MANITOBA CLEAN ENVIRONMENT COMMISSION	Page 926
KEEYASK GENERATION PROJECT	
PUBLIC HEARING	
Volume 5 * * * * * * * * * * * * * * * * * * *	
Transcript of Proceedings Held at Fort Garry Hotel	
Winnipeg, Manitoba	
MONDAY, OCTOBER 28, 2013	
* * * * * * * * * * * * * * * * * *	

APPEARANCES	Page 927
CLEAN ENVIRONMENT COMMISSION Terry Sargeant - Chairman Edwin Yee - Member Judy Bradley - Member Jim Shaw - Member Reg Nepinak - Member Michael Green - Counsel to the Board Cathy Johnson - Commission Secretary	
MANITOBA CONSERVATION AND WATER STEWARDSHIP Elise Dagdick Bruce Webb	
KEEYASK HYRDOPOWER LIMITED PARTNERSHIP Doug Bedford - Counsel Janet Mayor - Counsel Sheryl Rosenberg - Counsel Bob Roderick - Counsel Jack London - Counsel Vicky Cole Shawna Pachal Ken Adams Chief Walter Spence Chief Louisa Constant Chief Betsy Kennedy Chief Michael Garson	
CONSUMERS ASSOCIATION OF CANADA Byron Williams - Counsel Aimee Craft - Counsel Gloria Desorcy Joelle Pastora Sala	
MANITOBA METIS FEDERATION Jason Madden – Counsel Ms. Saunders	
MANITOBA WILDLANDS Gaile Whelan Enns Annie Eastwood PEGUIS FIRST NATION Lorraine Land - Counsel Cathy Guirguis - Counsel Lloyd Stevenson Jared Whelan	

CONCERNED FOX LAKE GRASSROOTS CITIZENS Agnieszka Pawlowska-Mainville Dr. Stephane McLachlan Dr. Kulchyski Noah Massan

PIMICIKAMAK OKIMAWIN Kate Kempton - Counsel Stephanie Kearns - Counsel Darwin Paupanakis

KAWEECHIWASIHK KAY-TAY-A-TI-SUK Roy Beardy

INDEX OF PROCEEDINGS

Keeyask Physical Environment Panel Ms. K. Koenig, Mr. J. Malenchak, Mr. M. St. Laurent, Mr. W. De Wit, Mr. G. Rempel, Mr. J. Ehnes, Presentation 932 Cross-examination by Ms. Whelan Enns 997 Cross-examination by Ms. Land 1062 Cross-examination by Ms. Pawlowska and Mr. McLachlan 1074 Cross-examination by Ms. Kearns 1123 Questions by the Board members 1139

INDEX OF EXHIBITS

KHLP40 Physical environment presentation 1148

INDEX OF UNDERTAKINGS

9 Advise if Manitoba Hydro discussed 1134 with anyone other than the partnership First Nations about the effectiveness of debris management programs

Page 931 Monday, October 28, 2013 1 Upon commencing at 9:30 a.m. 2 3 4 Monday, October 28, 2013 5 Upon commencing at 9:30 a.m. THE CHAIRMAN: Good morning. Welcome б back to week two of our Winnipeg hearings, same 7 building, new room. We're here for this week 8 only, I believe, and then we're back up to seven 9 next week and the remaining weeks. 10 One very important bit of knowledge in 11 12 case you don't know, the washrooms are on the far side of the lobby down a couple of stairs right by 13 14 the gift shop. 15 I heard some sounds coming out of that sound system a few minutes ago that made me think 16 that perhaps the ghost from room 202 had got out. 17 I hope not. The sound technician is shaking his 18 19 head, so I take it that it's his creation and not 20 an escape. 21 We are dealing this morning with physical environment assessment. I believe there 22 23 are a couple of people on the front table who will need to be sworn in. So Madam Secretary? 24 MS. JOHNSON: Could the two of you 25

		Dogo 022
1	please state your names for the record?	Page 952
2	MS. KOENIG: Kristina Koenig.	
3	MS. JOHNSON: And Mr. DeWit as well?	
4	MR. DEWIT: William DeWit.	
5	(Kristina Koenig: Sworn)	
6	(William DeWit: Sworn)	
7	THE CHAIRMAN: Thank you. I'd also	
8	ask Mr. St. Laurent, are you the chair of this	
9	session?	
10	MR. DE WIT: No, I am, sir.	
11	THE CHAIRMAN: Mr. De Wit, could you	
12	introduce those at the back table? They don't	
13	need to be sworn in, we'd just like to have them	
14	introduced for the record.	
15	MR. De WIT: Okay. On the far left we	
16	have Lynden Penner, beside him Rajib Ahsan, Habib	
17	Ahmari, Dave Morgan, Susan Collins, Kevin Gawne,	
18	Phil Slota, and Bill Hamlin.	
19	THE CHAIRMAN: Thank you. And you may	
20	proceed.	
21	MR. De WIT: All right. This morning,	
22	we are continuing on in the series of	
23	presentations related to the regulatory	
24	assessment. I believe this is the fifth	
25	presentation. And what we'll be looking at today	

		D 000
1	is the physical environment.	Page 933
2	So good morning, Mr. Chairman,	
3	Commissioners, participants and members of the	
4	public. The panel here would like to thank you	
5	for the opportunity to meet with you today and	
б	present and discuss the physical environment	
7	section of the Keeyask Environmental Impact	
8	Statement.	
9	So I'd like to take a moment to	
10	introduce our panel members. For myself, my name	
11	is William or Wil DeWit. I am a water resources	
12	engineer at Manitoba Hydro. I had been involved	
13	in managing the physical environment studies and	
14	have been involved in aspects of the physical	
15	environment studies including water temperature,	
16	dissolved oxygen and debris.	
17	On the far right of the table we have	
18	Ms. Kristina Koenig. She is a water resources	
19	engineer at Manitoba Hydro. She lead the	
20	development of the future climate scenarios for	
21	the climate change sensitivity analysis in the	
22	environmental assessment.	
23	Beside her is Dr. Jarrod Malenchak.	
24	He is a hydro technical engineer at Manitoba Hydro	
25	specializing in hydraulic design, hydraulic	

		Page 934
1	modeling and river ice engineering. Jarrod has	r ugo oo r
2	been working on the Keeyask project since 2009,	
3	with preliminary engineering and physical	
4	environment teams, and is currently a	
5	hydrotechnical design lead for the project.	
6	Beside me on my right is Mr. Marc	
7	St. Laurent. He is a hydropower planning engineer	
8	at Manitoba Hydro. He has been involved in	
9	Keeyask since 1999, first as a hydrotechnical	
10	engineer carrying out hydraulic design and water	
11	regime studies. He spent four years coordinating	
12	physical environment assessment for Keeyask, and	
13	since 2009 had been the lead planning engineer	
14	managing the stage four preliminary engineering	
15	studies.	
16	To my left is Mr. George Rempel. He	
17	is a water resources engineer and is a principal	
18	at Stantec Consulting. He has extensive	
19	experience conducting environmental assessments	
20	for a variety of projects. He assisted in the	
21	overall coordination of the physical environment	
22	studies, and was more directly involved in the air	
23	quality and noise component.	
24	And to the far left is Dr. James	
25	Ehnes, a terrestrial ecologist and president of	

		Daga 025
1	Ecostem Consulting Limited. He lead the	Page 935
2	assessment of the peat land disintegration	
3	component of the physical environment studies.	
4	So for introduction, the physical	
5	environment section of the EIS describes	
6	predictive physical changes resulting from the	
7	construction and operation sorry, about that,	
8	apparently the batteries were dying on the lapel	
9	mic.	
10	All right. So the physical	
11	environment section of the EIS describes	
12	predictive physical changes resulting from the	
13	construction and operation of the project. As	
14	Ms. Cole noted last week in the EA approach panel,	
15	there are no valued environmental components	
16	identified in the physical environment studies.	
17	However, the changes to the physical environment	
18	form the pathways for effects to the valued	
19	environmental components that are assessed in the	
20	aquatic terrestrial socio-economic resource use	
21	and heritage components of the Keeyask EIS.	
22	The environmental assessment considers	
23	the past and existing environment, the future	
24	environment without the project and the future	
25	environment with the project.	

		Page 936
1	I won't read through the outline, but	. age eee
2	the physical environment topics that were	
3	considered in the study will be reviewed through	
4	the presentation and we'll have a description of	
5	these on the following slide. So this slide gives	
6	an indication of how the different physical	
7	environment topics are interrelated and connected	
8	to each other.	
9	Excuse me, I have to organize myself	
10	for working with a mic. Sorry about that, I just	
11	had difficulty reading my notes where the other	
12	mic was.	
13	So first we have the physiography	
14	section, or physical geography, which deals with	
15	the study of the physical features of the earth's	
16	surface and describes the physical setting in	
17	which the project takes place. The project will	
18	affect the physical landscape through activities	
19	such the construction of dams, dykes, clearing for	
20	roads and camps, and use of borrow areas and	
21	borrow materials.	
22	Climate, air quality and noise.	
23	Climate deals with the normal or average weather	
24	conditions in the area, implications of climate	
25	change from the local climate conditions and the	

		Dogo 027
1	implications of the project in terms of its	Fage 937
2	greenhouse gas emissions. Project activities can	
3	have effects on air quality through things like	
4	vehicle exhaust emissions, while the use of	
5	equipment and other activities during construction	
6	will also create noise at the site. Changes to	
7	air quality and noise have the potential to affect	
8	people who may be located to the nearest large	
9	construction site such as the Keeyask project.	
10	Water regime and ice processes. The	
11	project will alter the water regime conditions by	
12	raising water levels. So in the existing, with	
13	the existing environment, we have existing present	
14	water levels with the project. A reservoir will	
15	be formed and the water levels will be raised to a	
16	new level. And when the project is operating,	
17	those water levels will fluctuate as water is	
18	impounded or withdrawn from the reservoir during	
19	operation.	
20	Changes to the water regime also alter	
21	the ice processes that take place, and the	
22	formation and breakup of the ice and the type of	
23	ice that forms.	
24	Next we have a look at groundwater.	
25	In the existing environment, the groundwater is in	

