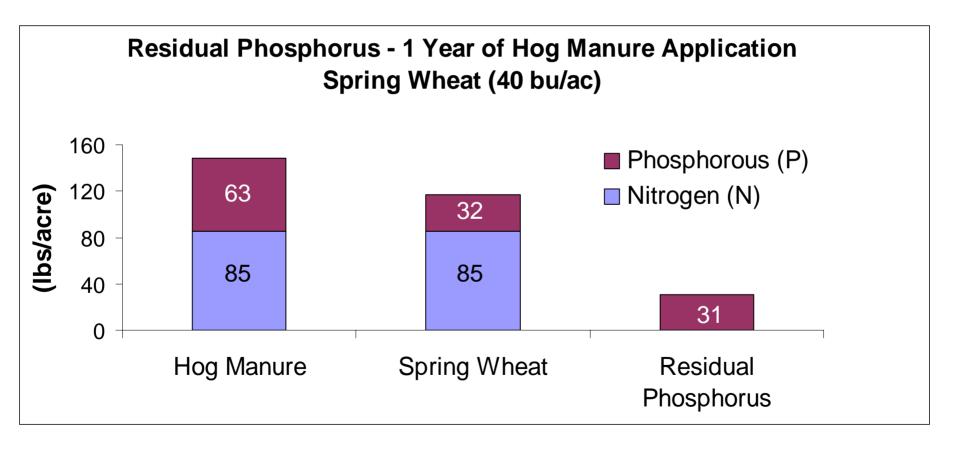
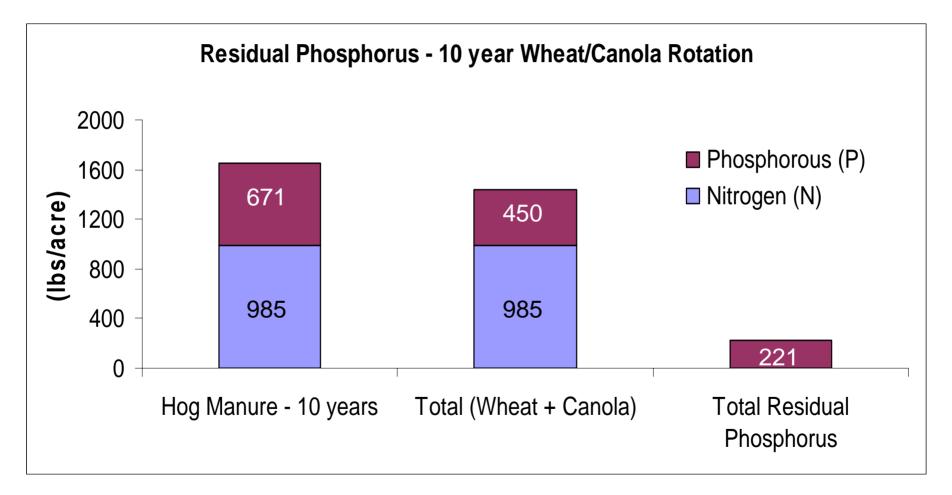
## Managing Nutrients in Manitoba's Livestock Industry

Alan Baron Hog Production Industry Review April 18,2007

# Outline

- Personal Background
- History
- Nutrient Management
  - Manure Application
  - Regulations
    - Nitrogen
    - Phosphorus
- Conclusions and Future Directions


# Personal Background


- Farming Background
  - mixed grain, oilseed and potato operation
  - Livestock 3 year rotation of manure
- Personal On-Farm Experience (early 90's)
  - soil and water management issues
  - government, research and other parties
- Environmental Issues
  - Industrial Waste Water
  - Hog Industry

# History

- Pork Industry in Manitoba
- Trade-offs
  - Economic Growth versus Environmental Sustainability
  - Competing Interests
    - Hog Producers versus Environmentalists
    - Government Departments
- Crossroads for Livestock Industry

- Manure Natural Fertilizer
- Source of Essential Nutrients
  - Nitrogen (N)
  - Phosphorus (P)
  - Others such as potassium (K), sulphur (S), etc.
- **Balance of Nutrients** 
  - Manure Content vs Crop Requirements





1994 – Guidelines for Manitoba Hog Producers

• Land Base Requirement

– What is an animal unit (AU)?

