what the	
19	values are for purposes to inform the landowner or	
20	the person. But if that person said, "I believe	
21	that I'm getting headaches as a result of the	
22	transmission line", there would be no way that	
23	that could be resolved by taking measurements	
24	pre-construction or post construction.	
25	And so you could clarify what the	

	Page 1438
1	exposures are at a particular period of time. And
2	so, for instance, I will give you an example:
3	Transmission lines are designed to not be in
4	corona much of the time. It can be that there can
5	be a broken piece of hardware, or something like
6	this; something may happen during the course of
7	the line where all of a sudden you are getting
8	sparking that could lead to extreme radio
9	frequency interference, and that could be causing
10	interference to a person's radio reception, for
11	instance. Hydro could go out and confirm whether
12	that was occurring, and if it was occurring, they
13	could fix that broken piece of hardware and solve
14	the problem. But other types of concerns that you
15	may be pointing to, it wouldn't easily resolve.
16	And I also would take issue with the
17	labeling of people's concerns about electric and
18	magnetic fields as witchcraft. I have met many
19	people who have, based upon things that they had
20	seen, had led them to believe that there might be
21	concerns about electric and magnetic fields, and I
22	don't think that people who have those genuine
23	concerns should be regarded as believing in or
24	practising witchcraft.
25	MR. MILLS: My point is quite simple

Page 1439 and quite straightforward. Something that can be 1 2 measured economically in great detail, which you 3 in fact have, surely can be measured pre and post, and surely that information would be valuable in 4 responding to concerns raised by those who believe 5 they are affected. 6 7 And I say with respect, sir, that the 8 Presidential permit in fact anticipates that, and speaks to it. And I'm hoping that through this 9 process, a similar oversight will be embedded in 10 11 this licence, because I think the things that we can't see, but that may affect us, cause us 12 concerns that we need to be able to address 13 scientifically. And we have an opportunity within 14 15 a condition of this permit to cause scientific measurement of a potential gray area, and I would 16 have hoped that you would assist us with your 17 advice as to how we could do that. 18 19 But I will leave it at that, 20 Mr. Chairman. Thank you. 21 THE CHAIRMAN: Thank you. We are going to take a break here. 2.2 I'm going to shorten it to about 12 minutes by my 23 24 watch. We will start at 3:35. 25 (Recessed at 3:19 p.m. to 3:35 p.m.)

		Page 1440
1	THE CHAIRMAN: All right. Welcome	Page 1440
2	back, everyone.	
3	Just one preamble that I would like to	
4	mention here, and that has to do with the	
5	questioning and the responses. I wounder if we	
6	could and I know most people are trying to do	
7	this, but if I could remind everyone to get to the	
8	question as quickly as possible, without too much	
9	background. And the same on the answers: If we	
10	could get to the answer as quick as possible, it	
11	certainly benefits the panel, and I hope the rest	
12	of the people in the room, to get as many	
13	questions as possible asked, and as many of them	
14	answered as possible, although I did say earlier	
15	if it is complex, you can come back with the	
16	answer later; that's fine.	
17	So with that in mind, Mr. Toyne, go	
18	ahead.	
19	MR. TOYNE: All right. Thank you,	
20	Mr. Chair. Just so it is clear on the record,	
21	Kevin Toyne for the Coalition again.	
22	So, some of the questions that I was	
23	going to ask have already been asked, so I	
24	apologize; I'm going to jump around a little bit.	
25	It may seem a little bit disorganized. That's	

		Page 1441
1	only partially intentional. And then, depending	Tage 1441
2	on how we are doing for time, we may get to some	
3	questions about the recent update to the CV that	
4	we received from you.	
5	So to start, if you could go to your	
б	Slides 52 and 53. Those are the ones with the	
7	graphs along route section G. So it should be the	
8	next two slides.	
9	All right. So it wasn't clear to me	
10	from your presentation and if I simply just	
11	don't understand, I apologize. So can you either	
12	explain for the first or the second time why it is	
13	that the new, slightly taller tower seems to have	
14	higher both electric fields within the first	
15	50 metres from the centre of right-of-way, and	
16	then the next slide over, why there is also	
17	slightly higher magnetic fields in that first	
18	initial distance from the right-of-way.	
19	MR. BAILEY: I'm not quite clear as to	
20	your question. Are you talking about if you go	
21	to the distance along the right-of-way, if you	
22	could give me a distance where you are talking	
23	about, then I can focus better.	
24	MR. TOYNE: Sure. And again, this is	
25	just from a lay perspective. The first so from	

		Page 1442
1	zero to 50, it is higher for the proposed line	r ago r riz
2	than the current line. But after 50, it is	
3	basically the same. And the same applies for the	
4	next slide, for the calculated magnetic field.	
5	And I'm just wondering what the	
6	explanation is for the difference.	
7	MR. BAILEY: Okay.	
8	MR. TOYNE: And if you have already	
9	given this answer, I apologize; I did not	
10	understand it.	
11	MR. BAILEY: No, this is a complicated	
12	slide.	
13	So if you just consider the existing	
14	line by itself, and you start out at minus	
15	150 metres, and you follow that orange line all	
16	the way through, it gradually rises to a peak, and	
17	then it drops down again, and then it goes to	
18	another peak, and then it drops down again and	
19	goes to plus 150.	
20	Now, what happens, that is what the	
21	in this slide, what the electric field would be	
22	just from the existing line.	
23	MR. TOYNE: Right.	
24	MR. BAILEY: Now, what happens when	
25	you add the new line, the blue dash line indicates	

		Daga 1442
1	the increase in the field above what was what	Fage 1445
2	is calculated for the existing line, starting	
3	you know, a little bit before the centre of the	
4	right-of-way, at zero, and continuing on, and then	
5	once you get beyond a little bit past	
б	50 metres, the field after construction is	
7	virtually the same as it is before construction.	
8	So the presence of the new line, what	
9	this is showing after plus 50-some metres, is that	
10	the new line has virtually no effect on the	
11	electric field that is already produced by the	
12	existing line.	
13	And the same thing occurs in the	
14	following slide, for magnetic fields, again coming	
15	up just at you know, minus 20 metres or	
16	something. You can see an influence of the	
17	proposed new line, and then again, after about	
18	50 metres, the presence of the new line does not	
19	really change the magnetic field profile, going	
20	all the way underneath the existing line and out	
21	on the other side of the right-of-way.	
22	MR. TOYNE: All right. So the	
23	addition of the second line has a impact from zero	
24	to 50 metres from the centre of the right-of-way,	
25	but not much of an impact after that.	

		Dago 1///
1	MR. BAILEY: Correct.	Faye 1444
2	MR. TOYNE: Okay. Then again maybe	
3	this is just because I'm a layperson; I don't have	
4	the background why is there an impact within	
5	the first 50 metres but not after that?	
б	MR. BAILEY: Well, the closer you	
7	are as I explained, the closer you are to the	
8	conductors, the higher the field. So if you are	
9	close to a new source, the field will be higher	
10	than it was before that source appeared. But once	
11	you get a certain distance away, the influence of	
12	the new line is less important.	
13	And the profile is dominated, in this	
14	case, on the right side of the figure; it is	
15	dominated by the fields produced by the existing	
16	line.	
17	MR. TOYNE: All right.	
18	Switching topics, you had talked about	
19	some research that was done into childhood	
20	leukemia; there has been some research that's been	
21	done into Alzheimer's. As I understand it, there	
22	is also people who are concerned about the impact	
23	of electric and magnetic fields on fibromyalgia,	
24	chronic fatigue. Are you aware of any research	
25	that's been done as to whether or not there is an	

		Dago 1445
1	impact on people that suffer from those conditions	Fage 1445
2	from electric and magnetic fields?	
3	MR. BAILEY: I don't know of research	
4	that has focused on those particular conditions.	
5	MR. TOYNE: Based on the research that	
6	you are familiar with, is there anything about	
7	electric or magnetic fields that could have an	
8	impact on people that suffer from those	
9	conditions?	
10	MR. BAILEY: I don't have any	
11	particular insight into whether they might or	
12	might not. There is basically no research on that	
13	topic.	
14	MR. TOYNE: All right.	
15	Do you know why there's been no	
16	research done on that topic? It is just a lack of	
17	interest by utilities? Is there a lack of	
18	government funding that's available? Is it	
19	something that's just such a new concern that no	
20	one has thought to start to study it?	
21	MR. BAILEY: I mean, research on	
22	fibromyalgia has been going on for a long time,	
23	and I think it is only recently that people have	
24	speculated that that particular condition might be	
25	related to electric and magnetic fields. But I	

		Daga 1446
1	will point out that there is a very large body of	Fage 1440
2	research in which people who are just sort of	
3	human volunteers, or people who have participated	
4	in studies because they believe that they have	
5	general somatic complaints that might be related	
б	to electromagnetic fields, and they have	
7	participated in research studies, and those	
8	studies have not indicated that when you bring	
9	people with these complaints into the laboratory	
10	and look to see if they can are better able to	
11	detect the presence of fields, or if in fact when	
12	they are exposed to magnetic fields, say, in the	
13	laboratory, and they are not told what they are	
14	exposed to, that their symptoms actually increased	
15	in relationship to the exposure or non-exposure.	
16	So the World Health Organization has	
17	looked extensively into this, and their conclusion	
18	is that while there are people who have complaints	
19	about their health, they can't be traced to	
20	electric and magnetic fields for these general	
21	somatic type of complaints.	
22	MR. TOYNE: All right.	
23	You took us through a number of	
24	different studies and reports, and as I understand	
25	it, the actual literature that's out there is	

		Page 1447
1	considerably broader than what you've specifically	i ugo i i i i
2	referred to. Do you know what is the best way	
3	to phrase this do you know what percentage of	
4	the research that's been done into electric and	
5	magnetic fields is industry-funded, as opposed to	
6	government-funded?	
7	MR. BAILEY: I don't know what	
8	percentage that might be, except that generally,	
9	epidemiology studies are very, very expensive to	
10	undertake, and so by far, most of the epidemiology	
11	studies have been undertaken by governments. And	
12	sometimes they have reached out to electric	
13	utilities to give funding to that government	
14	study, or to have provide them with data that	
15	they need in order to conduct the study.	
16	But epidemiology studies, in	
17	particular, are not very often conducted by or on	
18	behalf of utilities directly. In some laboratory	
19	studies there has been individual studies of cells	
20	and tissues that have been funded by utility	
21	research organizations, but I don't know of any	
22	studies certainly currently, in the last	
23	decades that have been done by utility	
24	personnel on electric or magnetic fields and	
25	health.	

1	MR. TOYNE: All right. So for the	Page 1448
- 2	studios that you've personally been involved in	
2	studies that you ve personally been involved in,	
3	what percentage were industry-funded and what	
4	percentage were government-funded?	
5	MR. BAILEY: In terms of direct	
б	research, I'd say you know, probably	
7	guesstimate 80 per cent funded by utility-related	
8	organizations, research organizations, and 20	
9	per cent government.	
10	MR. TOYNE: If we could return for a	
11	couple of minutes to the licensing-condition line	
12	of questioning that took place before the break.	
13	You made a couple of references that I wanted to	
14	drill down a little bit more.	
15	At one point and I think I got this	
16	down correctly you made reference to a	
17	site-specific detailed measurement protocol. I	
18	don't know if that's a term of art or a term of	
19	science, but in the context of some sort of a	
20	potential licensing condition that might be	
21	imposed on Hydro as a result of this current	
22	process, can you provide a little bit more detail	
23	about what you meant about that site-specific	
24	detailed measurement protocol?	
25	MR. BAILEY: Sure. If you are going	

		Page 1440
1	to go out and take measurements of electric or	Tage 1443
2	magnetic fields, you want to be able to compare	
3	them across a variety of conditions. So it is not	
4	helpful if one person goes out and takes	
5	measurements, and all their measurements are taken	
6	by placing the meter on the ground, and somebody	
7	else goes out and take measurements and has the	
8	meter on a pole that's five feet high, and	
9	somebody else takes them at waist height.	
10	So the IEEE and the IEC protocols call	
11	for the measurements to be taken at a standard	
12	height of 1 metre above ground, and that they be	
13	done with a calibrated meter that is not	
14	susceptible to interference, that you record the	
15	time, the temperature of the measurements,	
16	et cetera, et cetera, et cetera, like this, so	
17	that whenever measurements are taken, you have the	
18	documentation to understand what they what	
19	circumstances they were taken under and how	
20	appropriate it may be to compare those two	
21	measurements at some other site.	
22	MR. TOYNE: Now, earlier you had	
23	already said that the hypothetical I think you	
24	gave was taking a single measurement on a Friday	
25	afternoon at 4:00 o'clock may not be particularly	

		Page 1450
1	useful, because if you take another measurement a	r ugo r ioo
2	week, a month, or a number of months later, the	
3	measurement may change.	
4	To be able to get data that be would	
5	useful, how many different measurements would need	
б	to be taken in compliance with those two protocols	
7	that you just talked about? Are we talking ten	
8	samples, 100 samples?	
9	MR. BAILEY: Again, it depends on what	
10	the purpose of the measurement protocol is. The	
11	typical way that measurements are taken pre or	
12	post construction would be to pick a location	
13	where it would be possible to obtain good-quality	
14	measurements. And generally that is a location	
15	where the ground is flat, that there is not a body	
16	of water there to interfere with access.	
17	Where it is it is very difficult to	
18	take accurate electric field measurements where	
19	there are any tall trees or shrubs around. So if	
20	you were interested in electric fields, you would	
21	pick a site where that otherwise you would	
22	measure almost no electric field, because it would	
23	be blocked by the vegetation.	
24	And you would then start on one side	
25	of the right-of-way and perpendicular to the	

1451

		Dogo
1	line, you would take measurements along that	Page
2	transect, generally with a recording magnetic	
3	field meter attached to a wheel, and you would	
4	collect those measurements. And then you would	
5	have the utility provide you with what was the	
6	load at the time that you took those measurements,	
7	so you would know what that loading was. And then	
8	you could compare what you measured with what you	
9	had calculated for that particular site for a	
10	certain loading.	
11	The difficulty is and you can show	
12	that in cases where we've done this, that there is	
13	a very good agreement between what was measured	
14	and what was calculated. The difficulty is, if	
15	you go even to another site on the same portion of	
16	the route, it could be that there are differences	
17	in the height of the conductors above the ground,	
18	due to change in terrain and so on. And so the	
19	conductors may be closer or further away from the	
20	ground at that location than where you took your	
21	first measurements, so you would have to do that	
22	whole thing again, because the differences between	
23	those two measurement sites may be just due to the	
24	differences in the height of the line at that	
25	location.	

		Page 1452
1	MR. TOYNE: And you've talked about	Tuge 1402
2	some of your colleagues that have been involved in	
3	these types of measurement protocols; what	
4	utilities were they doing that work for? Do you	
5	know?	
6	MR. BAILEY: It is a variety of	
7	utilities that have done this. For instance, in	
8	the state of Connecticut, it is on some	
9	projects, the Siting Council has requested	
10	<pre>post-construction monitoring not every project;</pre>	
11	some projects they have, and other projects they	
12	haven't.	
13	MR. TOYNE: And in your view, is doing	
14	some of that measuring prior to construction	
15	important, so that when you do the	
16	post-construction monitoring, you've got something	
17	to compare it to?	
18	MR. BAILEY: Those generally,	
19	pre-construction monitoring is not done. The	
20	orders that I have seen almost entirely relate to	
21	post-construction monitoring.	
22	MR. TOYNE: And do you have any sense	
23	as to the cost involved in doing that sort of	
24	monitoring, post-construction monitoring?	
25	MR. BAILEY: What?	
		Daga
----	--	------
1	MR. TOYNE: Do you have any sense as	Page
2	to the cost of doing that type of	
3	post-construction monitoring?	
4	MR. BAILEY: It depends upon basically	
5	how many different sections of the line there are.	
6	If you have a 100-mile line, and the load is	
7	constant, there are no intervening substations,	
8	there is no adjacent lines, you just have a bare	
9	transmission line, you could take one measurement	
10	alone that right-of-way, and it would describe the	
11	entire 100-mile line.	
12	The difficulty is that for many	
13	projects, you will have multiple lines that are	
14	entering and leaving the right-of-way, and so you	
15	would have to do measurements and comparisons for	
16	each one of those sections. And so that's where	
17	it gets complicated. And it is a considerable	
18	undertaking. We are talking about, depending upon	
19	the number of sections, you know, tens of	
20	thousands of dollars.	
21	MR. TOYNE: And the personnel that	
22	would be involved in taking the measurements for	
23	this type of monitoring, do they require special	
24	training, or special other than the actual	
25	measurement tools, any special equipment?	