		Page 938
1	balance with the current water level. When the	i ugo oco
2	reservoir is raised, water levels in the ground	
3	will also be raised along the shoreline changing	
4	water levels in the ground adjacent to the	
5	reservoir. These changes could have potential	
б	implications on terrestrial habitats which are	
7	considered in the terrestrial studies.	
8	Next we have shoreline erosion	
9	processes and peat land disintegration. When the	
10	reservoir is impounded and filled, it will result	
11	in flooding of lands adjacent to the reservoir.	
12	This will flood areas covered in peat and will	
13	create a new shoreline at a new location farther	
14	back from where the current shoreline is located.	
15	These shorelines will be formed in mineral	
16	materials and peat materials.	
17	Along the new shoreline, erosion will	
18	occur. And within flooded areas, the flooded	
19	peat, some of that peat may be able to float up to	
20	the surface where it may float up and be	
21	potentially transported away. And these processes	
22	are important to terrestrial considerations in	
23	terms of land lost and also in terms of effects to	
24	aquatic environment.	
25	Changes to the water regime and	

		Dago 020
1	processes of shoreline erosion and peat	Fage 939
2	disintegration alter the sedimentation processes	
3	in the environment. The changes to the water	
4	level reduce flow velocities and sediments may be	
5	deposited in the reservoir, and erosion processes	
6	may also contribute sediment to the reservoir that	
7	may be transported and settles to the bottom,	
8	which also relates to potential implications on	
9	the aquatic environment.	
10	Flooding of terrestrial areas and	
11	erosion of shorelines have the potential to add	
12	debris to the reservoir, which can impede the use	
13	of the reservoir by people for things such as	
14	resource harvesting.	
15	And lastly, we come to water	
16	temperature and dissolved oxygen. These are	
17	important to aquatic life. Dissolved oxygen is	
18	important because just like people, fish and other	
19	aquatic life need oxygen to breathe and low oxygen	
20	levels can be harmful to aquatic life. Oxygen may	
21	be removed from the water due to the decay of	
22	organic matter present in the water.	
23	So we come to the area that was	
24	considered in the physical environment studies.	
25	The physical environment study, the overall area	

		Page 940
1	encompasses the area from the outlet of Split Lake	Tage 340
2	and Clark Lake at the west end near Tataskweyak	
3	Cree Nation. It covers the reach of the river,	
4	approximately 50 kilometres from the outlet of	
5	Clark Lake downstream to Stephens Lake, which is	
б	the area in which the reservoir will be formed,	
7	and includes Stephens Lake.	
8	The local study area for the project	
9	includes the physical footprint of the project, so	
10	where all the construction activities will take	
11	place. It matches the largest of the local study	
12	areas considered in the terrestrial environment	
13	section. Detailed studies in the physical	
14	environment section were particularly focused in	
15	the vicinity of the reservoir from the outlet of	
16	Clark Lake to the generating station where many of	
17	the largest effects occur.	
18	So in the general approach to the	
19	assessment, the physical environment studies were	
20	performed by a team of technical specialists, many	
21	of whom you see sitting with me today. They	
22	considered information from various sources such	
23	as historic reports, recent field studies in the	
24	Keeyask area, proxy area studies on other Manitoba	

25 Hydro reservoirs, which is field studies of areas

		Da
1	that may be comparable to the future Keeyask	Page 941
2	reservoir, information from technical	
3	publications, and local knowledge and Aboriginal	
4	traditional knowledge. These data were used along	
5	with a variety of analytical tools to predict	
6	project effects.	
7	So some of the historic and technical	
8	data sources included information from the lower	
9	Nelson River, such as Lake Winnipeg, Churchill,	
10	Nelson River Study Board Report, Manitoba	
11	Ecological Monitoring Program studies, Split Lake	
12	Cree Post Project Environmental Review, and	
13	historical records such as water level and flow	
14	data collected by Manitoba Hydro, and the Federal	
15	Government Water Survey of Canada, and weather	
16	data from Environment Canada among others.	
17	More intensive field studies have	
18	taken place in the Keeyask area since 2001, both	
19	for physical environment and other study areas in	
20	the EIS. And these included such things as water	
21	velocity measurements, sedimentation and erosion	
22	monitoring, collection of sediment cores in Gull	
23	Lake and Stephens Lake, river and lake bed	
24	elevation measurements and surveys, collection of	
25	soil profile information at more than 850 sites,	

		Page 942
1	and the picture shows an example of people digging	
2	a test hole, and more than 840 geotechnical	
3	boreholes drilled into the area.	
4	In the proxy study areas on Stephens	
5	Lake, over 1,700 soil profiles were obtained.	
б	Water temperature and dissolved oxygen	
7	measurements were obtained over many years. And	
8	satellite imagery, aerial photographs and videos	
9	were also utilized, with some information in terms	
10	of the satellite imagery going back as far as	
11	1962.	
12	Within the studies, there are a number	
13	of analytical approaches that were used to	
14	identify the potential effects of the project.	
15	And these include more technical computer based	
16	models; widely accepted industry standard models,	
17	which were used to assess various effects such as	
18	water regime changes and sediment transport;	
19	empirical and physically based models, for	
20	example, the integrated shoreline erosion and peat	
21	land disintegration models which relied on	
22	information obtained from proxy area studies; and	
23	process models such as the transport of floating	
24	peat; and simpler mass balance calculations such	
25	as used to assess sediment due to in-stream	

943

		Page
1	construction.	
2	Due to the interconnected nature of	
3	many of the physical environment topics, the	
4	Keeyask physical environment study team had a high	
5	degree of collaboration utilizing each other's	
6	information. The study team also collaborated	
7	with the other study teams in aquatic,	
8	terrestrial, socio-economic, because the physical	
9	effects of the project form the pathways for	
10	effects to the VECs considered in the study areas.	
11	There was also interaction with partner First	
12	Nations, and results were discussed in various	
13	meetings to ensure the local environment was	
14	understood and that effects of concern were being	
15	considered.	
16	Results were presented and discussed	
17	at public meetings with members of the partner	
18	First Nations as well.	
19	And this gives an indication of some	
20	of the activities involved. Partners from members	
21	of partner First Nations were involved in many of	
22	the field studies. There were I won't get into	
23	this, Ms. Cole dealt with this more in her EA	
24	approach panel but various committees that were	
25	set up a part of the process where we interacted	

		Dago 0//
1	with the partner First Nations, including	raye 944
2	environmental study working groups, and the	
3	partners reviewed and commented on response to EIS	
4	guidelines and initial results, and provided a	
5	great deal of feedback through these processes.	
6	Now, we'll move into discussion of	
7	more of the physical environment topics. So first	
8	up we'll look at physiography. As I noted,	
9	physiography or physical geography deals with the	
10	study of the physical features of the earth's	
11	surface. This section considered the existing	
12	physical features of the study area, including	
13	bedrock and surface geology, soils and peat lands,	
14	which dealt with more extensively in the	
15	terrestrial studies, and permafrost. Effects of	
16	the project, including the area or footprint	
17	affected by the project, which Mr. St. Laurent has	
18	already noted in the project description panel.	
19	Excavations and use of borrow materials and	
20	excavated material not required for construction.	
21	So description of the general	
22	geological setting. The study, the overall study	
23	area, the geological setting reflects the	
24	influence of past glaciation processes associated	
25	with advancing and retreating ice sheets, and the	

		Dago 0/5
1	presence of glacial Lake Agassiz in the distant	Page 945
2	past.	
3	The area is underlain by a Precambrian	
4	bedrock base, and this is seen in surface outcrops	
5	in various locations, particularly along the	
6	Nelson River, which I believe the CEC panel would	
7	have seen in their visit to Gull Rapids.	
8	This is overlain by thicker layers of	
9	glacial deposits called till material. It's an	
10	unsorted mix of materials that may include	
11	boulders, pebbles, sand and silts. And this would	
12	have been laid down during glacial advances and	
13	retreats at various times. Overlying the till	
14	material is post glacial deposits. These are	
15	generally thin and not always present, and they	
16	include bolder, cobble, sand, gravel and Lake	
17	Agassiz silts and clays which were laid down when	
18	this area was covered by Lake Agassiz. These	
19	types of materials, the bedrock, till and post	
20	glacial deposits are what are referred to as	
21	mineral materials or earth materials.	
22	Peat land are the predominant surface	
23	material type in the study area and cover more	
24	than 85 percent of the local study area. Peat	
25	lands are what we refer to as organic material as	

		Dege 046
1	it's derived from living matter.	Page 946
2	Permafrost is present in the area,	
3	discontinuous permafrost is present in more than	
4	75 percent of the study area and about 20 percent	
5	has no permafrost. Discontinous permafrost means	
6	that the permafrost is present, but it is present	
7	in a patchy distribution.	
8	So if you take a look at the project	
9	footprint focusing a bit more down to the site	
10	level, where the generating station would be	
11	constructed and located. So the project footprint	
12	will cover approximately 14,000 hectares. This	
13	includes altered water areas, which are areas of	
14	existing waterway, including Gull Lake and the	
15	Nelson River in which water levels are affected.	
16	It includes planned disturbed areas.	
17	So these are areas where we know that	
18	construction will take place where, for example,	
19	the dam and generating station and dykes are	
20	located, we know those areas will be disturbed.	
21	And it includes potentially disturbed areas which	
22	are areas that may not be required for the	
23	construction of the project, but there may be some	
24	disturbance occurring. For example, along the	
25	dykes, there may be space required to operate and	