– manure generating 73 kg or 160 lbs nitrogen (N)

#### TABLE 18: LAND BASE REQUIRED FOR MANURE APPLICATION, ACRES

| STEP 1: | Number of Livestock                                  | <br>(A) |
|---------|------------------------------------------------------|---------|
|         | Animal Unit Factor (Table 17)                        | <br>(B) |
|         | Total Animal Units ( $A \times B$ )                  | <br>(C) |
| STEP 2  | Storage and Application Factor (Table 15)            | <br>(D) |
| STEP 3  | Soil and Crop Nitrogen Utilization Factor (Table 16) | <br>(E) |
| STEP 4  | Days in Feeding Location                             | <br>(F) |
| STEP 5  | Acres Required for Feeding Location                  |         |
|         | $(C \times D \times E \times F / 365)$               |         |

1998 Guidelines for MB Hog Producers

## Nutrient Management Manure Application (N-based)

- **1994** maximum application rates recommended:
  - Medium to heavy soils 90 lb/acre
  - Light soils70 lb/acre
- **1997** <u>max application rates increased</u>:
  - Medium to heavy soils
    Max 140 lb N / acre (top 4 ft)
  - Light soils
    Max 90 lb N / acre (top 4 ft)
  - Alfalfa
    Max 275 lb N / acre (top 4 ft)
- **1998** (Regulation no 42/98)
  - Same rates as 1997, but reduced soil sampling depth to top 2 ft
- 2004 max application rates based on soil classes
  - i.e. Soil Class 1,2,3 ("capable of sustained production of common field crops) – allowed 140 lb N/acre in top 2 ft x 2, or 280 lb/N/acre during growing season

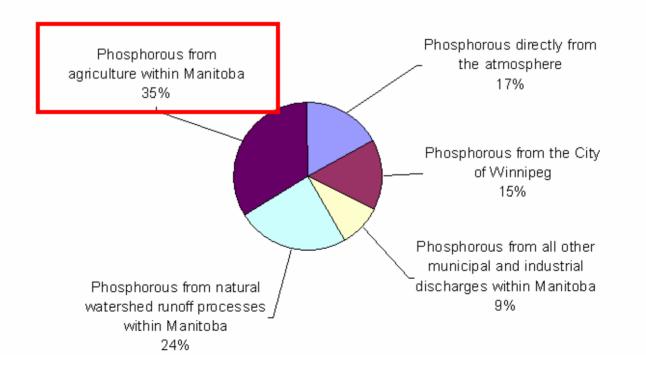
#### Different terms / units of measurement

- ppm, P (elemental Phosphorous), &  $P_2O_5$  (phosphate) - "Soil Test P" is measured using the "Olsen method"

### <u>Multiple terms cause confusion</u>

- Ensure calculations and rates are "comparing apples to apples"
- $i.e. 10 \text{ ppm} = 20 \text{ P} = 46 \text{ P}_2\text{O}_5$

## Nutrient Management P Agronomics vs Manure Application Regulations


| AGRONOMIC RECOMMENDATIONS FOR P |                                                               |                                                                   |  |  |  |  |  |
|---------------------------------|---------------------------------------------------------------|-------------------------------------------------------------------|--|--|--|--|--|
| Soil Test P                     | Rating                                                        |                                                                   |  |  |  |  |  |
| 20+ ppm                         | Very high                                                     | 0 to 10 $P_2 0_5$ / acre for cereals, max 25 $P_2 0_5$ for legume |  |  |  |  |  |
| MANURE MANAGEMEN                | MANURE MANAGEMENT RECOMMENDATIONS FOR P (effective Jan, 2006) |                                                                   |  |  |  |  |  |
| Soil Test P                     | Rating                                                        |                                                                   |  |  |  |  |  |
| <60 ppm                         | low risk                                                      | no limit based on P content                                       |  |  |  |  |  |
| 60 - 119 ppm                    | medium risk                                                   | 2 x crop removal rate of P is allowed                             |  |  |  |  |  |
| 120 - 180 ppm                   | high risk                                                     | 1 x crop removal rate of P is allowed                             |  |  |  |  |  |

### **Crossroads for Manitoba's Hog Industry**

- 1. In summary, changes to regulations have allowed for increasing amounts of residual nitrogen (N)
- 2. However, the phosphorus (P) content of manure has recently become a major concern
- 3. Has the push for economic growth via Manitoba's hog industry compromised the environment, and at what cost?
- 4. Can we restore balance between economic growth and environmental sustainability?