		Dago 1454
1	MR. BAILEY: They need high-quality	Page 1454
2	measurement equipment. And in all the cases,	
3	these are done by trained licensed electrical	
4	engineers.	
5	MR. TOYNE: And do you have any sense	
6	as to how long it takes to get these initial	
7	measurements in the post-construction monitoring?	
8	MR. BAILEY: Do you mean how long	
9	after the line is constructed would these	
10	measurements be taken?	
11	MR. TOYNE: No, sorry. When the	
12	question came out, it sounded awkward.	
13	To take the measurements that need to	
14	be taken to assess what the EMF readings would be	
15	in a particular site along the line, how long does	
16	that actually take to do? The hypothetical you	
17	used was a line that was 100 miles long; is this a	
18	two-day project? Is this a two-week project,	
19	two-month project, two-year project? Like, how	
20	long does this type of monitoring take? At least	
21	at the outset.	
22	MR. BAILEY: At each particular site,	
23	it might take depending on the complexity of	
24	particularly whether you are taking both electric	
25	and magnetic field measurements, with setup time	

		Page 1455
1	and everything, it may be half a day per site.	Tage 1400
2	And so this would depending upon the number of	
3	sites that were selected for measurement, it could	
4	go on for some days.	
5	MR. TOYNE: You had also talked about	
6	issues of and I apologize again for the	
7	technical awkwardness.	
8	If the line goes into corona, there	
9	might be radio and TV interference. Leaving aside	
10	the fact that I'm not entirely sure exactly what	
11	you are talking about, are there steps that can be	
12	taken, if there are complaints raised about that,	
13	to address those concerns, if they aren't, say,	
14	the result of broken equipment?	
15	So, for example, if a landowner starts	
16	to experience issues with cell phone reception,	
17	WiFi, radio, TV, and there is no issues with the	
18	actual equipment that Hydro has nearby in the	
19	right-of-way, are there steps that can be taken to	
20	address those concerns, say, to minimize any	
21	interference that might be going on?	
22	Does that make sense?	
23	MR. BAILEY: It would depend very much	
24	upon what the nature of the complaint, or what was	
25	experienced by a person, as to how it would be	

		Dago 1/56
1	addressed. In my experience, utilities are more	Fage 1450
2	than willing to work with landowners to try and	
3	identify the sources of problems, and to determine	
4	if that problem is deriving from some utility	
5	infrastructure or something else.	
б	MR. TOYNE: All right. So it looks	
7	like I'm starting to run out of time, so I will	
8	jump to the last couple of minutes of my	
9	questioning.	
10	So, sir, we recently received an	
11	updated CV from you, along with a letter from a	
12	fellow named Roberto Levi at the Weill Cornell	
13	Medical College. And I'm wondering if you could	
14	just explain to us how it is that you came to be	
15	claiming that you were a visiting scientist at	
16	Cornell for the past number of years, when in fact	
17	you weren't?	
18	MR. BAILEY: I was appointed as a	
19	visiting scientist at the department of	
20	pharmacology at the medical school in 1986, and	
21	have been available for consultation to Dr. Levi	
22	and several of his colleagues over the years.	
23	And recently, when the question was	
24	raised about whether I had an appointment or not,	
25	because these type of appointments are not always	

		Dogo 1457
1	published on the university website, I contacted	Page 1457
2	Dr. Levi to obtain the certification of my	
3	appointment. And what we were told was that I had	
4	been sent a letter in 2012 to my old address,	
5	saying that my name had been taken off the	
6	appointment rolls. And this was news to both	
7	Dr. Levi and myself, because I never received a	
8	letter, and he had not received a letter.	
9	And so when I discovered this, I	
10	amended my CV and provided this information. But	
11	I had no idea that this appointment had not been	
12	continued. And it didn't interfere with you	
13	know, my availability for consultation to Dr. Levi	
14	and the department.	
15	MR. TOYNE: Do you know why you were	
16	removed from the visiting scientist roster?	
17	MR. BAILEY: I have no idea. There	
18	was no explanation given.	
19	MR. TOYNE: And it is there is a	
20	reference to your old address in New York. When	
21	had you left that particular address?	
22	MR. BAILEY: In 2009.	
23	MR. TOYNE: All right. And was there	
24	any sort of a renewal process that you had to go	
25	through to maintain your registration as a	

		Page 1458
1	visiting scientist at Cornell?	i ugo i ioo
2	MR. BAILEY: Not that I was aware of.	
3	MR. TOYNE: So you were appointed in	
4	1986, and there was no paperwork that was required	
5	to maintain that appointment thereafter?	
6	MR. BAILEY: I was not asked for	
7	anything after that.	
8	MR. TOYNE: That wasn't quite the	
9	question that I'd asked. So your removal as a	
10	visiting scientist from the roster, did that have	
11	any impact on your ability to carry out whatever	
12	you were doing when you were actually at Cornell?	
13	MR. BAILEY: Actually I had until	
14	very recently, I had no idea that I wasn't on the	
15	roster.	
16	MR. TOYNE: So from 2012 until this	
17	letter, how often would you actually be at	
18	Cornell, doing visiting-scientist-type activities?	
19	MR. BAILEY: The nature of the	
20	consultation that I did to Dr. Levi wasn't	
21	didn't require my personal appearance at the	
22	laboratory. It was the nature of when questions	
23	arose, people would call me and ask for advice.	
24	Or if I found things that were potentially	
25	important and useful to their research, I would	

		Page 1459
1	contact them and discuss that with them.	1 age 1400
2	So it was a very informal kind of	
3	consultation. It didn't require that I actually	
4	go to the laboratory at all after I left New York.	
5	MR. TOYNE: All right. What sort of	
6	activities were you involved in from 2012 until	
7	recently in your capacity as a visiting scientist	
8	at Cornell?	
9	MR. BAILEY: It was similar to what I	
10	just described.	
11	MR. TOYNE: All right. So in 2012,	
12	did you actually do anything that could be	
13	considered as being within the role of a visiting	
14	scientist at Cornell?	
15	MR. BAILEY: I don't have going	
16	back to that time, I don't have a specific	
17	recollection year by year as to what I was called	
18	upon to answer to, or information that I provided	
19	to them.	
20	As I said, this is kind of an ad hoc	
21	arrangement for their for them to have me	
22	available to address issues as they came up.	
23	MR. TOYNE: So more of an ad hoc	
24	consultant?	
25	MR. BAILEY: Correct.	

		Page 1460
1	MR. TOYNE: Okay. That certainly	Fage 1400
2	doesn't sound quite as important as "visiting	
3	scientist", does it?	
4	MR. BAILEY: Well, I think it	
5	accurately describes what I was doing when I	
6	was I mean, there could be a visiting scientist	
7	where you are in the laboratory, and I have been a	
8	visiting scientist at other laboratories where	
9	I've actually been in the laboratory, working	
10	alongside of people in the laboratory. In this	
11	case, my role was more ad hoc consultation.	
12	MR. TOYNE: Is there a difference	
13	between visiting scientist and visiting fellow?	
14	Because the CV that we were originally provided	
15	with also refers to you being a visiting fellow.	
16	MR. BAILEY: I think my	
17	recollection is I noticed that difference when	
18	I looked at my CV again, but I think it may be	
19	that the terminology that the university used has	
20	changed over the years, and that what was visiting	
21	scientist has also been called visiting fellow.	
22	But that's that's all I know about	
23	that. The terminology of their positions is not	
24	something that has really been a focus of my	
25	interest.	

	Page 1461
1	MR. TOYNE: But you can appreciate why
2	others might be concerned about what the
3	terminology means, and the accuracy of your
4	résumé?
5	MR. BAILEY: It is fair for people to
6	ask questions.
7	MR. TOYNE: Have you taken any steps
8	to get back on that ad hoc consultant roster?
9	MR. BAILEY: It is not I mean,
10	Dr. Levi is investigating to find out why that
11	letter was sent in 2012. But it is in some
12	ways, it is kind of a moot point, because he is in
13	the process of retiring, and his laboratory will
14	be closing in a few months. So I don't know
15	whether that kind of consultation will be
16	important going forward, after his lab closes.
17	MR. TOYNE: All right. Now, if I
18	suggested to you that this wasn't an error, and
19	that you were intentionally trying to deceive this
20	Commission, how would you respond?
21	MR. BAILEY: That's false.
22	MR. TOYNE: All right.
23	No further questions, Mr. Chair.
24	THE CHAIRMAN: Thank you.
25	I take it that the Consumers' well,

		Page 1/62
1	just going back to my list here, the Consumers'	Tage 1402
2	Association of Canada then would be next.	
3	Ms. Pastora Sala.	
4	MS. PASTORA SALA: Thank you,	
5	Mr. Chair. CAC Manitoba would like to thank	
6	Dr. Bailey for his presentations.	
7	We have no questions for this	
8	presenter, Mr. Chair.	
9	THE CHAIRMAN: Thank you for that	
10	extremely concise question period.	
11	MR. BEDDOME: Mr. Chair, we are in the	
12	same position, if you want. James Beddome, for	
13	the monitor.	
14	The Southern Chiefs' Organization also	
15	has no questions for this witness at this time.	
16	THE CHAIRMAN: Thank you.	
17	That brings us to Peguis First Nation.	
18	Mr. Valdron.	
19	MR. VALDRON: Yes. Valdron for	
20	Peguis, for the record.	
21	We have no questions on this. Isn't	
22	that a shock?	
23	THE CHAIRMAN: Was that intentional,	
24	the shock part, or thank you. All right.	
25	Ms. Strachan from Manitoba Metis Federation.	

		Dece 1400
1	MS. STRACHAN: I also have no	Page 1463
2	questions for this panelist. Thank you.	
3	THE CHAIRMAN: Thank you.	
4	I think that then Manitoba	
5	Wildlands is not present, I take it, so that	
6	brings us to the end of the time is 4:10. So	
7	we do have some possibility of starting the next	
8	presentation.	
9	Is Manitoba Hydro in a position to do	
10	that? Or would you like us to start earlier,	
11	although that let me just ask the secretary.	
12	That would be quite a bit earlier.	
13	Would that work?	
14	MS. MAYOR: So Manitoba Hydro's	
15	socio-economic panel is available.	
16	THE CHAIRMAN: All right. Given that	
17	Hydro has the people available, we will start now.	
18	MS. MAYOR: We might need a few	
19	moments to get them all here.	
20	THE CHAIRMAN: All right. Stretch	
21	your legs for five minutes; no more than five,	
22	though. We will start at 4:15.	
23	Is that acceptable, Hydro?	
24	MS. MAYOR: Yes. Thank you.	
25	(Brief Recess)	

		Page 1464
1	THE CHAIRMAN: Are we just about	
2	ready, or do you need a few more minutes?	
3	MS. BRATLAND: Give us two minutes to	
4	set up.	
5	THE CHAIRMAN: Okay. Two more	
6	minutes.	
7	MS. BRATLAND: Good afternoon, and	
8	thank you for your patience while we get sorted	
9	out up here. We are a bit of a larger panel,	
10	trying to find space for everyone.	
11	Ms. Johnson, you wanted to do the	
12	swearing in before we begin our presentations?	
13	MS. JOHNSON: Yes, please.	
14	Could you all state your names for the	
15	record.	
16	MR. AMUNDSON: My name is Leslie Butch	
17	Amundson.	
18	MR. McLEOD: My name is Kenneth David	
19	McLeod.	
20	MR. WHETTER: My name is David	
21	Whetter.	
22	MR. BOHLKEN: My name is Frank	
23	Bohlken.	
24	MR. LEECE: My name is Bryan Leece.	
25	MS. JOHNSON: Ms. Bratland had been	

		Dage
1	previously sworn in.	Faye
2	(Socioeconomic Panel Sworn)	
3	THE CHAIRMAN: All right. So that's	
4	it. Everyone is sworn in and so we will start	
5	with the presentation on the socio-economic side	
6	of things.	
7	We will go until five o'clock and then	
8	take a dinner break, unless just before that or	
9	just after that and I will leave that up to	
10	your judgment there is a more logical break.	
11	MS. BRATLAND: There will be a logical	
12	break after the presentation on land and resource	
13	use. I will give a short introductory	
14	presentation, and then Mr. Bohlken will do a	
15	presentation, and that will be a good time to	
16	break before completing the rest of the	
17	presentations.	
18	MS. BRATLAND: Good afternoon again,	
19	everyone, Commission, participants, and members of	
20	the public. My name is Maggie Bratland. I'm a	
21	senior environmental specialist in licensing and	
22	environmental assessment at Manitoba Hydro.	
23	Today we will be providing an overview	
24	of the socio-economic components of the	
25	environmental impact statement and assessment. I	

1	will first introduce the panel members to you, and
2	their role in these presentations and the EIS, and
3	then I will be giving you a brief introductory
4	presentation in terms of what we will be covering
5	with this panel today.
б	To my I'm going to ask them to
7	raise their hand.
8	Mr. Frank Bohlken is a senior
9	socio-economic practitioner with Stantec. He led
10	the Stantec team in developing the EIS chapters as
11	they relate to the socio-economic assessment.
12	Dr. Bryan Leece. Dr. Leece has a PhD
13	in biochemistry from the University of Guelph and
14	has 30 years' experience in human health risk
15	assessment. Dr. Leece is a senior toxicologist at
16	Stantec, and is the discipline lead for the human
17	health risk assessment component for the MMTP EIS.
18	Mr. David Whetter. Mr. Whetter
19	conducted the agricultural effects assessment for
20	the EIS. He is a professional agrologist and has
21	16 years' experience studying and assessing the
22	interactions between agriculture and the
23	environment.
24	Mr. McLeod is a Stantec associate and
25	senior archeologist, with over 40 years of

Volume 6

		Dago
1	heritage resource experience. He was heritage	raye
2	discipline lead for MMTP, and drafted chapter 12	
3	of the EIS as well as the heritage resources	
4	technical data report.	
5	Mr. Amundson is also a professional	
6	archeologist, with 37 years' experience. He has	
7	also contributed to chapter 12 of the EIS.	
8	In terms of an outline for the	
9	presentations that will be provided by the panel	
10	this afternoon and this evening, I'm already	
11	providing the introduction. We will then have	
12	Mr. Bohlken present on land and resource use.	
13	Mr. Whetter will present on the agriculture	
14	assessment. Then Mr. Bohlken will again present	
15	on visual quality. Dr. Leece will present on	
16	human health. Mr. Bohlken will present on	
17	community health. And Mr. McLeod and Mr. Amundson	
18	will present on heritage.	
19	These presentations will represent a	
20	number of the valued components that were studied	
21	as part of the socio-economic assessment on this	
22	project.	
23	I will first pause and highlight some	
24	of the socio-economic context for the region,	
25	before we get into the specific presentations.	

		Dama 4400
1	This map is taken from the EIS. It	Page 1468
2	comes from the wildlife wildlife TDR, and is	
3	Map 1-3, for those of you that are interested. It	
4	presents the land cover in the project area.	
5	And as we've already heard today, in	
б	the methods presentation, the landscape of	
7	southeastern Manitoba has changed considerably	
8	over the years. The blue line, which is tricky to	
9	make out on this, represents the final preferred	
10	route. The final preferred route and the	
11	assessment of this route is what we will be	
12	discussing today.	
13	The project makes use of 92 kilometres	
14	of existing corridor around the City of Winnipeg	
15	to approximately Anola I'm terrible with this	
16	pointer and it occurs in an area that saw	
17	historic settlement after Lake Agassiz receded and	
18	indigenous peoples moved into the area, following	
19	raised and sandy ridges that have become	
20	modern-day trails.	
21	Since that time, agricultural and	
22	residential development, which is highlighted by	
23	this more beige colour here, has progressed, and	
24	now agriculture is a predominant land use in the	
25	western portion of the study area, with mining,	

		Page 1/60
1	forestry and ongoing use of the area for cultural,	Fage 1409
2	traditional, and contemporary purposes by First	
3	Nations and Metis people.	
4	Through each of the presentations that	
5	follow on each of the valued components, we will	
6	be highlighting a number of key points, and they	
7	will be highlighted at the top of the slides here,	
8	to help you follow along.	
9	Each presenter today will highlight	
10	engagement feedback that has informed the	
11	assessment. Feedback received through the public	
12	and First Nations and Metis engagement processes	
13	informed the selection and scope of valued	
14	components, as our earlier presenters noted, which	
15	the EIS is focused on.	
16	We also had feedback on regional and	
17	site-specific concerns that was used by the	
18	assessment team in their evaluation, and this will	
19	be highlighted.	
20	Each specie chapter highlights lessons	
21	learned. A few broad lessons learned include the	
22	importance of considering individuals as well as	
23	broader issues. While the assessment makes	
24	conclusions on the overall project effect,	
25	Manitoba Hydro carefully considered individuals	

		Dogo 1470
1	and the effects of the project on individual	Fage 1470
2	landowners and land users, and continues ongoing	
3	discussions to develop mitigation and protection	
4	measures.	
5	We heard about planned and ongoing	
6	land uses and the importance of considering these	
7	in route evaluation and assessment, and we also	
8	supplemented the literature and data with	
9	Manitoba-based research through both the Prairie	
10	Research Associates report on property value and	
11	farming around towers, as well as through the	
12	self-directed traditional knowledge studies.	
13	As noted earlier today, on the methods	
14	presentation, there are a number of assessment	
15	areas that we will be referring to today. For	
16	each valued component assessment, area was defined	
17	that is VC-specific. In each presentation, the	
18	presenters will highlight to you how these areas	
19	vary and how they were determined.	
20	But for everyone, the PDA refers to	
21	the project development area. The project	
22	development area is the footprint of the towers on	
23	the FPR, and the stations for the project. The	
24	LAA is the local assessment area, which is usually	
25	a wider band on either side, and then the RAA is	

		Page 1/71
1	the regional assessment area, which has relevance	Faye 1471
2	for cumulative effects assessment.	
3	The presenters will also highlight	
4	routing considerations that affect their	
5	assessment. Routing has been covered in detail,	
6	but I will just highlight a few of the key areas	
7	that we've talked about already.	
8	The socio-economic environment was	
9	considered throughout transmission line routing.	
10	This included the use of existing corridors, that	
11	helps us to avoid the introduction of new	
12	right-of-way in agricultural and residential areas	
13	near the City of Winnipeg; included the	
14	consideration, in areas of least preference, and	
15	consideration of built components in evaluation	
16	criteria, both the alternate route evaluation	
17	model and preference determination steps.	
18	As a result of the FPR selected, there	
19	was avoidance of some features of importance in	
20	terms of the socio-economic environment. These	
21	will be discussed by each presenter.	
22	Presenters will highlight specific	
23	methods relative to their assessment. I wanted to	
24	cover the general broad methods that are relevant	
25	to all.	