		$D_{a} = 0.47$
1	maneuver machinery, and some additional footprint	Page 947
2	area may be cleared along those dykes, but it's	
3	likely that not all of the potentially disturbed	
4	area would be used.	
5	We also note that the planned	
6	disturbed area includes borrow areas likely to be	
7	used during construction. However, it is expected	
8	that in some borrow areas, only a fraction of the	
9	total borrow area will actually be utilized.	
10	However, for the purpose of the assessment, it is	
11	conservatively assumed that the entire area, an	
12	entire borrow area will be disturbed if only a	
13	small part of it is likely to be used.	
14	And looking at material quantities, a	
15	large amount of earth fill will be required to	
16	construct the project. So this is the rock and	
17	granular and impervious material, or mineral	
18	earth materials, so approximately 8 million cubic	
19	metres. There will be approximately	
20	3 million cubic metres of rock excavations and	
21	some of this material will be used for the earth	
22	fill. And there will be excess excavated	
23	material, and this is material that is not	
24	required for construction, and this will be placed	
25	in material placement areas which were described	

		Dog
1	in more detail in Mr. St. Laurent's project	Pag
2	description panel. And approximately	
3	4 million cubic metres of excess material will	
4	need to be placed in the placement areas.	
5	Next we have climate. Climate	
6	considerations within the EIS include current	
7	climate conditions, effects of the environment on	
8	the project, effects of the project on the	
9	environment, and this relates to greenhouse gas	
10	emissions, and sensitivity of conclusions to	
11	projected climate change.	
12	So regarding effects of environment on	
13	the project, the project is designed for the	
14	environment and environmental conditions in which	
15	it will operate. Some of the considerations	
16	included design of cofferdams used during	
17	construction to withstand flood flows, capacity of	
18	the dam and generating station to pass an unlikely	
19	extreme flood during operation, design of dams and	
20	dykes to withstand rare high wave events, and	
21	design of dykes to accommodate permafrost	
22	conditions. Risks to the public and the	
23	environment are minimized through the design and	
24	ongoing monitoring and maintenance of project	
25	infrastructure.	

1	A lifecycle assessment was performed	Page 949
2	for the Keeyask project to quantify the amount of	
3	greenhouse gas or GHG implications over the life	
4	of the project. These GHG implications were	
5	compared with other alternative forms of	
6	electrical generation. The assessment was carried	
7	out consistent with the ISO 14,040 2006 standard	
8	for lifecycle assessments, and include a	
9	consideration of factors such as the manufacture	
10	and transport of components and construction	
11	materials, construction activities and equipment	
12	operation, clearing and other land use changes	
13	including the reservoir, operation and maintenance	
14	during the life of the project, which would	
15	include things like replacing components during	
16	the life of the project, and decommissioning at	
17	the end of the project life.	
18	So this chart depicts the primary	
19	sources of greenhouse gases from the project.	
20	Approximately 46 percent of the emissions of	
21	greenhouse gases are related to construction and	
22	relate to building material, the manufacture of	
23	the building materials such as steel and cement,	
24	the transportation related to construction, so	
25	transportation of building materials to site, and	

1	on-site construction activities.	Page 950
2	Approximately 51 percent of the total	
3	emissions result from land use changes, such as	
4	clearing for roads and transmissions and creation	
5	of the reservoir. Most of the emissions due to	
6	land use changes are a result of the reservoir.	
7	A small amount of the total emissions	
8	is attributed to maintenance and refurbishment	
9	during the life of project, and decommissioning	
10	activities, which account for about 3 percent of	
11	the total.	
12	So this chart shows a comparison of	
13	Keeyask emissions to other generation options, and	
14	on the left side of the chart we see that the	
15	comparison scale is the amount of greenhouse gas	
16	emissions, or the emission intensity for a given	
17	unit amount of power generated. And it related to	
18	the amount of CO2 produced to generate that amount	
19	of power.	
20	So for Keeyask, the emission intensity	
21	is about two and a half tonnes of carbon or CO2	
22	per gigawatt hour, which you may see as much lower	
23	than the emissions from an equivalent sized coal	
24	plant and natural gas types of plants.	
25	So, in the end, the project would	

	Pa	ae 951
1	result in fewer greenhouse gas emissions over its	JC 001
2	life than an equivalently sized gas-fired station	
3	produces in half a year, or the amount a coal	
4	facility produces in less than a hundred days.	
5	Air quality and noise. Air quality	
6	considers the likelihood of exceeding the air	
7	quality guidelines, particularly for people	
8	residing off site. Airborne emissions are	
9	primarily due from exhaust from gasoline and	
10	diesel engines, vehicle traffic on roads. Noise	
11	considers the likelihood of impacts, particularly	
12	with respect to people residing off site. Noise	
13	will be produced due to project activities such as	
14	equipment operation throughout the footprint area.	
15	Currently there are no major sources	
16	of airborne emissions or noise near the project	
17	site.	
18	The sound of flowing water in Gull	
19	Rapids is a notable feature of the local	
20	environment.	
21	So regarding air and noise emissions	
22	during construction, the sources of emissions will	
23	be more concentrated near the main construction	
24	area in the vicinity of the dam and generating	
25	station at spillway. But overall, many activities	

952

		Dogo
1	will be intermittent and distributed across the	Faye
2	large project footprint. The project does not	
3	have any large single sources of continuous noise	
4	and airborne emissions.	
5	During operation, there are minor	
6	sources of air emissions, and much of the	
7	operating noise is contained within the	
8	powerhouse.	
9	Another consideration related to the	
10	project is there are no permanent residences or	
11	developments near the dam site. The closest	
12	cabins are at a commercial fishing camp which is	
13	used about 10 weeks of the year and is located	
14	about four kilometres away. And the nearest	
15	community is Gillam, which is approximately 30	
16	kilometres away. And to provide some perspective	
17	on those distances, from this room, four	
18	kilometres south would put you near the Pembina	
19	and Jubilee overpass. To the west, you'd be near	
20	the Portage and Empress overpass by Polo Park.	
21	And 30 kilometres away from here would put you at	
22	about the south side of the Town of Selkirk.	
23	Airborne emissions will be detectable	
24	near sources at the construction site and in areas	
25	of increased activity, but are unlikely to exceed	

October 28 2013

		Page 953
1	Manitoba objectives and guidelines in the broader	Tage 300
2	local study area, or where people are residing off	
3	site. For noise, it will be elevated at the site,	
4	but attenuating with distance, it is unlikely to	
5	affect people residing off site. The sound of	
б	Gull Rapids will be lost. And consideration of	
7	this is, this is considered further within the	
8	Partner First Nation individual assessment	
9	environmental reports and in the socio-economic	
10	sections.	
11	Environmental protection plans that	
12	will be in place during construction include	
13	provisions for things like dust control to reduce	
14	dust emissions, and timing restrictions on certain	
15	activities to reduce effects of noise on animals.	
16	Surface water regime and ice	
17	processes. The surface water regime and ice	
18	processes section considers project effects that	
19	include river flows, water depths, water velocity,	
20	water levels and fluctuations, and ice formation.	
21	Changes to these characteristics are a primary	
22	driver for many other effects considered in the	
23	Keeyask Environmental Assessment Studies.	
24	Although on land, project activities are also	
25	important for the terrestrial assessments as well.	

		Page 954
1	Effects on the water regime start at	Tage 554
2	the beginning of construction when structures are	
3	placed in the river. This figure depicts stage	
4	one diversion activities that will be in place	
5	from 2014 to 2017. And to help orient people, if	
6	you see the curser on the screen, this shows a	
7	close-up of the Gull Rapids area. Flow in the	
8	river is from left to right, from Gull Lake	
9	downstream to Stephens Lake. In the upper area we	
10	have the north channel of Gull Rapids. In the	
11	middle we have the centre channel of Gull Rapids.	
12	And near the bottom we have the south channel of	
13	Gull Rapids.	
14	During stage one diversion, which	
15	lasts about three years, cofferdams are	
16	constructed in the river so that work areas can be	
17	dewatered to allow for construction of the	
18	powerhouse, spillway and other activities in the	
19	approach and discharge channels, and so that these	
20	activities can take place in the dry. This	
21	diversion, these diversions will result in the	
22	flow of the river being diverted entirely to the	
23	south channel, and part of the south channel will	
24	be cut off.	
25	At the end of stage one diversion, the	

		Dogo OFF
1	cofferdams for the spillway, which is located at	Page 955
2	the south channel, are partially breached, and	
3	flows begin to be diverted through the spillway.	
4	At that time, once flow is moving through the	
5	spillway, a dam, cofferdam will be put across the	
6	south channel and close off the river, and all of	
7	the river flow will pass through the spillway,	
8	through the partially completed spillway	
9	structure.	
10	This stage of diversion, it lasts for	
11	approximately two years. And at the end of stage	
12	two diversion, the reservoir water levels will be	
13	brought up and raised to the full supply level.	
14	This figure depicts, indicates the	
15	initial flooded area associated with raising the	
16	water levels up to the full supply level. In this	
17	figure, the light blue areas represent areas of	
18	existing water, and the darker blue indicate the	
19	future water surface. So in the upper figure, the	
20	darker blue indicates the initial flooded area.	
21	So when the reservoir is impounded to full supply	
22	level, it's raised to a level of 159 metres, and	
23	during operation it would fluctuate within a	
24	narrow one metre range between the full supply	
25	level of 159 metres and the minimum operating	