#### Nutrient Management Dealing with the Phosphorus Content of Manure

Manitoba Sources of Phosphorous to Lake Winnipeg (tonnes/yr) Source: Lake Winnipeg Stewardship Board - Interim Report, January 2005



### Nutrient Management

Dealing with the Phosphorus Content of Manure

- In certain scenarios, managing manure based on nitrogen (N) content has resulted in elevated levels of soil phosphorus (P)
- Managing manure as a fertilizer, taking into consideration the P utilization of crops, is a more sustainable practice

*"By strict regulation, manure can only be applied to the land as fertilizer."* i.e. Applied manure application rates should not exceed crop removal rates *SOURCE: (The Truth Matters, MPC Advertisement, June 2002)* 

#### Nutrient Management Dealing with the Phosphorus Content of Manure

Appendix Table 12. Phosphorus recommendations for field crops based on soll test levels and placement.

|                                                   |       |        |        |     | . F             | ERTI                    | LIZE | R PHO | SPHA | TE (                           | $P_2O$ | s) REC            | OMN | IENDED                     | ) lb/ac          |                 |                   |
|---------------------------------------------------|-------|--------|--------|-----|-----------------|-------------------------|------|-------|------|--------------------------------|--------|-------------------|-----|----------------------------|------------------|-----------------|-------------------|
| Soil phosphorus<br>(sodium bicarbonate<br>P test) |       | Cereal |        |     |                 | Buckwheat<br>Faba beans |      | Flax  |      | Peas<br>Field beans<br>Lentils |        | Legume<br>forages |     | Perennial<br>grass forages |                  |                 |                   |
| P                                                 | m     | lb/ac  | Rating | ŝi/ | Sb <sup>2</sup> | 9                       | 9    | 80    | S    | 81                             | SI     | 83                | 51  | seeding<br>PPH             | Est stand<br>BTS | seeding<br>PPI4 | Est st and<br>BTS |
| 7                                                 | 010   | 0      | ME     | 40% | 40              | 40                      | 20   | 40    | 20   | 40                             | 0      | 403               | 20  | 75                         | \$55             | 45              | 30                |
| - 23                                              | 2     | 5      | VL     | 40  | 40              | 40                      | 20   | 40    | 20   | 40                             | 0      | 40                | 20  | 75<br>75                   | 55               | 45              | 30<br>30<br>25    |
| - 2                                               | 5     | 10     | 311    | 40  | 40              | 40                      | 20   | 40    | 20   | 40                             | 0      | 40                | 15  | 75                         | 55               | 45              | 30                |
| Ŭ,                                                |       | 15     | L      | 35  | 35              | 35                      | 20   | 35    | 20   | 35                             | 0      | 35                | 15  | 65<br>60                   | 50               | 35              | 25                |
| - j                                               | 10    | 20     | M      | 30  | 30              | 30                      | 20   | 30    | 20   | 30                             | 0      | - 30              | 10  | 60                         | 40               | 30              | 20                |
|                                                   | 10.25 | 25     | M      | 20  | 20              | 20                      | 20   | 20    | 20   | 20                             | 0      | 20                | 10  | 50                         | 35               | 20              | 15                |
| 1                                                 | 15    | 30     | H      | 15  | 15              | 15                      | 0    | 15    | 20   | 15                             | 0      | 15                | 0   | 45                         | 30               | 15              | 10                |
| 1                                                 |       | 35     | H      | 0   | 10              | 10                      | 0    | 10    | 20   | 10                             | 0      | 10                | 0   | 35                         | 25               | 5               | 5                 |
| 2                                                 | 0     | 40     | VH     | 10  | 10              | 10                      | .0   | 10    | 20   | 10                             | 0      | 10                | 0   | 30<br>25                   | 20               | 0               | 0                 |
| 2                                                 | 0+    | 40+    | VH+    | 10  | 10              | 10                      | 0    | 10    | 20   | 10                             | 0      | -10               | 0   | 25                         | _ 20             | 0               | 0                 |