		Page 1472
1	Desktop review and literature searches	Tage 1472
2	were conducted. Field studies were conducted.	
3	Simulations, modeling, and analysis, supplemented	
4	by key person interviews as well as the	
5	consideration of engagement feedback.	
6	You heard yesterday, I believe, a	
7	little more about specific mitigation measures	
8	relevant to the project. Each presenter will	
9	highlight mitigation measures that were key to	
10	their assessment in the valued components that	
11	they considered.	
12	A number of those mitigation measures	
13	are worth noting at a high level. In particular,	
14	design considerations are important, including	
15	routing, tower type and placement, which continue	
16	to be a way to limit potential effects on the	
17	project.	
18	Existing access will be used as much	
19	as possible, and an access management plan will be	
20	followed.	
21	You will hear further today about the	
22	cultural and heritage resource protection plan for	
23	the project, and how that applies.	
24	We've also highlighted our biosecurity	
25	program for the project, that will be discussed	

	P	age 1473
1	further today, in the context of potential effects	
2	on agricultural operations. And we also heard	
3	about the landowner compensation program.	
4	Next up, we are going to have the	
5	presentations on the specific valued components	
6	that we will cover today. In the interest of	
7	time, we will not be covering every valued	
8	component covered in the environmental impact	
9	statement in our presentations. We will not be	
10	covering infrastructure and services, and	
11	employment and economy. But I do want to point	
12	out that we are absolutely available for questions	
13	or for further clarifications on those topics.	
14	And finally a bit of a roadmap. Each	
15	of our VC presentations will follow this roadmap.	
16	You first saw it in the methodology presentation.	
17	They will begin with an overview, highlight what	
18	they heard, what was assessed, key findings,	
19	discuss mitigation monitoring and followup, and	
20	present conclusions.	
21	So without further ado, we will get	
22	into our first valued component presentation.	
23	Give us a moment while we switch out	
24	the slides.	
25	MR. BOHLKEN: Thank you, Maggie.	

	Page 1474
1	Good afternoon, Commission, ladies and
2	gentlemen. My name is Frank Bohlken, and I work
3	with Stantec, where I'm a socio-economic
4	practitioner.
5	On this project, I was involved in
б	scoping and study design. I oversaw the research
7	and writing on socio-economic components, as well
8	as provided technical review and guidance on the
9	various valued components that I will be talking
10	about today.
11	So we are going to start with looking
12	at the spatial scope of the assessment for land
13	and resource use. The local assessment area was
14	an area of a one-kilometre buffer along the
15	transmission line right-of-way.
16	While the regional assessment area
17	consisted of the eleven communities eleven
18	rural communities, rather that the transmission
19	line would cross, as well as the Rural
20	Municipality of South Cypress, where the Glenboro
21	Station is located.
22	So why are land and resource uses
23	considered? Well, why was it selected as a valued
24	component? Well, because of the potential for the
25	project to affect a variety of land and resource

		Page 1475
1	uses, including private property, rural	Tage 1470
2	communities, parks, and protected areas, as well	
3	as commercial and non-commercial land uses.	
4	The EIS addresses potential effects on	
5	private property, protected areas, recreation, and	
б	non-commission land uses. Private property is a	
7	subcomponent, because use and enjoyment and	
8	development potential could be affected by product	
9	activities, including disturbances, land take-up,	
10	and change in esthetics.	
11	Designated lands and protected areas	
12	and recreation are important for conservation	
13	objectives, natural heritage values, as well as	
14	for use and enjoyment by residents and tourists.	
15	Commercial land uses are important for	
16	their economic contribution, and in the case of	
17	forestry, hunting, and trapping, are sustainable	
18	resources.	
19	Mr. Whetter will be discussing	
20	agriculture at a later presentation.	
21	Groundwater is used for potable water,	
22	as well as for agricultural purposes.	
23	From previous transmission line	
24	projects, Manitoba Hydro understands the	
25	importance of conducting a multi-stage route	

Γ

		Dogo 1/76
1	selection process, coupled with public, First	Fage 1470
2	Nations and Metis engagement. The route selection	
3	process considered qualitative and quantitative	
4	factors, including a number of land and resource	
5	use metrics, and the final route selected offered	
6	a balance of land use considerations. Effects	
7	addressed in the land and resource use sections	
8	from previous environmental assessments helped	
9	inform selection of potential effects addressed	
10	within the MMTP EIS.	
11	Previous projects also informed the	
12	selection of mitigation measures applied to avoid	
13	or reduce effects on lands and resource use. For	
14	example, access management was identified as an	
15	issue of concern for Bipole III and Keeyask.	
16	As presented earlier at this hearing,	
17	Manitoba Hydro conducted comprehensive engagement	
18	with First Nations, Metis, and general public.	
19	Key concerns with respect to land and resource use	
20	identified during engagement included use of	
21	unoccupied Crown land; proximity of transmission	
22	lines to homes and communities; effects on land	
23	development potential; proximity to recreation use	
24	areas; potential disruption of forestry, mining,	
25	trapping, and hunting; effects related to	

		Dawa 4 477
1	increased access, as well as potential risks to	Page 14/7
2	groundwater quality.	
3	Concerns were addressed either through	
4	the route selection process, which tried to limit	
5	overall land use effects, as well as through the	
6	incorporation of the issues as effects addressed	
7	in this section.	
8	Land use was considered in a number of	
9	ways during the route selection process. Areas of	
10	least preference, such as protected areas, First	
11	Nations reserves, Treaty land entitlements, and	
12	buildings, were considered during routing.	
13	Land use route metrics were factored	
14	into the built environment routing criteria, and	
15	used to compare route choices. Based on the	
16	feedback from engagement, new route segments were	
17	identified that avoided or limited potential	
18	effects on one or more land use values. Some	
19	examples will be shown.	
20	The final preferred route provides a	
21	tradeoff between potential effects on undeveloped	
22	and developed lands.	
23	So we are going to provide some	
24	examples in the second here we go. Okay.	
25	So in this first example, Segment 341	

Page 1478 was developed to avoid boxed in homes, and would 1 2 reduce effects on a core in the Rural Municipality 3 of Tache. The next one, Figure 2, a new segment 4 was developed and accepted that equalized distance 5 between the Ridgeland Cemetery and Lone Sand Lake, 6 7 in the Rural Municipality of Stuartburn, so it's 8 balancing socio-economic and biophysical concerns. Next, Segment 353 was created to avoid 9 a 43-lot subdivision under development west of 10 11 Richer. This was -- okay, the next one, please. 12 Segment 450 considered a balance of issues, including residences, visual quality, and 13 other infrastructure, including the rail and 14 15 aqueduct. 16 Next, after Round 3 of public engagement, Segment 479 was created, and later 17 modified to provide greater distance from the 18 Quintro Road residences in La Broquerie. 19 And finally, Segments 409, 470 to 471, 20 21 and 468, was selected to avoid livestock options and private recreation, also in the Rural 22 Municipality of La Broquerie. 23 24 These are just some examples of how routing was used, specific examples of how the 25

Volume 6

		Dawa 4 470
1	route selection process addressed some land use	Page 1479
2	effects.	
3	Potential effects on land and resource	
4	issues that were addressed in the EIS were private	
5	property, including development potential,	
6	designated parks and protected areas, recreation	
7	areas, hunting and trapping, mining and	
8	aggregates, forestry, and groundwater.	
9	Primary and secondary data sources	
10	were used to describe land and resource use	
11	existing conditions. Primary research included	
12	key person interviews with recreation	
13	organizations, a windshield survey to identify	
14	private buildings, helicopter survey with respect	
15	to forested areas.	
16	Geospatial data from Manitoba	
17	Sustainable Development was plotted, using GIS	
18	software, to determine the spatial distribution,	
19	nature, and intensity of overlapping land uses.	
20	By using GIS overlay mapping, interactions of the	
21	project on other land uses were quantified.	
22	Generally, this included the number of	
23	interactions and/or areas of spatial overlap. A	
24	forest damage appraisal and evaluation was	
25	undertaken to quantify the value of commercial	

		Page 1/80
1	forests that would be affected by the project.	Tage 1400
2	So we are just going to move into some	
3	of our key issues.	
4	The new right-of-way would cross	
5	254 land parcels in respect to 126 landowners.	
6	There would be one dwelling in the PDA and eleven	
7	residences within 100 metres of the right-of-way.	
8	There would be some temporary noise and dust	
9	disturbances to nearby residents during	
10	construction, but limited audible noise during	
11	operations.	
12	The project would reduce development	
13	potential could potentially reduce development	
14	potential due to the fragmentation of lots. A	
15	transmission line could also reduce interest in	
16	wanting to buy a lot or build residences nearby,	
17	thus lowering the development potential of nearby	
18	lands.	
19	Outside of urban centres or settlement	
20	areas, most of land in the RAA is designated as	
21	general agriculture, agriculture limited, or rural	
22	areas under individual development plans. There	
23	is limited opportunity under these plans for	
24	intensive non-agricultural development in lands	
25	designated as general agriculture and other	

		Page 1481
1	agricultural designations. However, there are	Fage 1401
2	small pockets of land within the RAA with rural	
3	designations for which residential, commercial,	
4	and industrial development is possible.	
5	Several existing and potential	
6	residential developments were avoided during route	
7	development; for example, near Richer, and Rural	
8	Municipality of Tache.	
9	The final preferred route would affect	
10	19 lots or parcels with low development potential	
11	and 8 lots or parcels with high development	
12	potential.	
13	The right-of-way will not affect	
14	existing protected areas, ecological reserves, or	
15	wildlife management areas.	
16	While the PDA crosses the Duff Roblin	
17	Provincial Heritage Park, Manitoba Hydro has an	
18	arrangement with the Province for access to this	
19	location that predates the creation of that park.	
20	No other parks are transected by the project. The	
21	proposed route would also not cross any	
22	campgrounds, resort areas, or cottages. However,	
23	there would be three golf courses that are located	
24	near the line.	
25	Change of access could result in new	

		Page 1482
1	recreation opportunities, but this can also be	Tage 1402
2	reviewed as an adverse effect, considering that	
3	for some, increase in access could result in	
4	competition, for example, for certain resources.	
5	Much of Southern Manitoba is contained	
6	within open trapping areas and game hunting areas.	
7	Disturbances to these areas will be temporary	
8	during project construction, and hunting and	
9	trapping can continue, for the most part, during	
10	operations. Right-of-way construction will	
11	disturb approximately 0.4 per cent of game hunting	
12	areas and open trapping areas in the RAA.	
13	As I just mentioned, however, change	
14	of access could lead to some concerns over	
15	resource competition, but those would be managed	
16	by an access management plan.	
17	The PDA overlaps 15 private corridor	
18	withdrawal permits, totalling 62 hectares, plus	
19	8 municipal aggregate resource areas. This is	
20	approximately 0.3 per cent of the area of	
21	mining area dispositions, rather in the RAA.	
22	As I mentioned earlier, a	
23	high-potential aggregate resource deposit in the	
24	Rural Municipality of Tache was avoided through	
25	route adjustment.	

		Page 1483
1	Except at tower locations, and subject	Tage 1400
2	to clearance or setback restrictions, mining	
3	resource use activities will be able to occur	
4	adjacent to or near the PDA throughout the project	
5	operations.	
6	With respect to forestry, clearing and	
7	disturbances will be limited to defined	
8	rights-of-ways and associated access routes.	
9	Compensation will be paid to the Manitoba	
10	Sustainable Development for removal of high-value	
11	timber resources under the forest damage appraisal	
12	evaluation. Compensation will also be available	
13	for re-establishing the shelter belts outside of	
14	right-of-way, where possible.	
15	Less than 0.1 per cent of commercial	
16	forest and annual allowable cut in the RAA would	
17	be affected by the project, and similar	
18	small-magnitude effects on private and municipal	
19	forested areas.	
20	Groundwater resources and wells are	
21	located throughout Southern Manitoba. However,	
22	effects related to potential effects on the	
23	project could be related to, for example,	
24	geotechnical drilling or foundation work for	
25	towers, for example, but these would be avoided by	

		Dogo 1494
1	mitigation measures such as sealing of drilling	Page 1464
2	wells and monitoring of water levels.	
3	The following key mitigation measures	
4	will be applied to avoid or limit effects on lands	
5	and resource uses. As mentioned, avoidance of	
6	effects through routing, limitations of clearing,	
7	using existing roads and access trails to limit	
8	new clearing, application of an access management	
9	plan, the management of project construction	
10	activities and equipment in order to avoid damage	
11	and disturbance to adjacent properties,	
12	structures, and operations.	
13	Mud, dust, and vehicle emissions	
14	managed for public health. Noise and vibration	
15	disturbances limited to daylight hours. As I	
16	mentioned earlier, re-establishment of shelter	
17	belts outside of the right-of-way where possible,	
18	and groundwater management.	
19	Manitoba Hydro continues to engage	
20	with First Nations, Metis, and public, including	
21	sharing information on the project, and topics of	
22	interest.	
23	So in terms of effects, the project	
24	will not affect Provincially protected lands. It	
25	will not affect the function of the Duff Roblin	

		Page 1485
1	Heritage Provincial Park through which it	Tage 1400
2	transects. As I mentioned earlier, Manitoba Hydro	
3	has arranged with the Province to allow access at	
4	this location, which predates the park's	
5	establishment.	
6	There will be limited potential	
7	effects on hunting, trapping, forestry, and	
8	mining, due to the limited area of spatial overlap	
9	with these resources relative to their	
10	availability.	
11	So, in summary, with the application	
12	and mitigation measures, the project will not	
13	disrupt, restrict, or degrade any of the land uses	
14	to a point where they cannot continue at or near	
15	baseline levels, and therefore project effects on	
16	land and resource uses will be not significant.	
17	So, last slide is on cumulative	
18	effects. So as presented in earlier	
19	presentations, a large proportion of the regional	
20	assessment area has already been disturbed by	
21	historic agricultural activity and other	
22	developments. The project will add to the	
23	cumulative effects of past, present, and	
24	reasonably foreseeable projects, including other	
25	transmission lines, roadway construction, gas	

Volume 6

		Dago 1/86
1	pipelines, and residential and agricultural	Fage 1400
2	developments.	
3	Cumulative nuisance effects could	
4	occur if multiple projects are built in the same	
5	area at the same time. Otherwise, most cumulative	
6	effects relate to spatial reduction in the land	
7	base for other activities. The project overlaps	
8	with only a small fraction of lands within the RAA	
9	available for other uses, and will not appreciably	
10	affect the land base available for land and	
11	resource use. Cumulative effects on land and	
12	resource use are considered to be not significant.	
13	Thank you.	
14	MS. BRATLAND: Mr. Chair, that takes	
15	us to ten minutes to five. Our next presentation	
16	is considerably longer, probably close to an hour.	
17	So	
18	THE CHAIRMAN: All right. So you are	
19	saying this is the logical time. Yes.	
20	If I could ask the secretary, do we	
21	have any documents to file now, or will that be	
22	later, or	
23	MS. JOHNSON: We can wait until the	
24	end, because we will be adding on as we go on	
25	tonight.	