1	level of 158 metres.
2	The initial reservoir area is
3	approximately 93 square kilometres, comprised of
4	approximately 48 square kilometres of existing
5	water surface, and 45 square kilometres of newly
6	flooded area.
7	The bottom figure indicates a
8	horizontal slice through the study area. The
9	brown area indicates the river bottom. Above that
10	we have a lighter blue area for the existing water
11	level surface. And the darker blue indicates the
12	water level surface with the project in place.
13	And we can see that water levels are increased
14	more at the dam within the Gull Rapids area. On
15	Gull Lake, the water levels are raised
16	approximately seven metres, and the effect of
17	water level increases diminish moving upstream, so
18	that the change in water level is less further
19	upstream from the dam.
20	Approximately 43 kilometres upstream
21	of the dam, the effect on water levels is
22	diminished so that there's no longer an effect
23	beyond that. And that's what we refer to as the
24	upstream end of the open water hydraulic zone of
25	influence. And that's the area where the effect

		Page 957
1	of raising the water level in the reservoir, where	ge eet
2	the formation of the reservoir affects the water	
3	levels upstream.	
4	Upstream of the hydraulic zone of	
5	influence into Clark Lake and Split Lake, open	
6	water levels are not expected, not predicted to be	
7	affected by the project.	
8	The open water hydraulic zone of	
9	influence also extends to about three kilometres	
10	downstream of the dam. In this area, there would	
11	be potentially small fluctuations in water levels	
12	associated with changing flows and variations in	
13	flow velocities due to changing operations from	
14	the powerhouse and potentially from the spillway	
15	when it's operating.	
16	And this is a zone in which many of	
17	the physical environment studies was focused, as	
18	this is where many of the larger effects, most of	
19	the larger effects occur.	
20	The project assessed water velocity	
21	changes in the study area. In these charts, in	
22	both the existing and project environment, the	
23	higher velocities are associated with areas in the	
24	river sections and rapids area, so indicated by	
25	the yellow and red colours. And lower velocities	

1	occur in the lake and reservoir areas, indicated	Page 958
2	by the blue and green.	
3	With the project, due to increased	
4	water levels upstream, velocities in the upstream	
5	hydraulic zone of influence will be reduced. And	
6	downstream of the project, velocities and patterns	
7	will vary during operation, and during a peaking	
8	mode of operation may vary throughout the day.	
9	Looking now at ice conditions. Again,	
10	like the figure on the previous slide, this	
11	depicts the water levels in the darker blue and	
12	it's showing the existing ice surface in the	
13	lighter blue. So in the existing environment,	
14	there is a large hanging ice dam that forms	
15	downstream of Gull Rapids. On Stephens Lake, a	
16	smooth ice cover will form and the hanging ice dam	
17	forms as ice moving from upstream gets piled up	
18	under the Stephens Lake ice cover.	
19	The hanging ice dam can be quite	
20	thick, it can reach a thickness of 10 metres or	
21	more, or 30 feet or more, and causes water levels	
22	to increase upstream to Gull Rapids. And	
23	increases of seven metres or more, or more than	
24	20 feet have been observed to occur. These	
25	increases and redirection of flow that it causes	

		Dago 050
1	along shorelines may cause erosion of the	Page 959
2	downstream shorelines.	
3	Upstream of Gull Rapids, a smooth ice	
4	cover forms on Gull lake. But towards the	
5	upstream end of the lake and to Birthday Rapids, a	
6	thicker, rougher ice cover forms in the river.	
7	And this ice cover may extend upstream of Birthday	
8	Rapids or it may stall at the bottom of Birthday	
9	Rapids, depending on ice conditions.	
10	Now moving to the project environment.	
11	With the project in place, the large hanging ice	
12	dam that currently occurs below Gull Rapids will	
13	no longer form at the entrance to Stephens Lake.	
14	A smoother ice cover similar to that which forms	
15	currently on Stephens Lake will form there	
16	instead.	
17	Upstream of the generating station, a	
18	more stable, smoother ice cover will form on the	
19	reservoir, and that will extend farther upstream	
20	than currently occurs. Upstream of the reservoir	
21	in the more riverine section, a thick, rough ice	
22	cover will still form, and that ice cover will	
23	extend upstream of Birthday Rapids. There will be	
24	open areas of water between further upstream, up	
25	to the exit of Clark Lake.	

		Page 960
1	Model results indicate there is a	Fage 500
2	potential for Split Lake level increases in the	
3	winter of up to 20 centimetres, but this would	
4	only occur, would only be expected to occur during	
5	infrequent winter low flow conditions that may	
6	occur approximately once every 20 years. This	
7	would result in a winter lake level closer to the	
8	average winter level.	
9	Might I ask what time the panel	
10	typically likes to break for coffee, so I have an	
11	idea of where to break off if I need to?	
12	THE CHAIRMAN: About 11:00 or so.	
13	MR. De WIT: Shoreline erosion and	
14	sedimentation. Shoreline erosion considers two	
15	distinct but interconnected processes, the erosion	
16	of shorelines comprised of mineral materials, and	
17	peat land disintegration, including peat shoreline	
18	breakdown.	
19	The sedimentation study considers	
20	sediment concentration, sediment transport and	
21	deposition.	
22	These studies predict project effects	
23	on shoreline recession rates and amounts, and	
24	which relates to reservoir expansion, amounts of	
25	mineral and peat material released to the	

25

		Dago 061
1	reservoir, changes in shoreline composition, and	Fage 901
2	sedimentation processes due to changes in the	
3	water regime and shoreline erosion processes.	
4	So, first a brief explanation of what	
5	mineral shoreline erosion processes are. There	
6	are three main processes by which mineral erosion	
7	occurs. So this is, again, related to the mineral	
8	materials referred to in the physiography part,	
9	the bedrock, the till, and the glacial deposits.	
10	Riverine erosion occurs where you	
11	have, in the narrower river sections where flow	
12	velocities along the river banks may result in	
13	erosion of the shorelines. Lake erosion processes	
14	mainly relate to where shoreline erosion is	
15	primarily due to wave action at the shoreline. In	
16	the future environment with a Keeyask reservoir,	
17	wave erosion would be the predominant process	
18	affecting erosion. And ice processes, where ice	
19	can scour material from shorelines, and as noted	
20	in the water regime component, formation of ice	
21	dams may cause water level increases and	
22	redirection of flows along shorelines which may	
23	also erode material.	
24	In the future reservoir, this depicts	

how erosion of a mineral shoreline may occur. We
		Dogo 062
1	would have an initial shoreline profile indicated	Page 962
2	by the lighter dashed line. You would have a new	
3	shoreline form there with the increase in water	
4	level. Erosion causes this bank of the shoreline	
5	to recede inland from the initial position as	
6	shoreline material is removed. Initially, the	
7	rate of recession is higher, and the rate	
8	decreases over time as the near shore area gets	
9	larger and flatter.	
10	The rate of shoreline recession	
11	declines over time because the wave energy that	
12	causes erosion gets spread out over a larger shore	
13	area and less energy is focused at the bottom of	
14	the bank.	
15	Going to peat land disintegration, for	
16	this process, in this, in the existing environment	
17	indicated by figure number one, you would have	
18	mineral materials overlain by peat lands. And we	
19	have an existing water level that is along the	
20	bank, and you would have some existing, some	
21	erosion taking place along those mineral banks.	
22	When the reservoir is formed, moving	
23	onto figure number 2, the water levels are raised,	
24	as indicated by the light blue. And a new	
25	shoreline is formed at the new, at a new location,	

Page 963

which may be located in a peat area, and peat 1 lands above the previous water level would be 2 3 flooded. Looking at figure 3 then, some of the 4 submerged peat that is present within the flooded 5 area may resurface, and it may then break down, or 6 it floats up from the surface, and peat along the 7 new shoreline will be broken down and eroded. 8 9 And then on to figure 4. As these 10 processes take place, these floating mats may be transported and they are broken down over time. 11 12 At the new shoreline edge, the peat that may be 13 disintegrated may be eroded back until it eventually exposes mineral shorelines and a new 14 mineral shoreline is formed over time. 15 The 16 process of peat disintegration is counteracted by the ongoing formation and expansion of peat lands 17 as these are formed from living matter. 18 19 With the project, the rate of 20 expansion will partly depend on the net effect 21 between peat disintegration and formation. 22 So the physical environment studies 23 considered potential effects of sediment due to in-stream construction activities, which involve 24 the placement of materials, mineral materials into 25

		Page 964
1	the river to construct cofferdams and permanent	Tage 504
2	dams, and also the removal of these cofferdams	
3	from the river when the cofferdams are no longer	
4	required.	
5	These in-stream work activities	
б	introduce sediment into the river which may	
7	increase suspended sediment concentrations	
8	downstream from that work. The stage one and	
9	stage two diversions will also increase water	
10	levels within Gull Rapids, which may cause	
11	shoreline erosion, adding suspended sediment to	
12	the river. Potential project effects on suspended	
13	sediment were assessed for each in-stream	
14	construction activity.	
15	So the chart on this figure provides	
16	an indication of predicted suspended sediment	
17	increases downstream from in-stream work	
18	activities. In the larger background chart on the	
19	left-hand side, we have a scale that shows daily	
20	average increases in suspended sediment in	
21	milligrams per litre. So this would be the	
22	predicted increase in concentration, which would	
23	be added to whatever the background concentration	
24	is coming into the area from upstream. And on the	
25	horizontal or bottom axis, it shows the	

		Dogo 065
1	construction timeline dates starting in 2014, in	Page 905
2	stage one diversion, and then onto the final	
3	activities in 2019, just prior to the time the	
4	reservoir is impounded.	
5	So minimum and maximum changes in	
б	suspended sediment were estimated, and for most	
7	activities the downstream increases in suspended	
8	sediment are less than 5 milligrams per litre	
9	increase. The inset chart shows the project	
10	activity that causes the largest downstream	
11	increase in suspended sediment. This occurs	
12	during construction of the south dam stage two	
13	cofferdam, and that's when the south channel is	
14	closed off and all flow ends up diverted into the	
15	spillway.	
16	For this activity, the increases, the	
17	range from minimum to maximum predicted increases	
18	were from five to 15 milligrams per litre of	
19	increase. The highest increases occur over a	
20	period of a number of days, and for much of the	
21	activity, the increases are less than 5 milligrams	
22	per litre.	
23	So when in-stream construction is	
24	taking place, and during the construction period,	
25	a monitoring plan will also be in place to measure	