20+ ppm

= very high

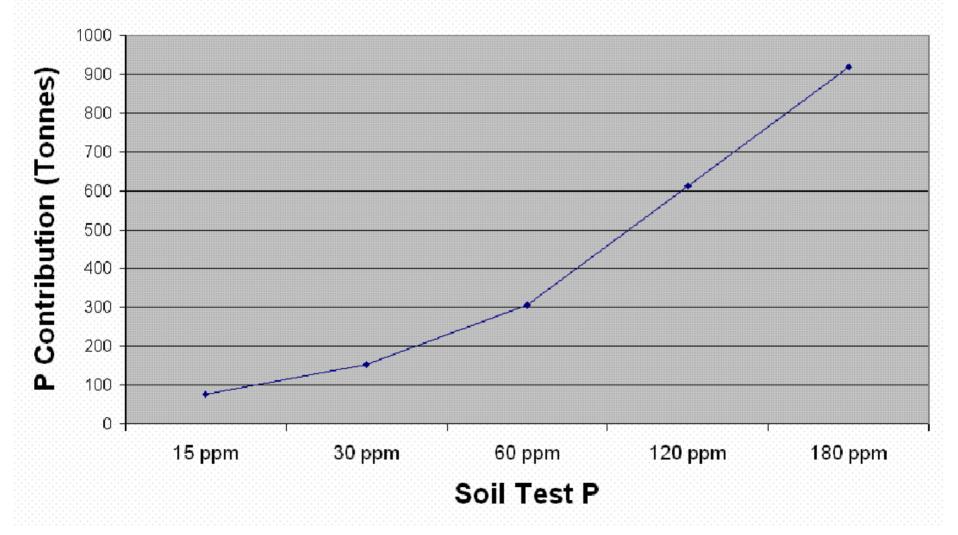
S<sup>1</sup> seed placed rates

Sb<sup>2</sup> - side banded rates for row crops

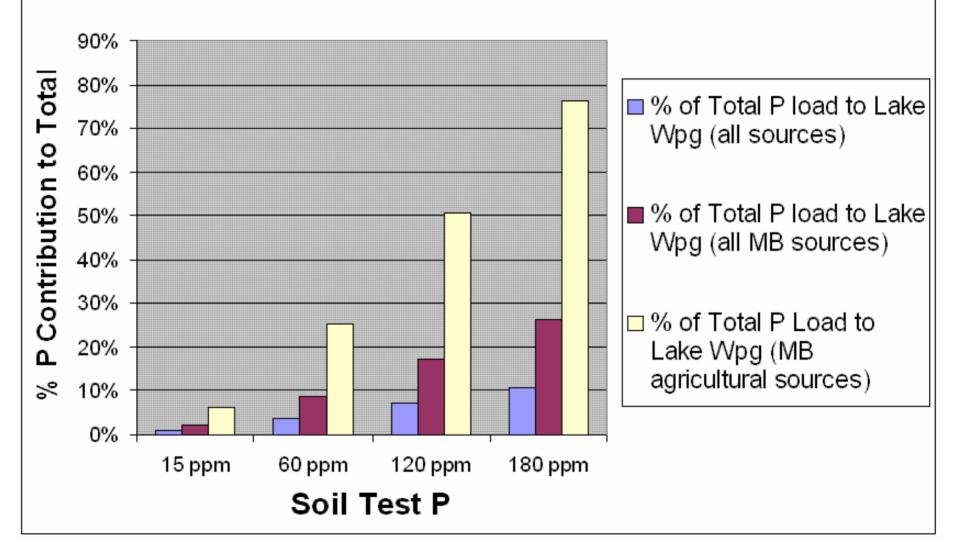
B<sup>3</sup> - banded away from the seed

PPI<sup>4</sup> – for forages phosphorus is applied most effectively by banding 1 inch to the side and below the seed. If phosphate cannot be banded, then broadcast and preplant incorporate.

BTP - broadcast for established stands of forages


Est stand = established stands of forages

Source: Manitoba Fertilizer Recommendation Guidelines Based on Soil Tests: <u>Http://www.gov.mb.ca/agriculture/soilwater/soilfert/fbd02s16.html#12</u>


### Impact of "Soil Test P" on Phosphorous Loading Risk to Lake Winnipeg

- High soil test P values are common in fields fertilized with hog manure
- As soil test P increases, the risk of phosphorous loading to surface water increases at the same rate.
- This relationship can be illustrated by using phosphorous source data presented by the Lake Winnipeg Stewardship Board – Interim Report, January 2005.
- It is possible to isolate the average level of P loading per acre based on different starting soil test P values...