		Dama 1407
1	THE CHAIRMAN: Okay.	Page 1487
2	As I mentioned yesterday, this evening	
3	we will hear the public first, assuming a	
4	7:00 o'clock start, so we will hear any members of	
5	the public who wish to speak, first. Following	
6	that, we will continue with the Manitoba Hydro	
7	presentation on the socio-economic context.	
8	And my guess is we won't get through	
9	that, I think, from what I'm hearing about the	
10	number of parts, depending on when we start. So	
11	the questioning is likely to be in the morning.	
12	But we will judge that when we get there.	
13	Anything on the organizational side of	
14	things to add? No? Okay.	
15	So we will see you all back here at	
16	7:00 o'clock. Thank you.	
17	(Recessed at 4:50 p.m. to 7:00 p.m.)	
18	THE CHAIRMAN: All right. Welcome	
19	back, everybody.	
20	A couple of things I want to mention	
21	before we start. First of all, we have Don	
22	Labossiere who has joined our team and is helping	
23	us at the back door. And Cheyenne will be back	
24	tomorrow.	
25	Secondly, we don't at the moment have	

		Page 1488
1	anyone from the public who wants to make a	
2	presentation, so we will continue with the Hydro	
3	panel; but if we get a member of the public who	
4	does want to make a presentation, we will	
5	interrupt.	
6	Okay, so I will turn it back to Hydro.	
7	MR. WHETTER: Thank you. And good	
8	evening, everyone. Hopefully everyone is	
9	refreshed after the dinner break.	
10	I will be, as Ms. Bratland mentioned,	
11	I will be speaking for about 50 minutes on	
12	agriculture.	
13	My name is David Whetter. As	
14	Ms. Bratland mentioned, I'm a professional	
15	agrologist and discipline lead for agriculture on	
16	MMTP. I will be speaking to you tonight about the	
17	agricultural VC under the human environment.	
18	Through the presentation, there will	
19	be content on both screens; in many cases the	
20	content will be the same, so that's by design. In	
21	some cases there will be different information on	
22	the right-hand screen, and I will advise in these	
23	instances, just using supporting graphics and	
24	images and that type of thing.	
25	So, just to start off, why	
		Page 1/80
----	--	-----------
1	agriculture? Agriculture is the predominant land	Fage 1409
2	use in the project area, and represents over half	
3	of the land use in the area the project traverses.	
4	It is an important driver for the economy, from	
5	provincial to local scales, and it is of ultimate	
6	importance to individual producers' livelihoods.	
7	The area of the project is in terms	
8	of agriculture, it is a highly diverse	
9	agricultural landscape, from intensive annual	
10	cropping production in what we consider the prime	
11	agricultural lands in the Red River Valley, around	
12	the City of Winnipeg, to mixed farming areas, as	
13	the line heads south through an	
14	agricultural-to-forested transitional area. The	
15	agricultural landscape also includes areas of	
16	intensive livestock production, particularly	
17	within the new right-of-way.	
18	To understand this variability, we	
19	characterized agricultural options and activities	
20	from regional to local and down to individual	
21	scales. But it is not possible to understand the	
22	intricacies of all individual operations,	
23	considering the varying equipment types and sizes,	
24	and that type of thing.	
25	It is also important to note that in	

		Page 1490
1	terms of these individual operations, we did rely	Tuge 1400
2	on the public engagement program, which led into	
3	our understanding of the agriculture landscape at	
4	that individual operation level.	
5	We understand there will be a residual	
б	effect on agriculture, even following the	
7	implementation of mitigation on the project.	
8	There will be a very small loss of land from	
9	production for the life of the project, but more	
10	importantly, I think, the presence of the tower	
11	structures and conductor lines will interfere with	
12	many agriculture operations and activities on the	
13	landscape.	
14	In acknowledgment of these residual	
15	effects, and to offset them, compensation will be	
16	provided. But as assessors, for us, we really	
17	consider compensation kind of like a last line of	
18	defence, and we sought to lessen the potential	
19	effects of the project through other mitigation	
20	considerations.	
21	Lessons learned were drawn from	
22	Manitoba Hydro's experiences with recent	
23	transmission line projects. We've heard a lot	
24	about Bipole III, but also St. Vital transmission	
25	projects, as well as other linear projects, such	

Page 1491

as pipelines, that the assessment team has gained 1 experience in. 2 3 One of the sentiments coming out the Bipole III was that engagement with agricultural 4 landowners could be improved. For example, there 5 was comment that it didn't occur early enough in 6 7 the project, in the planning phase. And this is 8 an area I believe that was a major improvement, when we look at MMTP, where engagement occurred 9 from planning to routing, and right through the 10 11 assessment phases. And I will delve into that further on the next slide. 12 Biosecurity was raised in Bipole III 13 as another issue that could be improved on in 14 subsequent assessments. But the wide range of 15 agricultural production in the MMTP project area, 16 biosecurity is a concern for both cropping and 17 livestock operations. The MMTP has handled 18 landowner concerns regarding biosecurity better 19 than in the Bipole III project, primarily through 20 21 recognizing the importance of early and ongoing and continuous landowner engagement on this topic. 2.2 The other main agriculture-related 23 24 issues that were raised in Bipole III were tower placement, diagonal crossings, and effects on 25

		Dogo 1402
1	buildings. Given the similarity between MMTP and	Page 1492
2	Bipole III, Manitoba Hydro prioritized these	
3	issues with the aim of improving the way these	
4	issues were handled.	
5	The team sought to proactively	
6	mitigate these issues during the siting of	
7	alternative routes, and throughout the route	
8	selection process. Routing and avoidance included	
9	the decisions, for example, to attempt to place	
10	towers at half-mile lines, as recommended by the	
11	Commission here in Bipole III in 2013, or along	
12	half-mile lines or established roadways as per	
13	subsequent engagement with agricultural landowners	
14	and stakeholders.	
15	Another example is avoiding and	
16	reducing diagonal crossings, or angled-towered	
17	crossings, in cultivated lands.	
18	As was previously presented by	
19	Mr. Joyal and Ms. Coughlin, there were numerous	
20	opportunities for engagement throughout the course	
21	of the project. If you look on the right-hand	
22	screen, I've provided a list of the types of	
23	engagement conducted throughout the project, with	
24	some specifics on agriculture.	
25	Engagement occurred leading up to and	

		Page 1493
1	throughout the assessment process. It included	1 age 1400
2	such engagements as with the public, with industry	
3	and stakeholder groups for example, Manitoba	
4	Aerial Applicators Association, Manitoba	
5	Agriculture, and other producer representative	
6	groups. Also included individual producers, First	
7	Nation, and Metis.	
8	As part of the assessment process for	
9	potential effects to agriculture, we conducted key	
10	person interviews with producer representative	
11	groups. We used these to better define and	
12	understand potential effects of the project on the	
13	traversed agricultural landscape.	
14	So, what did we hear: So if you look	
15	back on the left-hand screen, you will see a list	
16	of key issues we heard about	
17	We heard about the loss and	
18	degradation of land due to construction	
19	activities, as well as the presence of the project	
20	on the landscape.	
21	We heard a lot about the interference,	
22	conflict, and nuisance related to the project	
23	presence, and all types of equipment types and	
24	different activities.	
25	We heard from the Aerial Applicators	

		Page 1/0/
1	Association around concerns they have, including	Tage 1434
2	potential proximity of the line to airstrips, and	
3	conflict with their pesticide application	
4	activities.	
5	We also heard various concerns around	
6	livestock health. Biosecurity, as mentioned, was	
7	a prominent theme, and it is becoming a more	
8	important issue for both crop and livestock	
9	producers.	
10	So we asked, and we listened, and we	
11	heard, but how did we incorporate that engagement	
12	information into our assessment? I think, right	
13	from the get-go, really supported the	
14	identification and importance of the routing	
15	criteria that was applied, as discussed earlier by	
16	Ms. Bratland. It really helped to find themes and	
17	specific issues of importance on the agricultural	
18	landscape from that stakeholder perspective, those	
19	that are going to be affected.	
20	It supported our team in terms of	
21	scoping the assessment, helped us select our	
22	effects to be considered, as well as the	
23	parameters to be measured. Ultimately, it helped	
24	focus our assessment on the key issues of	
25	importance, again, to the stakeholders, that will	

		D
1	ultimately be affected.	Page 1495
2	I will now discuss	
3	agricultural-related issues that were considered	
4	through the routing phase. I will then move on to	
5	discuss compensation, and then before getting	
6	into the nuts and bolts of the assessment and key	
7	mitigation in terms of further limiting effects.	
8	Engagement helped identify key issues,	
9	as just mentioned, for consideration through the	
10	routing phase. Routing represents a portion of	
11	the planning phase which provides a key	
12	opportunity to avoid or otherwise limit effects to	
13	the agricultural landscape	
14	I will draw your attention to the	
15	right-hand screen for a list of criteria that was	
16	considered in the alternative corridor model and	
17	the alternative route evaluation model. I'm not	
18	going to go through each of these in detail, but I	
19	did want to give you just that sense for the	
20	various numerous and various types of criteria	
21	that were included in those portions of the route	
22	evaluation.	
23	As a reminder, the industry	
24	stakeholders defined the criteria in the alternate	
25	corridor model. Building off that, and based on	

		Dago 1/06
1	some of those key issues we heard about, we	Fage 1490
2	identified agricultural-specific criteria to be	
3	used as part of that built environment	
4	perspective, under the alternative route	
5	evaluation model.	
6	So back to the left-hand screen. As	
7	presented by Mr. Matthewson and Ms. Bratland,	
8	diagonal crossings and paralleling existing linear	
9	features were considered siting principles in	
10	identifying the alternate routes. And diagonal	
11	crossings are an example of a criteria that was	
12	carried forward and used throughout the evaluation	
13	of these alternate routes.	
14	Additionally, we considered the	
15	presence of all types of agricultural operations,	
16	including applying a three-mile buffer around hog	
17	operations, to consider the interaction between	
18	the project and liquid application of manure by	
19	draglines for those operations. And this was a	
20	specific issue raised through public engagement by	
21	that representative group.	
22	We also looked at the capability of	
23	land to support agriculture, as well as the	
24	current type of cropping and associated	
25	productivity on the land base.	

497

		Page
1	Other specific activities related to	i age
2	cropping that potentially interact with the	
3	project included aerial application activities and	
4	known irrigation infrastructure. The overall	
5	effects to agriculture were limited, because these	
6	issues were considered during this phase of the	
7	project.	
8	When it comes to agricultural land	
9	use, it is really a tale of two study areas, and	
10	that's a theme that I will come back to a few	
11	times through the remainder of my slides.	
12	On the left-hand screen, this provides	
13	kind of a conceptual look at how the predominant	
14	crop type changes from the origin of the	
15	transmission line at the Dorsey Station in the	
16	northwest to the border crossing near Piney in the	
17	southeast.	
18	The existing corridor portion of the	
19	project is predominantly under annual crop	
20	production. On the other hand, in the new	
21	right-of-way, we get into an area that really is	
22	best represented as a transitional area, and best	
23	characterized as mixed farming, with a range of	
24	production from annual cropland to perennial	
25	cropland or hay land, and improved pasture, as	

		Dogo 1409
1	well as unimproved range and grassland.	Page 1498
2	On the right-hand screen, you will see	
3	a map there. This is the crop type distribution	
4	throughout the project area, presented in a	
5	spatial map manner. So I put a red arrow where	
6	the existing corridor turns to the new	
7	right-of-way and heads south.	
8	And if you look at everything to the	
9	left of that, that red arrow, in the existing	
10	corridor and it is in kind of a peachy colour	
11	on the screen there that's the area that's	
12	really predominantly annual cropland. And all the	
13	agricultural land use to the right of the arrow,	
14	and to the south, in the new right-of-way, is	
15	you can see the colours aren't coming through	
16	too great here, but you can see more variability	
17	in the land-cover classes, or the crop types, in	
18	this case.	
19	So agricultural land use is more	
20	variable. And there is also a substantive portion	
21	of non-agricultural land use in the lighter	
22	colour.	
23	So why is this important? Well, where	
24	the route was fixed through the existing corridor,	
25	the cropping land use is relatively intensive.	

		Page 1/00
1	After all, annual cropping requires relatively	Fage 1499
2	more field operations and inputs. However,	
3	through the existing corridor, the transmission	
4	line is paralleling other existing transmission	
5	lines and other linear features, for the most	
6	part, which is a generally preferable situation	
7	over creating a new right-of-way.	
8	Where routing influenced the location	
9	of the route in the new right-of-way, land use is	
10	less intensive from a crop-production perspective.	
11	As previously mentioned, diagonal	
12	crossings were I think I mentioned it	
13	diagonal crossings were generally not preferred by	
14	agriculture landowners and producers, and	
15	definitely not preferred by aerial applicators.	
16	These crossings tend to create additional	
17	interference, relative to a straight-line	
18	crossing, including potentially cutting fields	
19	into separate management units, or just generally	
20	increasing the nuisance factor. After all, most	
21	farming happens along straight lines.	
22	For the existing corridor, most of the	
23	nine kilometres of diagonal crossings are in	
24	annual croplands. However, these crossings	
25	again, they are in an existing corridor; they	

		Page 1500
1	parallel existing linear disturbances, and are in	Fage 1500
2	many cases in close proximity to the City of	
3	Winnipeg, another residential development.	
4	Therefore, in these areas, there will be little or	
5	no additional interaction with the aerial	
б	application practices.	
7	While there are 26 kilometres of	
8	diagonal crossing in the new right-of-way, these	
9	are primarily on range and grassland, where there	
10	is lower intensity of activities, and generally	
11	where aerial application is not occurring.	
12	It is important to note as well that	
13	in the new right-of-way, a portion of the diagonal	
14	crossings in the more intensive annual cropland	
15	areas were actually preferred by landowners. For	
16	example, a four-kilometre diagonal crossing was	
17	preferred routing in the area of the Pineland	
18	Hutterite Colony, close to the border crossing,	
19	and another diagonal crossing just southeast of	
20	La Broquerie was also a landowner preference.	
21	So we've just discussed routing and	
22	avoidance mitigation, and now I will briefly	
23	discuss compensation, or sometimes considered	
24	offsetting mitigation, before, again, getting into	
25	the other parts of the assessment and other types	

		Dama 4504
1	of mitigations considered.	Page 1501
2	Again, we know that there will be	
3	residual effects to agriculture following the	
4	implementation of mitigation. As it is understood	
5	this is the case, compensation is made available	
6	to those agricultural landowners and producers	
7	affected by the project.	
8	As a reminder, and presented on the	
9	right-hand screen, the MMTP compensation program	
10	includes four key aspects. I won't review these	
11	in detail, as they were presented previously by	
12	the property panel. However, I'll just summarize.	
13	Getting back onto the left-hand	
14	screen, the compensation program really addresses	
15	direct effects to land use through construction or	
16	operation activities, damages to land or	
17	infrastructure that may be caused by the project,	
18	as well as indirect impacts to operations. For	
19	example, if a portion of a field becomes	
20	inaccessible due to the presence of the project,	
21	that is something that be would be considered for	
22	compensation.	
23	It is important to note that the	
24	program, as well, considers effects on	
25	individuals, and compensation is really developed	

		Dogo 1502
1	in discussion with individual landowners.	Page 1502
2	So, moving into our effects	
3	assessment. Building from our understanding of	
4	the project and the baseline agricultural	
5	environment, and concerns raised through an	
6	extensive engagement process and learning from	
7	past projects, we scoped the assessment and	
8	developed two broad-based effects to evaluate what	
9	the project would mean in terms of agricultural	
10	activities and operations in the project area.	
11	These two effects were, number one,	
12	the loss and degradation of agricultural land; and	
13	number two, conflict with agricultural activities.	
14	Under each broad effect, multiple	
15	issues were identified and evaluated to determine	
16	the nature, degree, extent, and magnitude of the	
17	effects of the project on agriculture.	
18	Potential effects were assessed within	
19	three defined spatial boundaries, which have been	
20	previously discussed, specific to agriculture in	
21	the PDA, or the project footprint, that really	
22	included the entire right-of-way, as well as the	
23	expansion of the Glenboro Station footprint.	
24	And just as a note, the expansion of	
25	the Dorsey footprint did not occur in agricultural	

		Page 1502
1	land, so it is not included as part of the	Fage 1505
2	agricultural PDA.	
3	For a local assessment area, we	
4	selected a one-kilometre buffer, so one kilometre	
5	on each side of the line, and we really identified	
6	that to capture what is the basic agricultural	
7	field management unit, certainly in this area of	
8	the province, being the quarter-section, with	
9	dimensions of 800 metres by 800 metres.	
10	Direct effects of the project on	
11	agriculture: Activities were assessed within this	
12	LAA.	
13	Our regional assessment area, similar	
14	to other socio-economic valued components,	
15	consisted of the boundaries of the RMs traversed	
16	by the project. Again, we used this assessment	
17	area to assess the overall significance in the	
18	broader agricultural context, including cumulative	
19	effects.	
20	The right hand slide just shows those	
21	boundaries of the LAA and RAA, although it is	
22	pretty much the same figure presented earlier by	
23	Ms. Bratland in terms of the overview.	
24	Effects were also assessed based on	
25	two temporal boundaries, being the construction	

		Dogo 1501
1	phase, which we considered up to two growing	Page 1504
2	seasons, in the agricultural sense, as well as the	
3	operations phase, or the lifetime of the project.	
4	I will now move on to briefly discuss	
5	some of our methods. I'm not going to discuss all	
б	of the methods employed for the assessment of	
7	agriculture; rather, I will just summarize some of	
8	the key methods or specific ones to our VC.	
9	As mentioned previously, we conducted	
10	key person interviews with industry stakeholder	
11	groups to identify specific issues of concern and	
12	to help focus the assessment. We conducted crop	
13	productivity estimates using an Agriculture and	
14	Agri-Food Canada geospatial crop inventory layer,	
15	coupled with crop yield and value data provided by	
16	Manitoba Agricultural Services Corporation, and	
17	that's provided on a RM basis.	
18	We developed soil compaction ratings,	
19	and used existing erosion risk ratings to	
20	determine the susceptibility of the soils to	
21	degradation from project activities.	
22	We classified livestock operations to	
23	understand the types of livestock and the	
24	proximity of these operations to the transmission	
25	line.	