		Page 066
1	the effects of the work on suspended sediment	Faye 900
2	concentrations. This is the sediment management	
3	plan for in-stream construction. The purpose of	
4	the plan is to verify that changes in suspended	
5	sediment remain below target levels.	
6	The plan involves the use of real time	
7	monitoring upstream and downstream of in-stream	
8	work activity, and will use electronic probes that	
9	are placed in the river to measure turbidity,	
10	which is the measure of water clarity, and data	
11	from the probes will be transmitted to an on-site	
12	environment office where it will be monitored for	
13	effects of in-stream activity on the suspended	
14	sediment.	
15	Three monitoring locations will be	
16	monitored during this process. The first site,	
17	referred to as SMP-1, is upstream of the	
18	construction activity and provides a measure of	
19	the background suspended sediment concentrations	
20	upstream of the in-stream work. The second site	
21	is called SMP-2, and that is a location just	
22	downstream of the in-stream work activity.	
23	Measurements from this site will be compared with	
24	data from the upstream, data from the upstream	
25	site to identify a suspended sediment	

		Dogo 067
1	concentrations increase between the locations,	Page 967
2	which could indicate a potential effect due to	
3	in-stream work. If increases exceed specified	
4	action levels, then mitigation actions would be	
5	initiated to reduce the input of sediment to the	
6	river.	
7	The third site, called SMP-3, is	
8	monitored to determine, to identify if actions	
9	to ensure that changes in suspended sediment due	
10	to in-stream work remain below target levels for	
11	this site, and to ensure that mitigation actions	
12	taken in response to observations at the SMP-2	
13	location are reducing the suspended sediment in	
14	the stream.	
15	THE CHAIRMAN: Mr. De Wit, what is	
16	real time monitoring as opposed to just straight	
17	up monitoring?	
18	MR. De WIT: By real time monitoring,	
19	we mean the probes that are in the river	
20	continuously transmit data back to the office, to	
21	the environmental site office on site. So it's	
22	continuously wirelessly transmitting that data	
23	there, so they can check it as that data is being	
24	measured.	
25	THE CHAIRMAN: Thank you.	

		Page 968
1	MR. De WIT: That would be as opposed	r uge ooo
2	to say someone going out and taking a hand	
3	measurement or a water sample, which might then	
4	need to be brought back. And it takes time.	
5	So moving into the operation phase.	
6	At the end of stage 2 river diversion, the	
7	reservoir again is impounded, raising water levels	
8	to the full supply level, which for purpose of the	
9	assessment begins what is considered the operation	
10	phase.	
11	Physical environment predictions	
12	indicated approximately seven to eight square	
13	kilometres of reservoir expansion will occur in	
14	the first 30 years. Much of this expansion occurs	
15	earlier or the rate of expansion is higher in	
16	the early years of operation and declines over	
17	time. Approximately 75 percent of this expansion	
18	occurs in the first 15 years. And the rates	
19	decline over time because, as noted, for example,	
20	for the mineral erosion, the rates of shoreline	
21	recession decrease as those mineral shorelines	
22	flatten out and stabilize.	
23	A lower more stable annual expansion	
24	rate is attained by year 30. It's anticipated a	
25	gradual decrease would occur would continue to	

		D
1	occur after year 30.	Page 969
2	So the annual expansion rate declines	
3	as peat disintegration rates decline and as the	
4	mineral shoreline recession rates decline, to near	
5	the rates currently observed in the existing	
6	environment.	
7	With the project, there will be less	
8	erosion immediately downstream of the project	
9	along the shorelines where the large hanging ice	
10	dam currently forms. Without that ice dam, those	
11	shorelines will not be as exposed to higher water	
12	levels and diversion of flow along the shoreline.	
13	Looking at peat resurfacing and mobile	
14	peat, approximately 15 to 16 square kilometres of	
15	peat is expected to of the flooded peat is	
16	expected to float up and resurface. Two-thirds of	
17	this occurs in the first year. Resurfacing	
18	decreases over time and is not expected after year	
19	10. Observations from other reservoirs indicate	
20	that resurfacing ends at some time between the	
21	fifth and tenth year of operation. And by year	
22	ten, it's likely expected that peat that's likely	
23	to resurface will have done so. Also over time,	
24	over that time, the settling of mineral sediments	
25	upon the flooded peat weighs that peat down and	

		Page 970
1	lessens the likelihood of it resurfacing.	Tage 570
2	Resurfaced, non mobile peat remains	
3	near where it floats up. And this would be	
4	material, for example, that floats up in shallow	
5	water and is held in place. Mobile peat or	
6	resurfaced peat that floats up may be transported	
7	to other areas of the reservoir, and this is due	
8	to wind and flow driven currents. The mobile peat	
9	may become immobilized and is reduced due to	
10	disintegration. So as that peat is transported	
11	across the reservoir, it may be blown into shallow	
12	areas or other areas where it's less likely to	
13	move, and may get stranded and hung up along	
14	shorelines, for example.	
15	Mobile peat could only move downstream	
16	if the spillway is operating. However, a boom	
17	upstream of the spillway would be anticipated to	
18	catch much of that during operation.	
19	Most of the sediments, the	
20	disintegrated peat, both the disintegrated peat	
21	and the mineral material from shoreline erosion	
22	originate in shallow, near shore and back-bay	
23	areas with low water velocities.	
24	Most of the peat that disintegrates is	
25	expected to accumulate near where it originates in	

		Dago 071
1	back-bays because it originates in the shallow,	Fage 971
2	low velocity areas. Due to peat, transport of	
3	floating peat, there's an expected net	
4	accumulation of mobile peat on the south side of	
5	the reservoir due to prevailing winds. Prevailing	
6	winds are generally from the north towards the	
7	south and would tend to move mobile peat towards	
8	the south side of the reservoir.	
9	Mineral sediment deposition rates are	
10	lower in offshore areas. So generally in the, for	
11	example, the lighter blue area of the former of	
12	the existing river area. Rates in deeper water	
13	areas are generally a centimetre per year less in	
14	the first year and following years. Deposition	
15	rates are higher in the first year in near shore	
16	areas, and depending on the area, may range from	
17	about one to two centimetres per year in less	
18	affected areas, and up to four to six centimetres	
19	in that first year in some of the back-bay areas.	
20	Mineral sediment deposition rates	
21	stabilize at a lower long-term rate after about	
22	year 15, corresponding with a stabilization in the	
23	rates of mineral shoreline recession over time,	
24	and by that time generally range from about zero	
25	to one centimetre per year throughout the	

Page 972

1 reservoir.

Looking at suspended sediments, 2 3 mineral sediment concentrations in the reservoir 4 area with the project will have a similar overall range of about five to 30 milligrams per litre as 5 is observed without the project. Without the 6 7 project, average concentrations typically range between about 13 and 19 milligrams per litre, but 8 with the project, due to increased water levels 9 and reduced flow velocities, sediment will be 10 deposited such that the -- with the project, the 11 12 average concentrations are expected to reduce by 13 about two to five milligrams per litre at low to average flows, and by about five to 10 milligrams 14 per litre for high flows. 15

Organic sediments entering the water. 16 The highest loadings of organic sediment to the 17 reservoir occur in year one. In that year, 18 19 estimated organic sediments in the water peak at 20 less than 3 milligrams per litre in the main 21 reservoir area, so generally, the area indicated by the existing river area. And in some of the 22 23 more affected back-bays, the concentrations may 24 range up to 10 to 20 milligrams per litre. Peat land disintegration reduces 25

		Page 973
1	substantially in following years, and by year five	Tage 975
2	concentrations of suspended organic material would	
3	be expected to be about a milligram per litre or	
4	less.	
5	Suspended sediment due to deposition	
6	of some of the suspended sediment from upstream in	
7	the reservoir, there would be reduced	
8	concentrations of suspended sediment discharged	
9	downstream, and concentrations will be reduced for	
10	about 10 to 12 kilometres below the powerhouse	
11	into Stephens Lake. Beyond that, there would be	
12	no anticipated effect on concentrations in	
13	Stephens Lake.	
14	Similar conditions would be	
15	anticipated upstream of Birthday Rapids with and	
16	without the project. And this is because the	
17	water level increases in that area are not as	
18	large, and these areas, typically for the most	
19	part, have shorelines that are controlled by	
20	non-eroding bedrock.	
21	Taking a look at debris. Debris may	
22	be present in the reservoir due to flooding of	
23	terrestrial areas, shoreline erosion, and floating	
24	peat. Early in the process of developing the	
25	Joint Keeyask Development Agreement between	

		Page 974
1	Manitoba Hydro and the Partner First Nations,	Tage 374
2	debris was identified as a key issue. And for	
3	this reason, the development agreement includes	
4	two planned mitigation programs, the first being	
5	the reservoir clearing plan and the second being a	
б	waterways management program, which you have	
7	already heard about in the project description	
8	presentation.	
9	With the reservoir clearing plan,	
10	areas that will be flooded will be cleared before	
11	the reservoir is filled. Clearing will be	
12	implemented using mechanical and manual methods to	
13	remove standing woody material and fallen trees.	
14	Clearing the reservoir area prior to impounding	
15	greatly reduces the potential for woody debris in	
16	the future reservoir, as well as the effort that	
17	might be otherwise required to manage woody debris	
18	if clearing did not occur. Cleared vegetation	
19	will be accumulated in piles and will be burned in	
20	the winter.	
21	This map indicates general areas in	
22	which the different types of clearing will take	
23	place. It will be either by hand or by machine.	
24	For example, a number of the islands being cleared	
25	by hand.	