#### Soil Test P and P Contribution to Lake Winnipeg, Manitob Hog Industry, Revised Data



### Soil Test P and P Contributions to Lake Winnipeg, Manitoba Hog Industry



2006 Hog Industry Facts & Assumptions (As stated by MPC in a presentation posted on their website "The Hog Industry in Manitoba")

| Category                                              | N             | Р           |
|-------------------------------------------------------|---------------|-------------|
| Tonnes Excreted (2006)                                | 29,847        | 10,995      |
| Estimated Average Crop Removal Rate                   | 99.5 kg/ha/yr | 15 kg/ha/yr |
| Crop land area required to recycle nutrients excreted | 300,000       | 744,000     |

- MPC requires 2.44 times more land area, or an additional 444,000 ha, to sustainably manage phosphorous
  - inputs cannot exceed crop removal rates
  - science-based crop removal calculations ignored until now.

# SUMMARY

- 1) MB Hog Industry Unsustainable Manure Management
- 10-15 years
- N-based application rates lead to P accumulation
- 2) Lake Winnipeg Phosphorus Loading
- P-loading will increase under current management practices
- 3) Environment versus Economics
- Land base to manage nutrients (N and P) in a sustainable agronomic manner
- Pressure from Hog Industry to compromise
  - Economics of manure management the "waste bucket" approach
  - Environmental stewardship and the protection of MB water

## Effectiveness of MB Manure Management Regulations

- Regulations incentives used to motivate compliance – rewards, penalties, monitoring and enforcement
- Saying that MB regulations are amongst the most strict in the world...DOES NOT MAKE THEM SUSTAINABLE!
- Low level fines and deterrents facilitate pollution
  - More often than not, farm economics dictate producer's behaviour
  - commitment to environmental stewardship
- From 1998/99 to 2005/06, MB Livestock Manure & Mortalities Management Regulation reported:
  - 115 prosecutions and 398 warnings
  - Only \$129,579 in fines collected

#### Livestock Manure & Mortalities Management Regulation

#### Summary Enforcement Activities 1998/99 to 2005/06

| Fiscal Year | Prosecutions | Warnings | Orders | Fines (\$) |
|-------------|--------------|----------|--------|------------|
| 1998-99     | 12           | 32       | 7      | 11,862.    |
| 1999-00     | 9            | 35       | 10     | 8,496.     |
| 2000-01     | 16           | 49       | 22     | 8,067.     |
| 2001-02     | 16           | 53       | 34     | 11,903.    |
| 2002-03     | 15           | 59       | 21     | 20,280.    |
| 2003-04     | 19           | 54       | 57     | 23,076.    |
| 2004-05     | 16           | 63       | 45     | 36,960.    |
| 2005-06     | 12           | 53       | 35     | 8,935.     |
| TOTALS      | 115          | 398      | 231    | 129,579.   |

#### Average fine per violation:

= \$129,579 Total fines collected / 115 prosecutions = \$1,127 per prosecution

http://www.gov.mb.ca/conservation/envprograms/livestock/pdf/livestock\_enforceme nt\_activities\_1998\_99\_to\_2005\_06.pdf

# Conclusions

- 1. Manitoba's hog industry needs to operate in an environmentally sustainable manner
- 2. Current manure management regulations do not represent a sustainable benchmark.
- 3. For science-based manure management regulations, MB's hog industry must not condone application rates that exceed the crop removal rate of N, P, and other nutrients.
- 4. Ineffective monitoring and enforcement of manure application regulations has contributed to current problems in MB's hog industry

# FUTURE DIRECTIONS

- Nutrient Thresholds must be based on:
  - ability of crops to use nutrients
  - consider residual nutrients applied in previous years
  - <u>NOT</u> holding capacity of soil
- Conduct field testing and publicize results on an ongoing basis
  - acquire funding to assess and monitor P transport risks throughout the province
  - ensure accountability of regulators and producers

# FUTURE DIRECTIONS

- Land base
  - Hog industry requires 2.44 times the area currently used
    - stop P accumulation of MB soils
    - prevent P loading of MB water resources.
- Lesson learned take things slow
  - ambitious growth contributed to the current situation
  - ignored the science of P recycling rates; crop recycling of P
- Maintain a proactive approach