1	We also conducted extensive literature	Page 1505
2	reviews. One that I do want to mention is the	
3	evaluation of farming around Hydro towers in	
4	Southern Manitoba, which was conducted by the	
5	Prairie Agricultural Machinery Institute in 2015.	
6	And one of the key pieces of information we used	
7	from that evaluation was the estimates of land	
8	areas affected around towers, as well as the	
9	increased production cost as a result of the	
10	presence of those structures.	
11	I just noticed a virus scan; I will	
12	hit the X here. My apologies.	
13	So I will now talk briefly around what	
14	we call the loss of land from agriculture. So	
15	sorry about that.	
16	I have two slides here on the issue of	
17	land loss from agriculture. So this is one	
18	again, one of the two major this is one of the	
19	two major components of that loss and degradation	
20	effect under our assessment.	
21	I will first talk about temporary land	
22	loss, which is addressed on the left-hand screen.	
23	Temporary loss is anticipated to occur	
24	during the construction phase, after which period	
25	most of the affected land will be returned to	

		Page 1506
1	previous agricultural land use.	r ugo roco
2	For the assessment, temporary land	
3	loss was assumed to affect the entire project	
4	development area, so that includes the entire	
5	right-of-way, as well as the Glenboro Station	
6	expansion footprint.	
7	I think this is conservative in terms	
8	of both the area assessed as well as the duration.	
9	Construction activities don't tend to disturb the	
10	entire right-of-way, and don't typically disturb	
11	agricultural areas for more than one growing	
12	season.	
13	The graphic on the left side of the	
14	left-hand screen provides a visual representation	
15	of that PDA, or the right-of-way, and that's the	
16	area shown in the light green shading. And that's	
17	shown in relation to a quarter-section boundary.	
18	Within that quarter-section field, the	
19	right-of-way represents just less than 10 per cent	
20	of the field area.	
21	The photos on the right side of the	
22	left-hand screen hopefully that's not getting	
23	too confusing.	
24	The top photo shows is intended to	
25	show the construction activities are generally	

Volume 6

1507

		Deer
1	intensive in close proximity to the tower	Page
2	structures. And the bottom photo, there, is	
3	intended to show again, it is typically not the	
4	entire right-of-way that's disturbed by	
5	construction activities.	
6	And I don't know if it is coming	
7	through totally well for everyone, but you can see	
8	kind of an area of predominant traffic along the	
9	right-of-way, and this is taken from the	
10	Bipole III project.	
11	So if we look over on the right-hand	
12	screen, I will talk about what we call permanent	
13	land loss. That's loss that will occur over the	
14	lifetime of the project, and it really occurs	
15	under and immediately around tower structure, and	
16	again, that expanded Glenboro Station footprint.	
17	The total footprint loss from	
18	agriculture production will be small, relative to	
19	the total area of our local assessment area, or	
20	even the PDA. Manitoba Hydro realizes that the	
21	effects of this loss could be of relative	
22	importance to individual landowners and producers,	
23	again, at that individual operation level.	
24	In our assessment, we considered a	
25	three-metre buffer around tower structures as	

		Dogo 1509
1	completely removed from production for the	Fage 1506
2	operational life of the project. We determined	
3	this buffer through literature review, and I	
4	mentioned that PAMI 2015 study. When we compared	
5	our buffer against the results of the PAMI study	
6	that was released kind of later in our assessment	
7	period, we found that our buffer estimate was	
8	pretty reasonable and conservative, relative to	
9	what PAMI determined.	
10	And on review, as well, the Manitoba	
11	Hydro compensation formula considers a larger area	
12	impacted, so can also be considered in this	
13	regard.	
14	The diagram on the left, from here, it	
15	is pulled from the Manitoba Hydro compensation	
16	program, and it really just it is a visual to	
17	demonstrate the area around towers that are in	
18	the case of the little dotted area here, that's	
19	what Hydro considers to be 100 per cent loss, crop	
20	loss, and then that larger area is considered	
21	40 per cent crop loss. But when you look at even	
22	the area of 100 per cent crop loss, again, that's	
23	a much larger area than we considered with our	
24	three-metre buffer.	
25	The photos on the right-hand side of	

		Page 1500
1	the right-hand screen provide a visual	Fage 1509
2	representation of the areas of crop loss, you	
3	know, in actuality, so there is examples both of a	
4	single-tower situation as well as when towers are	
5	situated beside each other in a shared-corridor	
6	situation.	
7	I think in many cases producers seem	
8	to do better in that three-metre buffer in their	
9	approach to the towers, but obviously they can't	
10	always do that.	
11	I will now talk about the second	
12	component of that first effect, and that's the	
13	soil degradation pathway. Soil degradation could	
14	occur as a result of either compaction or erosion.	
15	However, erosion is not a substantive concern, as	
16	soils are generally not disturbed by the project	
17	activities, as well as the low slopes in the study	
18	area really limit that potential for water	
19	erosion.	
20	The extent and frequency of project	
21	interactions with agriculture that will result in	
22	degradation will be substantively less during	
23	project operations compared with the construction	
24	phase, due to much fewer occurrences of equipment	
25	traffic in the right-of-way and the timing of	

	Bogo 1510
1	those activities, which is typically typically
2	don't occur in the spring, summer, and fall in
3	agricultural lands, when soils tend to be more
4	prone to compaction.
5	Through our assessment, soil
б	compaction was determined to be the primary soil
7	degradation mechanism of concern. And
8	construction timing for example, working on
9	frozen soils, or when compaction-prone soils are
10	not wet will help limit soil compaction and
11	avoid situations such as what's really pictured as
12	a worst-case scenario of heavily rutted soils
13	pictured on the left-hand slide.
14	On the right-hand screen, it is a
15	visual map of the soil compaction risk throughout
16	the project area, throughout the RAA. The
17	compaction risk is predominantly high, and that's
18	in the red colour, if we look to the left of the
19	black arrow in this case, and that's getting into
20	the existing corridor, so that area is
21	predominantly a high risk to soil compaction.
22	And looking to the right and down, so
23	it is just south of that black arrow, we get into,
24	again, more of a variable soil condition, with a
25	range of compaction risk from low, in yellow, to

		Daga 1511
1	moderate, in orange, and there are some areas as	Page 1511
2	well that are at high risk. However, a lot of the	
3	high-risk areas in the new right-of-way are	
4	actually in non-agricultural areas, in organic	
5	soils. However, compaction risk is an important	
6	issue for the project area, particularly, again,	
7	in that existing corridor.	
8	To provide a better understanding of	
9	how we evaluated effects to agricultural land loss	
10	and degradation, we considered multiple factors.	
11	For areas of land loss, we made use of	
12	two main factors; that's agricultural capability	
13	and crop productivity.	
14	Agricultural capability, quickly, is	
15	really a measure of the inherent capability of the	
16	soil landscape to support cropping. It's	
17	determined by static properties, such as soil	
18	texture, drainage, slope, climate, moisture	
19	limitations. Agricultural capability classes for	
20	the project area will be discussed in the next	
21	slide.	
22	As well, we looked at crop	
23	productivity. Again, that provides more of a	
24	current snapshot in terms of what is actually	
25	happening across the landscape in terms of the	

		Page 1512
1	crops grown, and getting into the estimated value	rage 1512
2	of this production. As discussed on the previous	
3	slide, compaction risk was used as the primary	
4	assessment tool to support evaluation of the	
5	potential for soil degradation.	
6	So when it comes to agricultural	
7	capability, again, it is really that tale of two	
8	study areas.	
9	On the left-hand screen, I have a	
10	chart that displays the relative areas under some	
11	different agricultural capability groupings. In	
12	the existing corridor, which is shown on the	
13	left-hand side here, the land is predominantly	
14	classed 1 to 3, which we call prime land. It is	
15	displayed in the blue bar on the left side of the	
16	chart. So Class 1 to 3 land is characterized as	
17	having no to moderate limitations for agricultural	
18	crop production.	
19	In contrast, when we look at the new	
20	right-of-way, a relatively small portion, or	
21	20 per cent of that right-of-way, is considered	
22	Class 1 to 3, again, represented by the blue bar.	
23	Just less than half, or 40 per cent, of the	
24	component is grouped into Class 4 to 5,	
25	represented by the red bar, which has getting	

		Dogo 1512
1	into moderate to severe limitations for crop	Page 1513
2	production. These soils are typically considered	
3	more marginal, and generally support less	
4	intensive cropping, such as hay land.	
5	The remaining area of the new	
6	right-of-way consists of 14 per cent Class 6 to 7	
7	soils, in the green bar. They are soils with	
8	little to no capability for annual cropping.	
9	And then we have the remainder is	
10	25 per cent, is organic soils, which are generally	
11	under natural land uses.	
12	The right-hand side, again, shows a	
13	spatial distribution, this case of agricultural	
14	capability classes, and that same kind of	
15	relationship emerges, you know, to the in	
16	existing corridor to the left of the red arrow,	
17	you are seeing mainly those light browns or tans	
18	and green, in those Class 1 to 3 soils; and then	
19	getting into that new right-of-way, it is much	
20	more variable, with lower classes present as well.	
21	So, these two slides present the	
22	average annual crop production values within the	
23	existing corridor and the new right-of-way. A	
24	similar relationship is apparent, as discussed,	
25	for crop types and agriculture capability.	

		Page 1514
1	On the left-hand screen, you can see	Tage 1014
2	the average yearly total crop production value in	
3	the new right-of-way and the existing corridor,	
4	and you can see that the value for the new	
5	right-of-way is less than half of that to the	
6	existing corridor, even considering the total	
7	length of each component is pretty close to being	
8	the same.	
9	On the right-hand screen, within areas	
10	of agricultural land use, the production value per	
11	unit area is much lower in the new right-of-way.	
12	And this is presented in dollar per hectare.	
13	So again, where we actively	
14	contributed to selection of the route in the new	
15	right-of-way, the result was a limitation of	
16	effect with respect to the value of crop	
17	production affected.	
18	I think this is meaningful when	
19	considering the removal of land from production,	
20	as well as, again, that interaction between	
21	activities in the presence of the project. I will	
22	get into a little further here in the coming	
23	slides, when I talk about the conflict effects.	
24	So the discussion here is on	
25	mitigation, that really follows the consideration	

		Dogo 1515
1	of routing, including avoidance, so I won't be	Fage 1515
2	talking about those again.	
3	A major design mitigation decision was	
4	the use of steel lattice versus guyed towers. And	
5	that's in improved agricultural lands, so that	
б	from an agricultural perspective, the benefit of	
7	these towers includes a longer span length, which	
8	reduces the number of towers that landowners need	
9	to avoid when operating agricultural equipment.	
10	The average separation is 470 metres, so it will	
11	be two or less towers per quarter-section.	
12	These towers also have a smaller	
13	footprint than a guyed tower, and were chosen for	
14	agricultural lands in part to reduce the extent of	
15	that permanent land loss.	
16	Continued landowner engagement will be	
17	an important tool to address concerns for	
18	individuals for example, through activities	
19	like tower spotting to limit effects within a	
20	field management unit.	
21	Rehabilitation work will be carried	
22	out by Manitoba Hydro if damage occurs, such as	
23	through soil degradation through compaction, or	
24	damage to things like tile drainage systems.	
25	Management of equipment traffic on the	

		Dago 1516
1	right-of-way will include scheduling to reduce or	Fage 1510
2	limit compaction, and routing, such as avoidance	
3	of wet conditions and winter construction where	
4	feasible.	
5	On the right-hand screen, there is a	
6	photo there that just shows you some mitigation in	
7	action on the Bipole III project. It just shows	
8	what we call "rig mats" placed on the soil surface	
9	in areas of heavy traffic and soils that are at	
10	high risk to compaction.	
11	So I'll now summarize key findings for	
12	effects to land loss and degradation.	
13	So new right-of-way areas, as we've	
14	discussed, will sorry, have lower agricultural	
15	capability ratings, have lower crop production	
16	values, and lower compaction risk ratings.	
17	Routing has avoided agricultural	
18	buildings. There are six buildings within the	
19	existing corridor PDA, and it is limited to some	
20	grain bins and a shed that some of it, I think,	
21	had been already removed.	
22	Temporary land loss is expected to	
23	last not more than two growing seasons, and would	
24	affect a small proportion of the local assessment	
25	area. Based on conservative estimates, up to	

	Page 1517
1	1,974 hectares of land could be affected. Again,
2	that's the entire area of right-of-way under
3	agricultural cropping. This comprises 1,637
4	hectares of agricultural land within the existing
5	corridor, 331 hectares of agricultural cropping
6	land within the new right-of-way, and 6 hectares
7	of land for the Glenboro South Station expansion.
8	The temporary land loss will be
9	limited up to one year in the south loop
10	transmission corridor, but could affect up to two
11	years in the remainder of the route. However, it
12	is unlikely that this will result in a loss,
13	actually, over two growing seasons, in any given
14	area.
15	In terms of permanent land loss, it
16	was estimated again, using our three-metre
17	buffer that an area of less than 12 hectares
18	would be lost to tower footprints over the
19	lifetime of the project. So this is it's a
20	very small portion of the PDA or right-of-way. It
21	is equivalent to about 20 per cent of a
22	quarter-section of land.
23	Compaction risk is an important
24	consideration, with approximately two-thirds of
25	the route considered at high risk.

		Page 1518
1	So we've talked about the first	r ugo roro
2	effect, being land loss and degradation; now we	
3	will move into the second of two broad-based	
4	effects, conflict with agricultural activities.	
5	We will first review interference with equipment	
6	operations.	
7	So this part of the assessment	
8	considered both ground-based equipment, which	
9	represents the majority of the operations on the	
10	landscape, as well as aerial application of	
11	pesticides.	
12	Conflict, interference, and nuisance,	
13	again are ways to describe how the presence of the	
14	project namely the towers and conductors	
15	interact with agricultural activities in areas	
16	traversed by the project.	
17	Interactions may include interference	
18	with field operations so again, the ground and	
19	aerial operations can result in overlapping	
20	equipment travel and input application, and it can	
21	also result in increased time management effort	
22	and cost to producers.	
23	As you can see in the pictures on the	
24	right-hand screen, the ground-based equipment	
25	comes in many types, shapes, and sizes. This	

		Page 1510
1	variability is one factor that complicates the	Fage 1519
2	understanding of these interactions at that scale	
3	of individual operations; hence the need for	
4	ongoing engagement with individual producers.	
5	The graphic on the right-hand screen	
6	is pulled from the PAMI 2015 report mentioned	
7	previously, and it is intended just to provide a	
8	glimpse into the type of evaluation they	
9	conducted.	
10	In this instance, the graphic	
11	visualizes how farmers in some cases work around	
12	the towers with an encircling pass, to ensure as	
13	much land as possible remains productive.	
14	However, this does result in overlap of input	
15	application which is supposed to be represented	
16	by that hatched area as well as increased time	
17	and again, cost, working around these structures.	
18	Interference with dragline operation	
19	for liquid manure application or injection was	
20	raised as an issue in Bipole III, and it was	
21	raised again during the MMTP engagement program,	
22	as well as during the IRs.	
23	According to PAMI, the 2015 study, who	
24	evaluated the effects to this activity	
25	specifically, while there will be interference	

		Dogo 1520
1	with the practice, it can continue in the presence	Page 1520
2	of a high-voltage line.	
3	The worst-case scenario, according to	
4	PAMI, is illustrated on the right-hand screen, and	
5	occurs with a diagonal crossing. The bottom line	
6	is potentially a small area under the centre line	
7	that can not receive application, and additional	
8	starting and a starting or origin point for the	
9	dragline. Now, the latter situation would require	
10	some additional pipeline setup and associated	
11	management effort.	
12	So, again, after the consideration of	
13	routing and avoidance mitigation, when we talk	
14	about mitigation for conflict with equipment	
15	operation, again, design mitigation is an	
16	important aspect. So again, these self-supporting	
17	towers on approved agricultural lands reduces the	
18	footprint, as well as the interference relative to	
19	a situation with guyed towers, as you can imagine,	
20	based on the figure on the right-hand screen.	
21	Additionally, again, the average span	
22	is longer with self-supporting towers; again, that	
23	span is, on average, 470 metres on the project.	
24	Again, that limits the number of towers to two or	
25	less per quarter-section. That's again, that's	

		Dogo 1501
1	an important factor limiting that conflict	Page 1521
2	relative to a shorter span.	
3	Continued landowner engagement will	
4	further limit effects on individual operations.	
5	This includes, as mentioned previously, the	
6	potential for tower spotting opportunities, some	
7	of which has already been has occurred in some	
8	instances, sorry, as well as planned communication	
9	with producers, leading up to and during	
10	construction, to limit those impacts related to	
11	interruptions to specific field operations.	
12	So here are some key findings on the	
13	conflict with equipment operation. The new	
14	right-of-way was found to be outside of the	
15	primary area of aerial application, and no known	
16	aerial applicator airstrips were found in close	
17	proximity to the right-of-way.	
18	A small amount of diagonal crossing in	
19	the new right-of-way occurs in annual cropland,	
20	but again, much of the 4.6 kilometres were sited	
21	based on landowner preference.	
22	Project effects will be limited to the	
23	PDA or the right-of-way for most types of	
24	equipment conflicts, so things like ground	
25	operations for seeding, harvesting, and pesticide	

		Page 1522
1	application.	Fage 1522
2	In other words, these effects aren't	
3	felt outside of the right-of-way. In some cases,	
4	however, they may extend into the LAA, or that	
5	one-kilometre buffer, capturing that	
6	quarter-section field management unit; for	
7	example, aerial application of pesticides,	
8	dragline operations and biosecurity.	
9	As a note, as well, there is 20 hog	
10	and dairy operations within that local assessment	
11	area, and these are those operations that will	
12	potentially apply liquid manure on nearby fields	
13	using draglines. Additional engagement with those	
14	landowners may help to further mitigate potential	
15	interactions and effects with these activities.	
16	So, as mentioned previously,	
17	biosecurity was raised through the public	
18	engagement program and the IRs, and is an issue	
19	that, again, is becoming of increasing importance	
20	for producers. As production systems become more	
21	intensive in new path centre areas they weren't	
22	present in before.	
23	Of interest to crop producers are	
24	soil-borne pathogens and other pests found in the	
25	soil, such as bugs and weed seeds. The primary	

Volume 6

		Page 1523
1	mechanism of transfer is soil getting stuck on	1 age 1020
2	equipment tires and boots, and being transferred	
3	from an infected field to an adjacent non-infected	
4	field.	
5	The primary soil-borne pathogen of	
6	concern in the project area is clubroot, which is	
7	a pathogen that affects canola crops.	
8	On the right-hand screen, I've	
9	provided a figure indicating that the confirmed	
10	presence of clubroot clubroot has been	
11	confirmed in most of the RMs traversed by the	
12	project. And just to provide some context, the	
13	project origin is about here; loops around the	
14	City of Winnipeg and heads south, down to Piney,	
15	so any of those RMs that have oranges or	
16	yellows are RMs that have soil spores over a	
17	certain threshold level.	
18	Other concerns were raised during	
19	public engagement, including verticilium wilt,	
20	which affects canola. While it has been confirmed	
21	in Manitoba in 2014, I understand that	
22	confirmation is just in research pots, and the	
23	presence and distribution is unknown, at best, in	
24	the project area.	
25	Another issue raised was soybean cyst	