		Dago 075
1	The waterways management program is	Page 975
2	also a component of the Joint Keeyask Development	
3	Agreement, and it is an important component. The	
4	objective of the program is to contribute to the	
5	safe use and enjoyment of the waterway from Split	
6	Lake to Stephens Lake.	
7	The program commits to a number of	
8	activities that will be implemented during	
9	construction and operation after the reservoir is	
10	impounded. The key activity in the program is the	
11	management of debris in the waterway to reduce	
12	hazards to navigation, which would include	
13	identifying and removing debris from navigation	
14	routes that will be established on the reservoir.	
15	Debris management will also involve proactive	
16	removal of trees from eroding shorelines to	
17	prevent woody debris. And both crews would also	
18	communicate with waterway users to share	
19	information on waterway conditions and help	
20	identify concerns of waterway, those using the	
21	waterway.	
22	A number of additional activities are	
23	included in the plan, such as protecting and	
24	preserving important spiritual or cultural	
25	heritage sites, both during construction,	

		Dago 076
1	operation, maintaining safety cabins, trails and	Fage 970
2	portages and safe ice trails during construction	
3	operation. It would assist with the reservoir	
4	clearing during the construction phase. During	
5	operation, it would be responsible for preparing	
6	reservoir depth charts and installing staff or	
7	water level gauges at different locations, and	
8	marking safe travel routes and maintaining landing	
9	sites.	
10	On to ground water. The study	
11	considered potential effects related to ground	
12	water levels and flows and the likelihood of	
13	effects to groundwater quality. A major purpose	
14	for this study was to support the assessment of	
15	potential project effects on the terrestrial	
16	environment. The study used a broad-based	
17	regional model to identify terrestrial areas where	
18	groundwater effects could potentially have	
19	implications for terrestrial habitats.	
20	Without and with the project,	
21	groundwater flows from higher to lower groundwater	
22	elevations and continues to be directed from the	
23	groundwater system into the Nelson River and local	
24	water bodies.	
25	Groundwater quality is not expected to	

		Page 977
1	be affected by the creation of the reservoir	r ugo orr
2	because there would not be a reversal of flow of	
3	water from the surface to the groundwater system.	
4	As noted, the groundwater continues to flow from	
5	the groundwater system to the surface water	
6	system.	
7	Environmental protection plans protect	
8	groundwater quality. The main risk to groundwater	
9	quality is identified to be potentially small	
10	spills of, for example, petroleum products like	
11	gasoline or diesel fuel over small areas. The	
12	risks of such accidents occurring is likely small	
13	and are mitigated through the protection plan,	
14	through the implementation of measures such as	
15	storage and handling of hazardous materials or	
16	petroleum products, use of spill containment	
17	measures and meeting applicable regulations,	
18	dedicated refueling and maintenance areas and	
19	availability of spill equipment and requirements	
20	to clean up any spills.	
21	As noted, an analysis on groundwater	
22	is used to identify areas where groundwater	
23	changes could potentially influence terrestrial	
24	habitats. The predicted changes are generally	
25	localized along the reservoir shoreline and within	

978

		Daga
1	islands, both existing islands that will be	Page
2	flooded and new islands that will form from	
3	flooding of terrestrial areas.	
4	Along the reservoir, average in	
5	groundwater increases are predicted to be	
6	approximately two metres. And within islands, the	
7	increases are variable, rising up to, increasing	
8	by up to four and a half metres within, for	
9	example, here at Caribou Island.	
10	The effects on the groundwater and the	
11	identification of the potentially affected areas	
12	were then further considered within the context of	
13	the terrestrial habitat studies.	
14	So looking at surface water	
15	temperature and dissolved oxygen, the study	
16	considered water temperature conditions,	
17	particularly the potential for thermal	
18	stratification to occur. Stratification refers to	
19	a condition where there is a less dense layer of	
20	water in the upper part of the water column. So	
21	in summer, this would be a warmer layer of water.	
22	And then below that is a denser layer of water at	
23	the bottom or in summer which would be a cooler	
24	layer of water. Stratification, if it occurs,	
25	indicates a lack of vertical mixing in the water	

		Da
1	column. And the study also looked at the	Page 979
2	potential for low dissolved oxygen concentrations	
3	to develop in the reservoir. As noted, dissolved	
4	oxygen is required by aquatic life and higher	
5	levels of oxygen are desirable.	
6	Results were considered then further	
7	in the aquatic environment assessment of overall	
8	water quality and effects on aquatic life.	
9	Manitoba has water quality objectives for minimum	
10	dissolved oxygen concentrations for the protection	
11	of aquatic life, and there are several different	
12	criteria.	
13	So the surface water and dissolved	
14	oxygen process. Dissolved oxygen may be removed	
15	from the water due to the decay of organic matter	
16	such as peat. During the process of decay, it	
17	utilizes water that is contained, or utilizes	
18	oxygen that is contained in the water and reduces	
19	the concentration of that dissolved oxygen.	
20	Dissolved oxygen in the water is replaced by a	
21	couple of processes. Inflowing water with higher	
22	levels of dissolved oxygen replace oxygen that may	
23	be consumed and oxygen enters the water from the	
24	atmosphere. Flow and wind mix dissolved oxygen	
25	through the water depth.	

		Dago 080
1	The occurrence of stratification as	Fage 900
2	noted would indicate a lack of vertical mixing	
3	through the entire water depth which would have	
4	implications for the replenishment of dissolved	
5	oxygen.	
6	So the results of the study indicated	
7	that for water temperature, there is little change	
8	in water temperature as the water flows through	
9	the reservoir from its upper end to the generating	
10	station. The more isolated back-bays off the main	
11	channel are warmer in summer by several degrees,	
12	being shallow and less mixed with the main flow.	
13	And we did not find any indication of	
14	stratification occurring along the main reservoir	
15	area.	
16	Dissolved oxygen shown in the two	
17	charts. In these charts, the green indicates	
18	higher levels of dissolved oxygen exceeding the	
19	most stringent of the guidelines. And then the	
20	yellow, orange and red indicate lower levels of	
21	dissolved oxygen. So the upper chart is all green	
22	and is for typical summer conditions which	
23	indicates that dissolved oxygen in the reservoir	
24	would meet the most stringent guideline under	
25	typical weather conditions.	

		Page 081
1	During periods of low wind, the	Faye 901
2	dissolved oxygen may be reduced in back-bay areas	
3	below the most stringent guideline level. But	
4	these occurrences are typically of short duration	
5	of several one or a few days. And would return	
6	to above objective, the most stringent objective	
7	when more typical conditions return, more typical	
8	wind conditions.	
9	The back-bay areas would have reduced	
10	dissolved oxygen levels in winter largely because	
11	you have an ice cover which prevents reiteration	
12	and wind mixing in those areas. However, much of	
13	the reservoir and the main reservoir area remains	
14	above guideline.	
15	Dissolved oxygen levels in the water	
16	discharge downstream, meet the guideline levels	
17	under all conditions.	
18	I was thinking maybe this might be an	
19	opportunity to break?	
20	THE CHAIRMAN: Or you could just	
21	MR. De WIT: Plow through?	
22	THE CHAIRMAN: run right through.	
23	You don't have that much left.	
24	MR. De WIT: All right. I apologize	
25	if I'm keeping people from their coffee.	

982

		Daga
1	THE CHAIRMAN: They will survive.	Page
2	MR. De WIT: I'm not sure I will.	
3	So now we look at Interactions with	
4	Future Projects. Future projects that were	
5	identified within the studies. Again I believe	
6	this was addressed by Ms. Cole in her presentation	
7	and the projects identified included Bipole III,	
8	Keeyask Transmission Project, Gillam Redevelopment	
9	and Conawapa Generation Project. These projects	
10	are not located close to the Keeyask reservoir	
11	where most of the physical environment effects	
12	occur. In fact, much of the activity is	
13	downstream of the reservoir.	
14	Potential overlap of sediment, the	
15	assessment identified a potential overlap of	
16	sediment released from Keeyask and Conawapa due to	
17	in-stream construction if there are instream	
18	construction activities occurring at both sites	
19	simultaneously. The effect is likely to be small	
20	and of short duration, as sediments released from	
21	the Keeyask area are reduced as they settle in the	
22	Stephens Lake area.	
23	Operation of the potential projects is	
24	not expected to cause an interaction with the	
25	Keeyask physical environment effects.	

		Page 984
1	were used to conduct the climate change	Tage 304
2	sensitivity analysis on these physical environment	
3	components.	
4	The Intergovernmental Panel on Climate	
5	Change is the leading international body for the	
6	assessment of climate change. It was established	
7	by the United Nations Environment Program and the	
8	world Meteorological Organization in 1988 to	
9	provide the world with a clear scientific view on	
10	climate change. They provide guidelines,	
11	assessment reports and climate model data for	
12	conducting climate change assessments.	
13	They recommend when conducting a	
14	climate change assessment to develop a number of	
15	future or possible climates termed climate	
16	scenarios. The climate scenarios are not	
17	predictions of the future, they are plausible	
18	representations of what the future may look like	
19	under various potential greenhouse gas emission	
20	scenarios.	
21	We followed these internationally	
22	accepted guidelines to develop the climate	
23	scenarios in this EIS. We also received	
24	additional support from the Ouranos Consortium on	
25	both our methodology and obtained climate model	

		Page 985
1	data from them.	. age eee
2	Manitoba Hydro is an affiliated member	
3	of the Ouranos Consortium. Ouranos is the	
4	consortium dedicated to climate change impacts and	
5	adaptations to climate change. They are an	
6	internationally recognized organization with	
7	experts that have considerable experience in	
8	climate change adaptation projects as well as	
9	providing a variety of climate change data and	
10	information.	
11	So to assist in modelling future	
12	climate, the Intergovernmental Panel on Climate	
13	Change prepared scenarios of future greenhouse gas	
14	emissions. These emission scenarios look at how	
15	future population grows, energy generation,	
16	technology, economy, land use, and agricultural	
17	practices will change globally into the future.	
18	They are not intended to be exact predictions of	
19	future emission scenarios. They are intended to	
20	provide a wide range of possible scenarios that	
21	will encompass some of the uncertainty related to	
22	these future trends. All emission scenarios that	
23	were available were used in this EIS.	
24	These emission scenarios are used as	
25	input into global climate models. Global climate	

		Dago 086
1	models are complex computer programs that simulate	Fage 900
2	the earth's climate on a course grid which covers	
3	the entire globe. Many research institutes around	
4	the world have developed and maintained their own	
5	global climate models. While each of these global	
6	climate models are similar in many ways, there are	
7	subtle variations that exist with respect to the	
8	grid characterizations, so the shape and size of	
9	the grids, as well as with the prioritization	
10	schemes with inside the model.	
11	So an attempt to coordinate the	
12	analysis of these models, international and two	
13	comparison projects have been conducted. The most	
14	recent one that was available during the	
15	preparation of the EIS is known as the Coupled	
16	Model Intercomparison Project Phase 3. And the	
17	output from this project form the basis of the	
18	Intergovernmental Panel on Climate Change 4th	
19	Assessment Report. So all global climate models	
20	were used in this EIS.	
21	These global climate models can be	
22	used to force regional climate models. Regional	
23	climate models simulate the climate on a finer	
24	grid at approximately 50 kilometres by 50	
25	kilometres for a smaller limited area. So now	

		Dogo 097
1	just North America would be modeled. And they	Page 987
2	require a lot of computer power. So there's not a	
3	lot of regional climate models available.	
4	Across Canada, the Canadian regional	
5	climate model is available. This model is	
6	developed and supplied to us by the Ouranos	
7	Consortium.	
8	So in total, 139 climate scenarios	
9	were developed from 24 global climate models with	
10	up to three emission scenarios ranging from low to	
11	high emissions. In addition, up to nine climate	
12	scenarios using the Canadian Regional Climate	
13	Model forced by three global climate models for	
14	all available emission scenarios used in this EIS.	
15	Therefore, we had a very very large comprehensive	
16	set of climate scenarios available to conduct the	
17	sensitivity analysis.	
18	So a detailed analysis was conducted	
19	on these climate scenarios at the annual seasonal	
20	and monthly time scale.	
21	In general, what we saw, that the	
22	models are projecting warmer and wetter conditions	
23	into the future with winter projecting the	
24	greatest increase in temperature and	
25	precipitation. This table shown here shows what	

October 28 2013

Page 988 the annual average temperature and precipitation 1 changes will be with respect to current climate. 2 3 So here we can see that temperatures projected to increase by 1.5, 2.8 and 4.1 degrees Celsius. And 4 precipitation is projected to increase by five, 10 5 and 14 percent into the future. 6 The graphs below are scatter plots for 7 the 2020s, 2050s and 2080s. Here the horizontal 8 axis represents a change in temperature and the 9 vertical axis would represent a change in 10 precipitation. So anything to the right of zero 11 12 would represent an increase in temperature and anything above the zero would be an increase in 13 precipitation on the vertical axis. So you can 14 see, as you look at the scatter plots that as the 15 16 time evolved, so as we go toward the 2080s, the spread or the uncertainty in the model starts to 17 increase. And this is because these projections 18 19 are substantially affected by the choice of the emission scenario as well the internal model 20 21 variability. So we have less confidence in the 22 projections as we go further out. 23 After developing this large 24 comprehensive set of climate scenarios. We then fed them to the physical environment specialists 25

		Dogo 090
1	who were then able to do an assessment to see if	Page 969
2	their conclusions would change as a result of	
3	these climate scenarios.	
4	And I'm going to let Will explain what	
5	the assessment found.	
6	MR. DEWIT: So the sensitivity first	
7	took a look at the water regime as it's a primary	
8	driver for many of the physical environment	
9	effects. So for Nelson River flow conditions, a	
10	sensitivity assessment of water regime effects to	
11	climate change was assessed by considering a	
12	regionally conservative estimate of both a	
13	10 percent increase and a 10 percent decrease in	
14	flow as projections of effects on Nelson River	
15	flow due to climate change are not available. So	
16	a sensitivity analysis was performed.	
17	Effects in the open water hydraulic	
18	zone of influence found that the operating range	
19	of the reservoir would not change. It would not	
20	be necessary to change that. It would be fixed at	
21	158 to 159 metres. The open water hydraulic zone	
22	of influence would not change.	
23	If flows are somewhat higher, there	
24	would be more what's referred to as baseloaded	
25	operation, which Marc described in his project	

		Page 990
1	description panel. And that's a case where the	i ugo ooo
2	reservoir is held at its full supply level and	
3	discharge from the reservoirs is equal to the	
4	inflow.	
5	At lower flows, there would be more	
6	peaking operation where the reservoir is drawn	
7	down and refilled on a daily basis to varying	
8	degrees, and there would be less use of the	
9	spillway. And projecting into the future, there	
10	would be a shorter duration of ice cover in future	
11	scenarios.	
12	So the physical environment residual	
13	effects were reviewed in consideration of	
14	projected climate changes and water regime	
15	sensitivity, and found that the residual effects	
16	are not sensitive to climate change.	
17	The robustness of the conclusion is	
18	largely due to two factors. At first the	
19	reservoir operating range is not changed and the	
20	water regime within the open water hydraulic zone	
21	of influence is not substantially changed when	
22	considering climate changes.	
23	Second, the largest effects of the	
24	project on the physical environment occur early in	
25	the operating period when climate changes are	

Page 991

1	small and would not cause as large a change in
2	this period.
3	So during construction and operation,
4	a plan will be in place to monitor components of
5	the physical environment. This is a component of
6	the overall environmental protection program that
7	will be in place for the project. And the purpose
8	will be to measure actual effects and identify
9	unanticipated effects. It addresses areas of
10	concern identified by partner First Nations. It
11	supports monitoring of mitigation and compensation
12	measures that will be implemented during the
13	project. It supports the development of
14	additional measures if required, confirms
15	compliance with regulatory requirements that may
16	be identified, and supports other monitoring
17	programs.
18	Components of the monitoring plan
19	include water regime and ice. Year-round water
20	level monitoring will be performed to verify the
21	project does not affect levels on Clark Lake and
22	Split Lake, which is an important consideration
23	for the partner First Nations. And it will

24 identify changes in the water level regime within 25 the reservoir. The velocity and depth will be

Page 992

measured to support aquatic monitoring, 1 particularly aquatic habitat studies, and would 2 3 likely be focused on areas identified by the 4 aquatic team where aquatic habitat monitoring is required. And monitoring of ice cover development 5 will take place to identify how the progression of 6 ice sheet development occurs upstream and 7 downstream of the reservoir. 8 9 In shoreline erosion, reservoir expansion will be monitored to identify the extent 10 and rate of expansion over time. It will identify 11 our shoreline material classifications along the 12 shorelines and would help to identify where shores 13 transition from peat to mineral materials and the 14 monitoring of reservoir expansion and shoreline 15 material are connected as the conversions from one 16 material to another would affect rates of 17 expansion. And it will also look at the extent 18 19 and location of peat resurfacing and accumulation 20 and transported floating peat. 21 As anticipated, some of these programs would work in conjunction with the waterways 22 management program and the collection of some of 23 24 this information. On sedimentation, turbidity and 25

		Page 003
1	suspended sediment monitoring will be undertaken	Fage 555
2	to identify the range of effects in different	
3	areas of the reservoir and actually monitoring	
4	will occur upstream and downstream of the	
5	generating station during both construction and	
6	operation. And this would be in addition to the	
7	monitoring performed for the sediment management	
8	plan that was described earlier.	
9	Monitoring will be done to identify	
10	sediment deposition and to determine rates and	
11	types of accumulation. Again, this will occur at	
12	locations both downstream and upstream of the	
13	generating stations. And this monitoring helps to	
14	support aquatic habitat and water quality studies	
15	which are components of the aquatic monitoring	
16	program.	
17	Greenhouse gas monitoring will take	
18	place. This will include seasonal monitoring on	
19	the reservoir and a year-round monitoring station	
20	will be installed at the powerhouse. This will	
21	help identify rates of greenhouse gas emissions	
22	due to flooding and expected declines in the rates	
23	of greenhouse gas emission from the reservoir over	
24	time.	
25	The physical monitoring plan includes	

		Dogo 004
1	additional support for the aquatic monitoring	Fage 994
2	programs. And this would include measurements of	
3	water temperature, dissolved oxygen, and total	
4	dissolved gas. The total amount of gas dissolved	
5	in the water is a parameter relevant to fish and	
6	fish health as too much can affect fish health.	
7	The physical program will support the aquatic	
8	monitoring work in the collection of this data in	
9	the water downstream of the spillway where	
10	increases in total dissolved gas could potentially	
11	occur. The physical program also includes a	
12	component for communicating debris management	
13	information to the monitoring advisory committee.	
14	Within the program, monitoring of air	
15	quality and noise were not proposed as people	
16	residing offsite are unlikely to be affected by	
17	those. And groundwater effects will be monitored	
18	through the terrestrial habitat monitoring	
19	program.	
20	So now we come to a summary. Effects	
21	of the Keeyask project during construction and	
22	operation have been considered key aspects of the	
23	physical environment. The technical studies	
24	included and used historic and recent data from	
25	the project area, observations from comparable	