		Dago 1524
1	nematode, and that is an issue that hasn't been	Page 1524
2	confirmed in Manitoba, and there has been multiple	
3	surveys over the last few years that haven't come	
4	up with any confirmation of that. I should note	
5	it has been confirmed in Minnesota, the adjacent	
6	state to the south.	
7	So just in terms of mitigations for	
8	biosecurity, Manitoba Hydro staff and contractors	
9	will follow implement and follow the Manitoba	
10	Hydro corporate policy on biosecurity and the	
11	associated standard operating procedures	
12	throughout the project. This was previously	
13	discussed by Mr. Alec Stuart during the property	
14	panel.	
15	I think it's important to note here	
16	that it is a risk-based approach that Hydro uses,	
17	and that risk assessment determines the level of	
18	consequence, based on considerations such as	
19	frequency of activity and field conditions. It is	
20	used to as well, to determine the procedures to	
21	be followed given a situation.	
22	A key aspect to the program is of	
23	course cleaning equipment before and after	
24	accessing a field. Again, that risk level	
25	determines the cleaning method; and if cleaning	
Page 1525 should happen by a mechanical means, such as a 1 2 brush, or using something like a pressure washer, where more intensive cleaning is required. 3 Limiting equipment to the project 4 development area and existing access points are 5 also key activities to reduce the potential for 6 7 spread of pests. In cases where a more stringent 8 landowner or operation SOPs are in place, Manitoba Hydro is committed to work with those landowners 9 to implement them as appropriate. 10 11 Additionally, Manitoba Hydro is working with industry to develop and conduct a 12 13 pre-construction sampling program for biosecurity concerns. This will occur in agricultural fields 14 15 traversed by the project, and I think that will really help inform and improve the biosecurity 16 program on the project. 17 18 I think the biosecurity program is an example where Manitoba Hydro strives for continued 19 20 improvement, and I think the engagement with 21 producers and stakeholders, such as Manitoba Agriculture, has improved this program relative to 22 Bipole III. And it is evident they are continuing 23 24 to work with industry in an ongoing manner to 25 improve the policy and the standard operating

		Page 1526
1	procedures.	1 490 1020
2	So, next issue for review is livestock	
3	health. And we heard concerns related to project	
4	interactions with livestock, including	
5	biosecurity, as well as stray voltage. For	
6	biosecurity, the concerns included construction	
7	and maintenance workforce coming into contact with	
8	animals in livestock operations.	
9	As well, there were concerns around	
10	increased access for wildlife to livestock	
11	production areas. It was a concern again, it	
12	is a result of clearing right-of-way under areas	
13	that are currently under bush or forest, and that	
14	subsequent interaction between wildlife and	
15	livestock potentially resulting in disease	
16	transmission.	
17	A specific concern in this regard was	
18	raised by Manitoba Beef Producers, and it was	
19	related to the increased potential for bovine	
20	tuberculosis for milk in proximity of the U.S.	
21	border.	
22	As well, during KPIs, or key	
23	performance interviews or, sorry, key person	
24	interviews; I'm getting my acronyms mixed up	
25	here Dairy Farmers of Manitoba expressed	

527

		Dago 1
1	concern regarding stray voltage effects due to the	raye
2	proximity of the project to two particular dairy	
3	farms in the vicinity of La Broquerie.	
4	To support our assessment, we	
5	conducted literature reviews and engaged with	
6	other discipline specialists, including our	
7	wildlife team and the EMF team member, Bill	
8	Bailey, who you just heard from.	
9	With respect to livestock in the area,	
10	the project traverses sorry, just in terms of	
11	the livestock that the livestock operations	
12	that the project traverses, there is relatively	
13	few operations within the existing corridor;	
14	again, that's an intensive predominately an	
15	intensive annual crop area.	
16	And there is areas of relatively	
17	intense occurrence of livestock operations around	
18	Ste. Genevieve and La Broquerie, in the new	
19	right-of-way.	
20	In terms of mitigation, similar to our	
21	discussion on cropland biosecurity, Manitoba Hydro	
22	staff will follow and implement a stringent	
23	biosecurity policy and SOP throughout the project.	
24	Again, more stringent landowner and operation	
25	SOPs, where they exist, will be implemented by	

		Dogo 1500
1	Hydro where appropriate.	Page 1526
2	Limiting equipment usage to the	
3	right-of-way, using existing access points, and	
4	avoiding access through intensive livestock	
5	operations and biosecurity zones will act to limit	
6	the potential for disease transmission.	
7	An example of engagement resulting in	
8	reducing the potential for effects to operations	
9	is through Manitoba Hydro's commitment to	
10	installing exclusion fencing in the calving area,	
11	where there was a concern related to the presence	
12	of towers at that sensitive site.	
13	Ongoing engagement with producers will	
14	include a focus on reducing the overlap between	
15	livestock-related field activities and	
16	construction activities. For example, working	
17	with producers to avoid spreading manure, and	
18	pasturing of livestock in the transmission line	
19	right-of-way during construction, is a known and	
20	effective method to prevent the spread of disease.	
21	I will now summarize key findings for	
22	livestock health.	
23	The biosecurity program continues to	
24	be improved, and will control contact with	
25	livestock and limit compromised biosecurity	

	Page 1529
1	situations. The route avoids the core elk area in
2	Manitoba, and there was no sign of elk during
3	surveys conducted by our wildlife team within the
4	LAA. So the spread of TB that was a concern
5	raised by the Beef Cattle Association does not
6	appear to be a concern.
7	Research indicates no adverse effects
8	on the health of livestock, including dairy
9	cows sorry, dairy cows, other cattle, sheep,
10	and pigs, due to magnetic or electric fields or
11	audible noise.
12	Livestock operations were included as
13	criteria in both the corridor and routing models,
14	to limit that potential interaction between the
15	project and operations such as dairies. The
16	closest dairy operation is approximately
17	170 metres from the centre of the transmission
18	line, or approximately 140 metres from the edge of
19	the right-of-way. Manitoba Hydro will work with
20	dairy producers to address concerns related to
21	stray voltage, should they arise.
22	The next two slides will deal with the
23	issue of cumulative effects. Since the 1800s, the
24	regional assessment area has undergone substantive
25	development for agriculture. The development

		Dogo 1520
1	really began with river lot developments south of	Page 1530
2	the City of Winnipeg in the 1830s and the	
3	development of other agricultural-based	
4	settlements from the mid 1850s on.	
5	Today, the area contains a broad range	
6	of agricultural land uses that contribute	
7	appreciably to the local and provincial economy.	
8	The development of the agricultural landscape has	
9	occurred in conjunction with other developments,	
10	such as the communities that serve agricultural	
11	areas, as well as the highways, roads, and roads	
12	to access these communities and the agricultural	
13	areas.	
14	Other infrastructure required to	
15	support agriculture and other sectors have	
16	resulted in land loss in conflict with	
17	agricultural activities, including residential	
18	development, transmission lines, pipelines, and	
19	railways.	
20	Currently, approximately 52 per cent	
21	of the regional assessment area is under	
22	agricultural lands use, including annual cropping,	
23	hay land, and pasture, while 2.5 per cent is	
24	considered otherwise developed.	
25	Future planned projects include, in	

		Dago 1531
1	the case of transmission lines, the Bipole III,	Fage 1551
2	St. Vital, Dorsey, Portage, and Richer to Spruce	
3	Station. We also included the Energy East	
4	Pipeline project, additional residential	
5	development, as well as improvements to highway	
6	infrastructure, including specifically the	
7	Headingley and St. Norbert bypasses.	
8	So when the future planned projects	
9	are considered, the additional loss of land to	
10	agriculture is anticipated to be less than	
11	500 hectares. To put this in context, it is	
12	approximately the equivalent of two sections of	
13	land. This represents a very small proportion of	
14	the agricultural lands in the regional assessment	
15	area, less than 1 per cent or less than	
16	.2 per cent, actually of the over	
17	445,000 hectares within that area.	
18	Further, the project, the MMTP	
19	project's contribution represents a very small	
20	proportion of the anticipated overall land loss,	
21	so less than 2 per cent of that 500 hectares	
22	estimated.	
23	The combined effect of these projects	
24	will be adverse, but it is not anticipated to	
25	impair the capacity of agriculture within the	

		Daga 1500
1	regional assessment area. In other words,	Page 1532
2	agriculture is anticipated to continue at or near	
3	pre-project disturbance levels.	
4	So I will briefly talk about some	
5	specific monitoring followup, and I promise we are	
6	getting close to the end here.	
7	As discussed, Manitoba Hydro is	
8	working with industry to develop and conduct a	
9	pre-construction sampling program, to provide that	
10	baseline information on soil-borne pests. A	
11	sampling program will be developed in discussion	
12	with Manitoba Agriculture.	
13	Monitoring will be used to confirm	
14	predicted environmental effects and evaluate the	
15	success of mitigation implemented.	
16	Post-construction monitoring will include	
17	confirming the absence of visual evidence of	
18	compaction and routing, and crop performance	
19	monitoring will be considered, should lasting	
20	effects from compaction be a concern.	
21	Manitoba Hydro will work with	
22	producers to rehabilitate damaged soils or	
23	infrastructure, such as tile drains, as required.	
24	Additionally, monitoring will be used	
25	to identify deficiencies or detect unexpected	

1533

		Dogo
1	environmental effects. Followup will be conducted	Page
2	to address any site-specific issues that require	
3	additional attention.	
4	And I think this is an example of the	
5	adaptive management program.	
6	As well, dedicated landowner liaisons	
7	are being identified to develop working	
8	partnerships and a personal point of contact for	
9	individual producers. They will discuss concerns,	
10	and will be there to address any specific issues	
11	that may arise through construction and beyond.	
12	So, just to summarize, as we've	
13	discussed through the presentation today, routing	
14	and design have effectively limited effect to the	
15	agricultural environment. For example, cropping	
16	and livestock operations were considerations in	
17	corridor and route evaluation. The use of	
18	self-supporting towers will generally result in	
19	two towers or less per quarter-section.	
20	Temporary land loss will affect many	
21	agricultural operations traversed by the	
22	right-of-way; however, the impact during growing	
23	seasons will be at most, two seasons, and	
24	generally will be one growing season or less. A	
25	very small amount of agricultural land will be	

_		Page 1534
1	removed from production for the operational life	
2	of the project.	
3	Ongoing mitigation, engagement with	
4	individual landowners, and the environmental	
5	protection plan will further limit effects of the	
б	project.	
7	The residual effects of losses of land	
8	from production, and the additional cost and	
9	nuisance caused by the project presence, again,	
10	will be offset by compensation.	
11	Therefore, in conclusion, the project	
12	residual and cumulative effects are considered to	
13	be not significant.	
14	I thank you for your time today or	
15	tonight, I should say.	
16	THE CHAIRMAN: I wonder if we will	
17	break, and there will be another presentation	
18	immediately. Could we take about three minutes?	
19	A couple of people wanted to get some tea. But	
20	I'm going to hold everyone to three, as we want to	
21	get as much of this done as we can.	
22	Thank you; that was very interesting.	
23	(Brief Recess)	
24	THE CHAIRMAN: Okay. Sorry to be	
25	rushing everyone, but we do want to get as much of	

1535

		D
1	these presentations done as we can this evening.	Page
2	So thank you, and we will turn it over	
3	to Manitoba Hydro.	
4	MR. BOHLKEN: Okay. I'm going to get	
5	started now. The people in back, maybe grab your	
б	drinks and head back to your seats.	
7	THE CHAIRMAN: That was great; you are	
8	having a lot more success than I do.	
9	MR. BOHLKEN: Again, it is Frank	
10	Bohlken, from Stantec. Tonight I'm going to be	
11	or evening I'm going to be presenting on the	
12	work we did on visual quality.	
13	So we will start off with the spatial	
14	scoping for visual quality. It is a little	
15	different than we use for land use; for the LAA,	
16	we use an eight-kilometre buffer either side of	
17	the PDA, and that's basically the distance to	
18	which individual project components are most	
19	likely to be visible.	
20	The RAA would define which is	
21	15 kilometres would define the limits of	
22	visibility of the project in consideration of	
23	well, the curvature of the earth, for one thing,	
24	as well as the size of the structure.	
25	So why is visual quality important?	

		Page 1536
1	Well, visual quality of the landscape is important	
2	to local residents, First Nations, Metis,	
3	recreationalists, and tourists. This is being	
4	established both from feedback from the engagement	
5	processes as well as general literature on the	
6	importance of visual quality. Really, what we are	
7	trying to understand is how will the project be	
8	changing the aesthetic character of the area.	
9	From Bipole III and other studies, we	
10	understood that there can be a number of concerns	
11	related to visual quality for transmission line	
12	projects; for example, changes in views from	
13	residences, areas of recreation use, reduction in	
14	landscape integrity and landscape character.	
15	Such concerns help us select and	
16	prioritize viewpoints for the analysis, which	
17	included residential areas, recreational sites, as	
18	well as the Ridgeland Cemetery; we will get to	
19	that in a minute.	
20	We also reviewed a number of other	
21	environmental assessments that had visual quality	
22	assessment sections, to just inform our the	
23	methods that we used for this EIS.	
24	From engagement, we understand that	
25	there are concerns in how changes in visual	

		Dogo 1527
1	quality from the project may affect property,	Fage 1557
2	private property, tourism, recreation, quality of	
3	life.	
4	Now, this section, we are focusing on	
5	visual quality effects, but effects on project and	
6	tourism and recreation were also addressed in	
7	Section 16, land and resource use, which I spoke	
8	about prior to the break.	
9	Quality of life relates to a number of	
10	aspects, including, for example, enjoyment of	
11	one's home, community, an ability to recreate,	
12	et cetera. These topics are broadly considered in	
13	a number of sections, including the section on	
14	land use, as well as the section on community	
15	health which we will be talking about perhaps	
16	later, but likely tomorrow related to, for	
17	example, how they could be affected by stress and	
18	noise.	
19	So, we again, there was discussion,	
20	there was a presentation on routing earlier at	
21	this panel, and we spoke about it a little bit	
22	related to land use.	
23	Visual quality considerations are	
24	factored into route selection in several ways.	
25	The number of high-value viewpoints within	

		Dogo 1520
1	400 metres of the right-of-way was one of the	Page 1538
2	metrics used in the preference determination for	
3	the built environment. The final preferred route	
4	generally travelled through less-populated areas,	
5	and parallels existing transmission lines and	
6	roads, and is generally located away from	
7	residences, communities, parks, and recreation	
8	features, thus reducing or limiting its potential	
9	interaction with areas of visual importance.	
10	We assessed how the project may change	
11	visual quality from representative viewpoints	
12	using three parameters. One is visual	
13	sensitivity, which is how sensitive the landscape	
14	is to alteration. Landscape character, which is	
15	based on the degree of built interventions, of	
16	which we will show you some examples in a few	
17	minutes. And prominence, which is the degree by	
18	which the project will occupy once maybe you	
19	can yeah.	
20	Prominence, which is the degree by	
21	which a project will occupy one's field of vision	
22	from any particular viewpoint. And the second	
23	screen here is showing the when we're doing our	
24	visual quality analysis, we're looking at it from	
25	the point of view of what one's visual field is,	

	De	an 1520
1	which is approximately 60 degrees horizontal and	ige 1539
2	vertical.	
3	Okay. So when we are seeing let's	
4	say this photograph here, when we were doing our	
5	visual assessment, we were considering that	
б	central field of view, how that central field of	
7	view would be affected.	
8	This table shows the landscape	
9	character class definitions used in the	
10	assessment. As landscape class moves from rural	
11	pastoral to urban industrial, the proportion of	
12	built interventions within one's central field of	
13	vision increases.	
14	The next slide will illustrate	
15	illustrates landscape character class, just in	
16	terms of again, from a rural pastoral setting	
17	in the upper left-hand photo down to a photograph	
18	of well, downtown Winnipeg, which is primarily	
19	urban.	
20	So again, the proportion of built	
21	interventions increases as one proceeds through	
22	these landscape character classes.	
23	We undertook what we believe to be the	
24	most comprehensive visual quality assessment	
25	prepared for a transmission line project in	

		Page 1540
1	Manitoba. We started out with a literature review	Tage 1040
2	and viewshed analysis to identify potential	
3	viewpoints of concern, of which we identified	
4	89 viewpoints of potential concern.	
5	Seventy-five of these were either	
6	duplicated by other viewpoints, or were more than	
7	eight kilometres away from the proposed	
8	right-of-way.	
9	So what we were looking for were, for	
10	example, recreation sites, residences, areas where	
11	people would potentially have issues with change	
12	in the aesthetic landscape.	
13	Fourteen viewpoints were selected as	
14	representative of a variety of visual concerns.	
15	These range in distance from the right-of-way from	
16	less than 100 metres to 1.6 kilometres, on average	
17	being 600 metres.	
18	The second slide sorry about that.	
19	The second slide just shows the	
20	distributions of the viewpoints that were assessed	
21	within the LAA. So again, we looked at everything	
22	from in and around Winnipeg right through down	
23	into the Piney area.	
24	So we then conducted field studies to	
25	photo-document the views towards the project from	

		Dogo 15/1
1	the 14 viewpoints, and collect data on viewpoint	Page 1541
2	characteristics to inform the visual impact	
3	assessment.	
4	We then did computer modeling to	
5	render images of the project superimposed on	
6	baseline backgrounds, and re-ran the landscape	
7	character class analysis. This gave us the change	
8	in visual quality attributable to the project.	
9	Finally, we calculated prominence,	
10	which is the degree by which the project	
11	components would occupy the field of vision from	
12	any particular viewpoint.	
13	Because of its flat topography, the	
14	project is potentially visible from much of the	
15	LAA. However, particularly in southern areas	
16	along the route, vegetation will screen visibility	
17	of project structures from many viewpoints.	
18	Of the 14 assessed viewpoints, one was	
19	rated as low, and 11 were related as having	
20	moderate visual sensitivity class, indicating that	
21	in general, visual quality will be important to	
22	viewers. Most views were rated as rural pastoral,	
23	with minimal to distinguishable development in	
24	terms of the landscape character class.	
25	The project will result in less than	

		Page 1542
1	1 per cent additional visual disturbance to the	Tage 1042
2	assessed views overall. Again, this is based on	
3	the 14 viewpoints we looked at, and we again we	
4	were, I would say, fairly conservative in this	
5	assessment, because the average distance between	
6	the viewpoints we looked at and the right-of-way	
7	was 600 metres. In other words, we were really	
8	only looking at a fairly close band of viewpoints,	
9	near to the right-of-way, relative to the entire	
10	LAA.	
11	Overall, transmission line towers will	
12	be moderately prominent from the assessed	
13	viewpoints, however and we will see some	
14	examples where they will be highly prominent;	
15	again, potentially mitigated, however, through	
16	tower spotting.	
17	I'm just going to show you some	
18	examples of before and after renderings.	
19	So this is viewpoint number 2, which	
20	is located east of Sundown. In the baseline	
21	condition, we are seeing, actually, a fair amount	
22	of different types of interactions. We have the	
23	road, we have fence, and so forth.	
24	So this is, from our calculations,	
25	about 23 per cent disturbed. When we add the	

		Dema 1542
1	towers about 300 kilometres away, that disturbance	Page 1543
2	factor goes up.	
3	This next one is the La Verendrye golf	
4	course in La Broquerie. So here we are	
5	characterizing this as rural pastoral. I mean, of	
6	course it was clear it is a golf course, but in	
7	terms of we are considering that to be you	
8	know, aesthetically pleasing, so really no	
9	disturbance from an esthetics point of view.	
10	When the project goes in, the overall	
11	disturbance is 0.4 per cent at 400 metres, but	
12	this would have at least a moderately prominent	
13	change because of the tower, if indeed it ends up	
14	being located at that location.	
15	The next one is the Trans Canada	
16	Trail, at Courchene Bridge. So we see in the	
17	background there, there's I think that's a	
18	communications tower. So a fairly small	
19	alteration; we would consider this characterized	
20	as rural, with minimal development.	
21	At this location, the tower would	
22	if indeed it ends up at this spot would be	
23	quite close to the viewpoint, approximately	
24	100 metres away. It would be highly prominent.	
25	But again, the overall percentage disturbance is	

		Dago 15//
1	still relatively moderate, at 3.1 per cent.	Fage 1544
2	This shows the Red River Floodway, at	
3	Chrypko Road and Two Mile Road, and again, the	
4	baseline condition would be characterized as rural	
5	pastoral, no builts and interventions visible.	
6	Here, in the project case, the project	
7	would be located about 500 metres away, and would	
8	change the view to rural pastoral with minimal	
9	development.	
10	Our final view is Road 58N. In this	
11	one, in the baseline condition, we are seeing	
12	D602F transmission line about 300 metres away.	
13	Here is an example of where the project would be	
14	located adjacent to an existing line, so really	
15	not changing the visual characteristics from this	
16	viewpoint.	
17	This is a summary of the measures	
18	proposed to mitigate effects on visual quality, as	
19	previously discussed. Route selection has	
20	resulted in avoidance of many visually sensitive	
21	locations. Tower spotting has and will be used to	
22	reduce the effect of visual quality at sensitive	
23	viewpoints. By adhering to approved clearing	
24	boundaries, visual changes due to right-of-way	
25	clearing will also be limited.	

		Page 1545
1	Again, so Manitoba Hydro will continue	
2	to engage with First Nations, Metis, and the	
3	public, including sharing of information on	
4	project and topics of interest. This could	
5	include further discussions on, for example, tower	
6	spotting opportunities.	
7	So in summary, Manitoba Hydro	
8	acknowledges that changes in the views are a	
9	legitimate concern, and that the project will be	
10	permanently visible in the LAA landscape, and will	
11	be of high prominence from some viewpoints.	
12	However, while the project may be highly prominent	
13	from some viewpoints, it will not change the	
14	overall visual character of the LAA. Therefore,	
15	residual effects on visual qualities will be not	
16	significant.	
17	In regards to cumulative effects, the	
18	visual landscape in the RAA has been substantially	
19	altered by past developments, as we've heard from	
20	my presentation on land use, as well as	
21	Mr. Whetter's on agriculture. Planned projects	
22	will continue to affect the visual quality in the	
23	RAA, particularly those that involve above-ground	
24	infrastructure, such as other transmission lines	
25	and building structures.	

		Page 1546
1	These effects will also include	r ugo ro ro
2	changes to vegetation patterns; for example,	
3	right-of-way clearing could also have an effect on	
4	visual quality. However, identified foreseeable	
5	projects are not expected to change the baseline	
б	character class of the RAA, and therefore	
7	cumulative effects are not significant.	
8	Thank you.	
9	THE CHAIRMAN: Thank you.	
10	Shall we just move right into the next	
11	presentation, then?	
12	MS. BRATLAND: We will just need two	
13	minutes to pull up the next slides. And the	
14	presentation will be on the human health	
15	assessment.	
16	(Brief Recess)	
17	MS. BRATLAND: We are ready with our	
18	next presentation, which will be Dr. Bryan Leece,	
19	presenting on human health effects.	
20	MR. LEECE: Good evening.	
21	My name is Bryan Leece, and I'm a	
22	principal with Stantec, and a senior technical	
23	lead for human health risk assessment in Canada.	
24	I served as the discipline lead for the human	
25	health risk value component, a chapter of the MMTP	

		Dece 1517
1	EIS submission.	Page 1547
2	The human health risk assessment	
3	presentation will follow the same sort of roadmap	
4	that's been used in the other presentations, as	
5	we've seen for this project. We will start with	
б	an overview of why human health risk assessment	
7	was included as a valued component; what the	
8	assessment considered in its deliberations; and	
9	the regulatory guidance that was used in	
10	completing the work.	
11	We will talk about what we heard	
12	through the public and Metis and First Nations	
13	engagement processes, and how this information	
14	helped us frame the human health risk assessment,	
15	or HHRA, to address the concerns as they relate to	
16	the human health risk.	
17	We will briefly discuss what we	
18	assessed in the HHRA, outline the key findings of	
19	the assessment. We will also be talking about any	
20	recommendations for mitigation and monitoring and	
21	followup that arise from the assessment of human	
22	health risk.	
23	And finally, we will outline the	
24	conclusions of the assessment.	
25	Why was human health risk included as	

		Dago 15/9
1	a valued component in the EIS? We are really	Fage 1546
2	looking at human health risk because of the	
3	inherent importance of human health and	
4	well-being.	
5	To understand how human health relates	
б	to health and well-being, it is important to	
7	understand that we are all exposed to physical	
8	agents, such as chemicals, in the environment on a	
9	yearly, daily, and even hourly basis. And the	
10	human health risk assessment provides a way to	
11	evaluate those exposures to determine if the human	
12	health risks associated with these exposures	
13	represent a potential concern for human health.	
14	Exposures to physical emissions from	
15	the project, such as vehicle emissions, dust, or	
16	herbicides, for example, could alter human health	
17	risks, if the exposures are large enough, or if	
18	they persist for long enough, over periods of	
19	months, years. So we must evaluate whether the	
20	emissions from the project have the potential to	
21	alter human health risk, and ultimately represent	
22	the concern for human health.	
23	The human health risk assessment is a	
24	process, and it is a recognized process, that's	
25	used to help evaluate potential human health risks	

		Dogo 15/0
1	associated with exposures to physical agents in	Fage 1549
2	the environment. Physical agents, such as dust	
3	and chemical agents, or herbicides and noise, and	
4	in the case of transmission lines like MMTP, EMF.	
5	Human health risk is assessed by	
б	comparing an individual's estimated daily exposure	
7	to a chemical to the exposure limit for that	
8	chemical. And you can think of the exposure limit	
9	really as an allowable daily intake. Daily	
10	exposures that are below the allowable daily	
11	intakes don't represent a concern for human	
12	health, and they don't represent a human health	
13	risk.	
14	Exposure limits, or allowable daily	
15	intakes, are usually set by regulatory agencies	
16	such as Health Canada, or the U.S. EPA, and they	
17	represent daily intakes that are well below the	
18	levels where actual health effects would be	
19	expected to occur ten times below that up to	
20	ten thousand times below that.	
21	So what that really means is that a	
22	change in a human health risk value and Dr.	
23	Bailey talked about this briefly a little earlier	
24	today is that a change in a human health risk	
25	doesn't mean there is going to be a human health	

	Page 1550
1	effect. And really, what it does mean is that the
2	chance that a human health effect could occur
3	increases as those exposures increase above the
4	allowable daily intakes.
5	Therefore, the assessment of the
6	residual project effects is based on exposure
7	levels that are well below the levels where actual
8	changes in human health can occur. And what this
9	does is it incorporates a precautionary principle
10	into the assessment of human health.
11	The human health risk assessment that
12	was completed as part of the EIS submission for
13	MMTP followed standard risk assessment guidance
14	from agencies such as Health Canada, and although
15	the guidance documents that are shown here really
16	reflect the guidance that Health Canada provides
17	for assessing contaminated sites, it is also the
18	guidance that Health Canada recommends be used for
19	assessing human health risk as part of an
20	environmental assessment.
21	Because herbicide use and EMF are a
22	particular concern for transmission line projects
23	such as MMTP, the HHRA also made use of regulatory
24	guidance specific for the evaluation of these
25	components. The Pest Control Products Act was

		Dago 1551
1	used to help define the regulatory requirements	Fage 1551
2	governing the use of herbicides, and this helped	
3	to establish and define the potential short and	
4	long-term environmental effects that may be	
5	associated with the use of these products. The	
6	International Commission on Non-ionizing Radiation	
7	Protection guidelines for limiting exposure to	
8	time varying electromagnetic fields were also	
9	used, and we used this relying on the work that	
10	Dr. Bailey was talking about earlier today.	
11	During the public and First Nations	
12	and Metis engagement process, we heard a number of	
13	concerns related to potential effects that	
14	emissions from the project could have on human	
15	health. More specifically, we heard that vehicle	
16	emissions and dust during construction and	
17	maintenance operations could alter air quality,	
18	and that these changes could have an effect on the	
19	health of people who are in the areas where these	
20	activities are occurring.	
21	Changes in ambient noise levels during	
22	construction and operation could alter enjoyment	
23	of the areas, and could represent a potential	
24	concern for people who live near the Dorsey,	
25	Glenboro, or Riel Stations.	

		Page 1552
1	We also heard that the use of	1 age 1002
2	herbicides for vegetation control could alter the	
3	quality of country foods, both vegetation and	
4	wildlife, which could represent a human health	
5	risk for people who consume country foods.	
6	The EMF from the transmission line	
7	could also represent a potential risk for people	
8	who live near or engage in traditional or	
9	recreational activities around the transmission	
10	line.	
11	Some of the things that were	
12	considered in routing, you've heard about through	
13	the routing process; but the ones that are	
14	relevant to the human health risk assessment,	
15	really, are the decisions or the attempt to keep	
16	the line away from places like residences,	
17	schools, or other developed areas, for as much as	
18	is practical. So with the aim of being that we	
19	are ever practical, situating the line away from	
20	these features.	
21	Past experiences on other	
22	environmental assessment projects played a	
23	critical role in the design of the human health	
24	risk assessment component of the EIS submission.	
25	From other resource-based and linear projects, the	

		Dogo 1552
1	HHRA team learned that dust and vehicle emissions	Page 1553
2	can change local air quality, and that these	
3	changes can alter human health risk if the changes	
4	are large enough and if they last long enough to	
5	have an effect on long-term air quality.	
б	Construction and operation activities	
7	can alter ambient noise levels in the vicinity of	
8	the project, and these changes can have an effect	
9	on human use and enjoyment of the adjacent lands.	
10	Noise associated with station operations can raise	
11	ambient noise levels in the vicinity of the	
12	station, and that may be noticed by residents near	
13	the stations.	
14	Herbicide use certainly has the	
15	potential to alter soil and country food quality,	
16	which in turn could alter human health risk if the	
17	changes in exposure are high enough, and again, if	
18	these exposures persist for long enough.	
19	The operation of the transmission	
20	lines and supporting transmission infrastructure	
21	at the stations could alter local EMF levels, and	
22	the magnitude of these changes needs to be	
23	considered to determine whether they represent a	
24	potential concern.	
25	We will spend a little bit of time	

		Dogo 1551
1	talking about the methodology that we used to	Page 1554
2	conduct the human health risk assessment. And the	
3	assessment really is associated the assessment	
4	of potential human health risks associated with	
5	emissions from the project relied on a desktop	
6	review and analysis of information provided by the	
7	air quality technical data report and the noise	
8	assessment technical data report, the vegetation	
9	management plan, and the information regarding the	
10	current scientific position on the existence of	
11	the causal relationship between EMF exposure and	
12	changes in human health risk and/or changes in	
13	human health. So the work that Dr. Bailey's group	
14	did.	
15	The air quality assessment provided	
16	the information necessary to understand the	
17	potential change in the long-term air quality	
18	along the right-of-way during construction,	
19	operations, and maintenance. And this information	
20	helped to inform the assessment of potential	
21	changes in human health risk associated with the	
22	inhalation exposures to dust and vehicle emissions	
23	for people who were in the area when these	
24	activities are occurring.	
25	The air quality assessment also	

Page 1555 provided information on the magnitude of the 1 2 predicted changes in air quality, and on how long 3 these changes could be expected to last, which is necessary to understand the potential human health 4 risks. 5 The noise assessment provided 6 7 information on predicted changes in ambient noise 8 levels during construction and operations along the right-of-way and around the Dorsey, Glenboro, 9 and Riel Stations. The information from the noise 10 11 assessment helped to inform the HHRA with respect to the potential effects that changes in ambient 12 noise levels could have on daytime and nighttime 13 noise levels, and how these changes may affect 14 15 things like sleep patterns. 16 The vegetation management plan provided information on the herbicides that are 17 used by Manitoba Hydro, and on the application 18 practices and typical application frequencies. 19 This information was essential in understanding 20 21 how the herbicides that are used by the project could interact with the environment, such as soil, 2.2 plants, and animals. It is also essential in 23 24 determining how these interactions may have the potential to alter human exposure to chemicals, 25

Page 1556

and thereby change the human health risks. 1 2 For EMF, the information we got from 3 the work that Dr. Bailey provided really was the EMF scientific update, and that provided a 4 comprehensive review of the current state of 5 scientific understanding of the relationship 6 7 between EMF exposures and changes in human health and human health risk. This information helped in 8 assessing whether the project -- or predicted 9 project-related EMF fields represented a potential 10 11 human health risk. The human health risk assessment 12 13 evaluated the potential changes in human health risk associated with the potential changes in 14 exposures to the physical agents that we've been 15 talking about. We considered changes in human 16 exposure to vehicle emissions and dust, between 17 current conditions and conditions predicted to be 18 present during construction, and in operations and 19 maintenance phases of the project. 20 Changes in ambient noise levels and 21 the potential for those changes to result in 2.2 increases in annoyances in the community is the 23 24 potential for increased noise complaints. 25 Changes in human exposures to

		Dago 1557
1	herbicides through the consumption of country	Fage 1557
2	foods, such as wild meat and traditional	
3	vegetation and berries, and the potential changes	
4	in human health risk that would be associated with	
5	these changes in exposures, and changes in human	
6	health risk resulting from changes in exposures to	
7	EMF from the project.	
8	As we mentioned earlier, the human	
9	health risk assessment really relies on	
10	information that's provided by other disciplines,	
11	particularly the air quality and the noise	
12	assessments. As a result, the local assessment	
13	area for the human health risk assessment has to	
14	overlap with the local assessment areas for the	
15	air quality and the noise assessments.	
16	Both the air quality and the noise	
17	assessment define their local assessment areas as	
18	a one-kilometre buffer on either side of the	
19	right-of-way. For the air quality assessment, the	
20	LAA represents the anticipated extent to which air	
21	contaminants from the project activities may be	
22	generated and released during construction and	
23	operations.	
24	In the noise assessment, the local	
25	assessment area is defined as the anticipated	

	Pogo 1559
1	extent to which noise levels associated with the
2	project can be heard by the human ear. The
3	spatial boundaries for the HHRA are the same as
4	those as the air quality and the noise
5	assessments, and the LAA for the HHRA therefore
6	really was defined as a one-kilometre buffer on
7	either side of the right-of-way. This LAA
8	represents the anticipated extent to which
9	emissions from the project, such as vehicle
10	emissions, dust, or noise, could potentially alter
11	human exposures.
12	Herbicide use is strictly limited to
13	the right-of-way, and herbicides used by the
14	project would not extend beyond the right-of-way.
15	Therefore the one-kilometre buffer that's defined
16	as the LAA for the noise and the air quality
17	assessments adequately captures the potential
18	changes in exposure to herbicides associated with
19	project activities. The one-kilometre buffer also
20	adequately captures potential changes in EMF
21	exposures, as EMF levels are predicted to approach
22	background within close proximity to the edge of
23	the right-of-way.
24	Temporally, the human health risk
25	assessment looked at the operations and the

Page 1559

1	construction phases.
2	If we take a look now at changes in
3	air quality, the changes in air quality resulting
4	from vehicle emissions and dust during
5	construction and operations and maintenance could
6	alter local air quality on a short-term basis,
7	less than a 24-hour period.
8	Changes in air quality would be very
9	localized, and typically limited to the
10	right-of-way, where construction activities would
11	be taking place. They would also be of very short
12	duration, and would occur while construction or
13	operation or maintenance activities are occurring,
14	and would not persist once daily construction
15	activities have ceased.
16	So the project-related changes in air
17	quality related to vehicle emissions and dust are
18	predicted to be negligible, only occurring for
19	short periods of time at any given location. As a
20	result, the changes in human exposure to vehicle
21	emissions and dust resulting from project-related
22	activities will also be negligible. So if you
23	have a negligible change in exposure to vehicle
24	emissions and dust from the project, the
25	project-related activities and the risks

		Page 1560
1	associated with those will also be negligible.	Tage 1500
2	What this means is that	
3	project-related vehicle emissions and dust	
4	represent a negligible human health concern for	
5	members of the Metis, First Nations, or other	
6	communities who may be in the area where these	
7	project-related construction and/or operations and	
8	maintenance activities are occurring.	
9	During construction of the	
10	transmission line, the noise assessment determined	
11	that the project-related noise would exceed the	
12	residential desirable noise guideline of 55 dBA,	
13	or decibels. However, the exceedances would be	
14	intermittent, and they would be temporary, and it	
15	is anticipated that most locations along the	
16	transmission line would be subject to the	
17	construction noise for the construction of one, or	
18	possibly two, towers. These noise predictions do	
19	not account for attenuation by natural or man-made	
20	features, and therefore what they represent is a	
21	worst-case assessment of the potential change in	
22	noise levels.	
23	Meaning, really, that actual noise	
24	levels would be expected to be lower than the	
25	levels predicted and used for the assessment.	
		Page 1561
----	---	-----------
1	The noise assessment considered	Tage 1001
2	changes in ambient levels along the transmission	
3	line and at the Dorsey and Glenboro and Riel	
4	Stations. Along the transmission line, in	
5	operations, the noise assessment determined that	
6	there would be an inaudible increase in ambient	
7	noise levels, from about 22 decibels to	
8	23 decibels. And this increase in ambient noise	
9	would not really be perceptible to the human ear.	
10	At the stations, the noise assessment	
11	evaluated the change in ambient noise levels of	
12	the closest residence to each of the Dorsey,	
13	Glenboro, and Riel Stations. The ambient noise	
14	levels at all three stations would meet the	
15	residential guideline of 55 decibels for daytime	
16	noise levels. The ambient noise level at the Riel	
17	Station would also be below the 45 the	
18	desirable guideline of 45 decibels, nighttime	
19	noise limits.	
20	Ambient noise levels at the Dorsey and	
21	Glenboro Stations would exceed the 45 dBA	
22	desirable residential nighttime noise guideline,	
23	being 52 dBA at Dorsey and 55 dBA at Glenboro.	
24	Again, these noise level predictions	
25	represent the maximum predicted outdoor levels at	

		Dogo 1562
1	the closest residences, and they do not account	Page 1562
2	for noise attenuation by natural features, such as	
3	trees and shrubs, or man-made features, such as	
4	building or facility structures.	
5	They also do not account for potential	
6	attenuation of noise between outdoors and indoors.	
7	For example, Health Canada guidance on noise	
8	assessments assumes a 15-decibel reduction or	
9	attenuation in noise levels between outdoors and	
10	indoors in buildings with partially-open windows.	
11	So if somebody is sleeping at night	
12	and have a window partially open, you have a	
13	15-decibel decrease in noise levels between what	
14	is outside and what is inside.	
15	If the windows are closed, Health	
16	Canada assumes that there is a 27-decibel decrease	
17	in the noise levels. What this means is that the	
18	indoor noise levels in the residences nearest to	
19	the Dorsey and Glenboro Stations would be at least	
20	15 decibels lower than the 52 and 55 decibels that	
21	have been predicted, and that's not accounting for	
22	natural attenuation of those noises.	
23	So the noise assessment really	
24	determined that along the transmission line, there	
25	would be a slight change in ambient noise levels	

		Dogo 1562
1	that should not result in changes in noise	Page 1563
2	complaints related to increased noise levels for	
3	people living near or engaged in activities on or	
4	near the right-of-way.	
5	The assessment also determined that	
6	low predicted noise levels at the Dorsey and	
7	Glenboro Stations may exceed the nighttime	
8	guideline. The levels indoors would be expected	
9	to be below the 45 dBA level, and thus would not	
10	be expected to result in complaints or sleep	
11	disturbance.	
12	If station-related noise results in	
13	noise-related complaints, noise monitoring can be	
14	undertaken, and passive noise mitigation measures,	
15	such as the construction of sound-attenuating	
16	barriers, or active noise mitigation, such as	
17	noise-cancellation techniques, can be applied to	
18	reduce operational noise.	
19	As I mentioned earlier, the use of	
20	herbicides for vegetation control along the	
21	right-of-way has been raised as a concern. And	
22	yes, if used incorrectly, herbicides can build up	
23	in the soil and in plants that grow in that soil.	
24	This, in turn, could lead up to a building-up of	
25	herbicides in animals that consume the plants that	

		Page 1564
1	have herbicides in them.	r ugo roor
2	The presence of herbicides in country	
3	foods could be a health concern for people who eat	
4	country foods containing herbicides.	
5	However, as mentioned in other	
6	presentations, it is important to know that	
7	herbicides will not be used during construction of	
8	the transmission line; herbicides will only be	
9	used during operations and the maintenance phase,	
10	where their use will be limited to controlling the	
11	growths of trees and tall-growing shrubs.	
12	While it is true that herbicides are	
13	dangerous chemicals that must be used with	
14	caution, it is also true that their use is	
15	strictly regulated at the Federal and Provincial	
16	levels, and the herbicides used by Manitoba Hydro	
17	are approved for use by Federal and Provincial	
18	agencies, and are considered safe for use in	
19	Manitoba and in Canada.	
20	It is also important to understand	
21	that the application requirements for herbicides	
22	are set at the Federal level by the Pesticide	
23	Management Regulatory Agency, or the PMRA, and	
24	that the application rates established by the PMRA	
25	are set to prevent environmental effects occurring	

		Dogo 1565
1	as a result of herbicide usage.	Fage 1505
2	Application requirements set by the	
3	PMRA will be followed by Manitoba Hydro. And as	
4	you heard in the vegetation management plan	
5	presentation, the use of herbicides on the	
6	right-of-way will decrease over time, as	
7	low-growing vegetation becomes established on the	
8	right-of-way, and the need to control	
9	taller-growing vegetation decreases.	
10	Manitoba Hydro's use of herbicides in	
11	the right-of-way will be lower than what the	
12	regulation allows, meaning that the herbicides	
13	used by Manitoba Hydro will not result in	
14	herbicide accumulation in soil or vegetation.	
15	This, in turn, means that the use of	
16	herbicides along the right-of-way will not	
17	accumulate in vegetation or wild meat, and will	
18	not alter the quality of country foods harvested	
19	along the right-of-way.	
20	Because herbicides will not alter	
21	country food quality, they will not alter the	
22	human health risks associated with consuming	
23	country foods, and thus herbicide use represents a	
24	negligible change in human health risk.	
25	Some of the key mitigation measures	

		Page 1566
1	that will be used associated with the use of	Tage 1000
2	herbicides, really, include the application of	
3	herbicides, making sure that they conform to	
4	regulatory requirements.	
5	The vegetation management plan, as	
б	we've talked about before, is designed to reduce	
7	the application frequency of herbicides as	
8	low-growing vegetation becomes established.	
9	Manitoba Hydro will certainly provide	
10	notification of planned herbicide use to Metis,	
11	First Nations, and public users of the	
12	right-of-way, and herbicides will not be used in	
13	known areas of berry or other vegetation	
14	harvesting.	
15	As you heard from Dr. Bailey's	
16	presentation earlier today, the current state of	
17	scientific understanding is that there is no	
18	causal link between exposures to low levels of	
19	electromagnetic fields and changes in human	
20	health. The predicted EMF fields at the edge of	
21	the right-of-way are well below the guidelines for	
22	electric fields recommended by the International	
23	Committee on Electromagnetic Safety and the	
24	guidelines for magnetic fields recommended by the	
25	International Commission for Non-ionizing	

		Dago 1567
1	Radiation Protection.	Page 1567
2	This slide provides a graphical	
3	representation of the predicted electric field	
4	strength for Section E components of the	
5	transmission line. The graph also includes the	
6	ICES recommended guideline maximum exposure in the	
7	column on the left-hand side, so that's except	
8	I'm there we go. Here.	
9	The guideline is 10, and what we see	
10	is that the predicted electric fields on the	
11	right-of-way are lower than the guideline, and at	
12	the edge of the right-of-way, they are more than	
13	ten times lower than the guideline, and lower	
14	still 30 metres beyond the edge of the	
15	right-of-way.	
16	What we have is the guideline in this	
17	column, the maximum on the right-of-way, which is	
18	5.9 here for Section E, at the edge of the	
19	right-of-way, that's dropped to .8, and 30 metres	
20	beyond the right-of-way, that's dropped to .2.	
21	If we take a look at a similar graph	
22	for the electromagnetic the magnetic fields,	
23	what we find is that the maximum predicted on the	
24	right-of-way is considerably lower than the	
25	guideline of 2,000; it is 122 milligauss.	

		Page 1568
1	And what we find, they are about	-
2	95 times lower than that guideline at the edge of	
3	the right-of-way, and more than 250 times below	
4	that guideline 30 metres beyond the right-of-way,	
5	over here, at 7.4. You can't really see the bar	
6	there, but it is there. It is just very, very	
7	small.	
8	What this means is the data suggests	
9	the magnetic fields in the right-of-way will not	
10	represent a human health risk for people who spend	
11	time on the right-of-way or who are in close	
12	proximity to the right-of-way.	
13	In summary, for the EMF, the data	
14	really shows that the predicted changes in EMF	
15	levels represent a negligible human health risk.	
16	In terms of the key mitigation, this	
17	really relates to routing, and the routing really	
18	was selected to limit proximity to residences and	
19	developed areas where practical.	
20	Moving on to cumulative effects, the	
21	human health risk assessment also included a	
22	cumulative effects assessment for potential	
23	effects for air quality and noise, and for	
24	herbicides, and for EMF.	
25	For air quality, there is a potential	

Volume 6

Page 1569 for cumulative effects to occur if project-related 1 2 construction activities overlap with other construction projects. However, given the 3 transient nature of construction activities for 4 linear projects such as MMTP, overlap between 5 construction activities would be expected to be 6 7 very short-lived, and would represent a negligible 8 change in human health risk. For noise, there is a potential for 9 noise from future projects to interact with noise 10 11 from the MMTP, resulting in an increase in ambient noise levels. However, these predictions have not 12 accounted for the noise attenuation in actual 13 noise levels that would likely be lower than 14 15 predicted. If station-related noise results in noise-related complaints, noise monitoring can be 16 undertaken, and passive noise mitigation measures, 17 such as sound barriers, as we talked about before, 18 or active measures, such as noise cancellation, 19 20 can be applied to reduce operational noise. 21 Under the vegetation management plan, herbicide use will be limited, and will conform to 2.2 regulatory requirements to prevent environmental 23 24 effects resulting from herbicide usage. Herbicide use will be strictly controlled and will be 25

1570

		Dogo
1	limited to the right-of-way.	Page
2	And as we've seen talked about a	
3	little bit earlier, herbicide use will not alter	
4	country food quality. What this means is the use	
5	of herbicides in the right-of-way will not overlap	
6	with herbicide usage elsewhere, and thus there are	
7	no cumulative effects associated with herbicide	
8	usage on other projects, and further assessment of	
9	cumulative effects related to herbicide usage was	
10	not warranted.	
11	For EMF, we've talked about the point	
12	that Dr. Bailey made very well earlier on today,	
13	is that there is a potential for cumulative	
14	effects with the projects. However, the electric	
15	and magnetic fields predicted for this project are	
16	well below the recommended guideline limits. In	
17	addition, as noted earlier, the scientific	
18	evidence indicates that EMF associated with	
19	transmission lines do not pose a risk to human	
20	health.	
21	The ongoing engagement for the project	
22	will aid in the identification of harvesting	
23	areas, particularly for berries and vegetation, so	
24	that these can be excluded from areas where	
25	herbicides are applied as part of the vegetation	

		Dogo 1571
1	management plan. It will help set up the proper	Fage 15/1
2	buffer zone, so that herbicides are not being used	
3	in areas where people are harvesting berries.	
4	It will also provide public	
5	notification of herbicide use, so that people are	
6	aware that herbicides have been used or are	
7	planned to be used in the area, and the areas	
8	where that will happen will be identified.	
9	With respect to EMF, Manitoba Hydro	
10	will continue to monitor the state of the	
11	scientific understanding of EMF, and will make new	
12	information available to the public as it becomes	
13	available.	
14	The human health risk assessment	
15	reached the following conclusions regarding the	
16	potential changes in human health risk associated	
17	with changes in ambient air quality, noise,	
18	herbicide usage on country foods, and EMF.	
19	For air quality, the human health risk	
20	assessment determined that changes in ambient air	
21	quality associated with vehicle emissions and dust	
22	during construction and operations represent a	
23	negligible human health risk.	
24	For noise, the HHRA noted that ambient	
25	noise levels during construction and operation are	

		Page 1572
1	not predicted to exceed typical ambient noise	
2	levels on a continuous basis. Occasional	
3	exceedances of daytime noise levels will be short	
4	in duration.	
5	Ambient noise levels at the Dorsey and	
6	Glenboro Stations would exceed the desirable	
7	residential nighttime guideline of 45 dBA;	
8	however, these predicted noise levels, as we	
9	mentioned earlier, do not include natural	
10	attenuation of the sound from vegetation and	
11	structures. This means that the actual increases	
12	in ambient noise levels could be expected to be	
13	lower than the increases predicted in the	
14	assessment.	
15	Passive and/or active noise, where	
16	reduction strategies can reduce noise levels at	
17	the Dorsey and Glenboro Stations if noise	
18	complaints become an issue.	
19	Herbicide use will not alter country	
20	food quality; therefore, herbicide use for	
21	vegetation control on the right-of-way represents	
22	a negligible human health risk, as we mentioned	
23	earlier.	
24	EMF from the project are well within	
25	the limits recommended by regulatory agencies	

		Dago 1573
1	within the right-of-way and beyond the limits of	raye 1575
2	the right-of-way; thus, EMF from the project	
3	represents a negligible human health risk.	
4	The final conclusion is that because	
5	the human health risks associated with changes in	
6	air quality, ambient noise, country foods, and EMF	
7	are determined to represent negligible human	
8	health risks, the project residual effects on	
9	human health are considered to be not significant.	
10	Thank you.	
11	THE CHAIRMAN: Thank you for a very	
12	interesting presentation.	
13	I guess I would ask the Hydro	
14	representatives, it is now five to nine; probably	
15	not much point in starting another one.	
16	MS. BRATLAND: No. We have two more	
17	presentations on this panel, and they each are	
18	approximately 30 to 35 minutes long.	
19	THE CHAIRMAN: Okay. So we will	
20	reconvene at 9:30 tomorrow morning, back here, and	
21	we will finish those two presentations and then	
22	move on to questioning of this presentation.	
23	Any filing or other issues to deal	
24	with?	
25	MS. JOHNSON: Yes, we have a pile of	

```
Page 1574
    paper today.
1
 2
                MH038 is the methodology presentation
    we heard this morning. Thirty-nine is
 3
    Mr. Bailey's presentation. Forty is the first
 4
    part of the socio-economic presentation, the
 5
    introduction. Forty-one is Part 1 of the land use
 6
 7
    presentation. Forty-two is Part 2. Forty-three,
8
    agriculture, Part 1. Forty-four is agriculture
    Part 2. Forty-five is visual quality, Part 1.
9
    Forty-six is Part 2. And number 47 is health,
10
11
    Part 1.
12
                 (EXHIBIT MH-38: Methodology
13
                presentation)
                 (EXHIBIT MH-39: Dr. Bailey's
14
15
                presentation)
16
                 (EXHIBIT MH-40: Introduction
17
                 socio-economic presentation)
                 (EXHIBIT MH-41: Part 1, land use
18
19
                presentation)
                 (EXHIBIT MH-42: Part 2, land use
20
21
                presentation)
                 (EXHIBIT MH-43: Part 1, agriculture
2.2
23
                presentation)
24
                 (EXHIBIT MH-44: Part 2, agriculture
25
                 presentation)
```

		Deee 1575
1	(EXHIBIT Mh-45: Part 1, visual	Page 1575
2	quality presentation)	
3	(EXHIBIT MH-46: Part 2, visual	
4	quality presentation)	
5	(EXHIBIT MH-47: Part 1, health	
6	presentation)	
7	THE CHAIRMAN: Is that it for the	
8	filings?	
9	All right. We will see you all	
10	tomorrow morning at 9:30. Thank you.	
11	(Adjourned at 9:00 p.m.)	
12		
13		
14		
15		
16		
17		
18		
19		
20		
21		
22		
23		
24		
25		

		D (570
1	OFFICIAL EXAMINER'S CERTIFICATE	Page 1576
2		
3		
4		
5	Cecelia Reid and Debra Kot, duly appointed	
6	Official Examiners in the Province of Manitoba, do	
7	hereby certify the foregoing pages are a true and	
8	correct transcript of our Stenotype notes as taken	
9	by us at the time and place hereinbefore stated to	
10	the best of our skill and ability.	
11		
12		
13		
14		
15	Cecelia Reid	
16	Official Examiner, Q.B.	
17		
18		
19	Debra Kot	
20	Official Examiner Q.B.	
21		
22		
23		
24		
25		

This document was created with Win2PDF available at http://www.win2pdf.com. The unregistered version of Win2PDF is for evaluation or non-commercial use only. This page will not be added after purchasing Win2PDF.