		Page 995
1	proxy areas both near the site at Stephens Lake	T age 555
2	and within other Manitoba Hydro reservoirs. And	
3	input from partner First Nations, technical	
4	studies were performed and these were done in a	
5	collaborative manner within the team.	
6	In general, the study results found a	
7	key driver for effects is the change in water	
8	regime due to the creation of the reservoir.	
9	Although project footprints in the terrestrial	
10	area are very important to the terrestrial studies	
11	as well. The largest effects occur early in the	
12	operating phase, particularly the first year, due	
13	to the creation of a new reservoir environment.	
14	Effects continue during the operating phase, but	
15	generally the rates of change decline over time on	
16	an annual basis as the environment adjusts to the	
17	altered conditions.	
18	After about year 15 of operation,	
19	effects such as reservoir expansion decline to	
20	more stable rates that may persist over time. The	
21	project and predicted effects are robust under	
22	current and projected future climate conditions.	
23	Study results were shared with and	
24	discussed with partner First Nation and	
25	representatives and communities and shared	

1	extensively with the aquatic, terrestrial,	Page 996
2	socio-economic, resource use and heritage	
3	resources study teams. Mitigation, monitoring and	
4	other plans will be in place to reduce, manage and	
5	measure the effects of the project on the physical	
6	environment. And the predicted physical	
7	environment effects form the pathway for effects	
8	to the valued environmental components which will	
9	be presented by other panels in the coming days.	
10	And with that, my presentation is	
11	concluded, Mr. Commissioner, and we're done.	
12	THE CHAIRMAN: Thank you, Mr. De Wit	
13	and Ms. Koenig, for this presentation this	
14	morning.	
15	We'll take a 15 minute break and come	
16	back with the beginning of questioning. So about	
17	just after 20 after.	
18	(11:08 a.m.)	
19		
20	THE CHAIRMAN: Okay. We will	
21	reconvene. Mr. De Wit, that concluded your	
22	presentation? There is nothing more before we	
23	turn to questioning?	
24	MR. DE WIT: Yes, that was it.	
25	THE CHAIRMAN: Thank you.	

Page 997 Mr. Bedford? 1 2 MR. BEDFORD: We have one undertaking 3 to answer from last week, and Mr. Malenchak was the chap who was required to develop the answer. 4 So this would be a convenient time for him to put 5 it on the record. 6 7 THE CHAIRMAN: Thank you. Mr. Malenchak? 8 9 MR. MALENCHAK: During the project 10 description panel, I was requested that we provide the net weight of the Keeyask reservoir once fully 11 12 impounded, and we have developed that answer, and the answer to that is 386 million metres cubed of 13 water, which equates to approximately 386 million 14 metric tons. 15 16 THE CHAIRMAN: I can't even conceive of what that is. I'm sure others can. I'm not 17 much of a scientist. I just know it is a lot. 18 19 Okay, we will turn now to 20 cross-examination on this morning's panel. The 21 first up, Manitoba Wildlands, Ms. Whelan Enns. MS. WHELAN ENNS: Good morning. 22 23 Making sure I'm audible. 24 THE CHAIRMAN: You are indeed. Carry 25 on.
		Page 998
1	MS. WHELAN ENNS: Okay. I have gone	
2	to page 5 in this presentation. What is the base	
3	line environment for the three main areas	
4	considered in the environmental assessment on this	
5	page?	
6	MR. DE WIT: The past environment took	
7	a look at past studies, for example, like we said	
8	the Lake Winnipeg, Churchill/Nelson River Board	
9	assessments and other studies, historic studies	
10	for the existing environment. We conducted	
11	studies that have been conducted since about 2001	
12	when there was more intensive work done for the	
13	and then the future environment conditions are	
14	based on the projections that the assessments	
15	that were done.	
16	MS. WHELAN ENNS: Thank you. I will	
17	attempt a different version of the question, and	
18	that is, is the baseline environment for the	
19	Keeyask EIS the current environment with existing	
20	generation stations and changes we already know	
21	about to the Nelson River?	
22	MR. DE WIT: Yes, the baseline was	
23	post CRD, LWR regulation.	
24	MS. WHELAN ENNS: Thank you. Which	
25	reservoirs in the region, the larger region around	

Page 999

1	the RSA and LSA are then in your baseline
2	environment?
3	MR. DE WIT: So in the presentation we
4	show the local study area, and that included the
5	Kettle Kettle Generating Station, the Stephens
6	Lake reservoir.
7	MR. REMPEL: I would like to add to
8	that, that we did look at the information that was
9	available from the study board prior to the Lake
10	Winnipeg Regulation and CRD, and the study board
11	did provide some information on the past
12	environment, particular with regard to the reach
13	that we were looking at in terms of hydraulic
14	effects. And they did not predict actually
15	radical changes or dramatic changes in the reach
16	that we are studying, the hydraulic zone of
17	influence, from Split Lake down to Stephens Lake.
18	They predicted modest changes in the water levels
19	and modest changes in erosion, and the prediction
20	seemed to have been borne out, so that
21	environmental setting post LW/CRD, seemed
22	appropriate for us to look at in terms of effects
23	of Keeyask.
24	MS. WHELAN ENNS: Thank you, Mr.
25	Rempel. Did you just tell us that Stephens Lake

1000

		Dogo
1	was there before CRD and Lake Winnipeg regulation?	Page
2	MR. REMPEL: No. Actually we looked	
3	at or the study board looked at I should	
4	have perhaps been more clear. They did talk	
5	specifically about the reach, the low Split Lake	
6	up to Kettle Rapids.	
7	MR. EHNES: I would like to add to	
8	that as well. Our historical studies that go back	
9	prior to CRD, Lake Winnipeg regulation in order to	
10	study the effects of hydroelectric development in	
11	other areas and use those effects as examples to	
12	inform us as to how Keeyask could affect the	
13	Nelson River area.	
14	MS. WHELAN ENNS: Thank you, Dr.	
15	Ehnes. Then what did your studies tell you about	
16	the changes that now are Stephens Lake? And did	
17	that advise or inform you on the creation of a	
18	reservoir from Keeyask?	
19	MR. EHNES: Yes, thank you. It did,	
20	Stephens Lake initially flooded maybe to go	
21	back a bit, Stephens Lake is the reservoir for the	
22	Kettle Generating Station, and when the Kettle	
23	Generating Station was built and operation began,	
24	it flooded about 220 to 225 square kilometres of	
25	land. Over time as the shorelines broke down, if	

		D 4004
1	you will recall Mr. De Wit's slide, he showed	Page 1001
2	shoreline erosion processes over time, that	
3	reservoir has expanded by about 15 to 20 square	
4	kilometres. And in our studies we mapped the	
5	flooded areas and looked at which areas were	
6	undergoing reservoir expansion, related those to	
7	the kinds of peat lands, the terrain, soils, et	
8	cetera, in the area in order to be able to use	
9	that information to predict the Keeyask project	
10	effects.	
11	MS. WHELAN ENNS: Thank you. On page	
12	6 you've listed the key environmental topics	
13	considered in the EIS. Will you be monitoring in	
14	each of these areas? Again, taking it as a list	
15	of primary or top level topics, will you be	
16	monitoring them then throughout the construction	
17	period?	
18	MR. DE WIT: I think in the at the	
19	end of the presentation there, on the monitoring	
20	plan, that included, just to be clear so you	
21	have water regime and ice monitoring, so the	
22	surface water regime and ice processes, shoreline	
23	erosion and sedimentation processes, surface water	
24	temperature and dissolved oxygen, and climate as	
25	it relates to greenhouse gas emissions. Air	

		Page 1002
1	quality and noise monitoring was not proposed as	
2	there are no likely effects on people residing off	
3	site due to the distance that they are aware.	
4	Groundwater will be monitored through the	
5	monitoring of terrestrial habitat change which	
б	will consider a much larger area around the entire	
7	reservoir. Debris management will be performed	
8	and we would be reporting on that to the	
9	monitoring advisory committee.	
10	MS. WHELAN ENNS: Thank you. Did you	
11	just indicate then that your monitoring during	
12	construction regarding climate change would be	
13	greenhouse gases only?	
14	MR. DE WIT: Yes, I believe there	
15	would be greenhouse gas monitoring taking place	
16	during the construction phase as well.	
17	MS. WHELAN ENNS: Will there be any	
18	other factors with respect to climate change	
19	monitored during the construction period?	
20	MR. DE WIT: What factors do you	
21	have examples?	
22	Well, there is, for example, weather	
23	data would continue to be obtained from the	
24	Environment Canada station at Gillam.	
25	MS. WHELAN ENNS: Thank you. Have you	

		Page 1003
1	given consideration to monitoring water	Fage 1005
2	temperature during the construction period in	
3	relation to a factor or indicator of climate	
4	change?	
5	MR. DE WIT: I mentioned water	
6	temperature and dissolved oxygen measurement. So	
7	when we are measuring those two, you always	
8	measure temperature and dissolved oxygen together	
9	because temperature of the water affects dissolved	
10	oxygen. But also all of the in-water monitoring,	
11	for example, when we have turbidity sensors out in	
12	the water, most of this equipment monitors	
13	temperature as a matter of course. So there would	
14	be temperature measurements through all of that as	
15	well.	
16	MS. WHELAN ENNS: Thank you. The	
17	questions are then in relation to, for instance,	
18	data being monitored during the construction	
19	period then being taken into account in terms of	
20	your climate change monitoring; are we hearing	
21	that you would use data that you are collecting in	
22	monitoring for climate change during construction?	
23	MS. KOENIG: Could you please clarify	
24	what you mean by monitoring?	
25	MS. WHELAN ENNS: We heard a fair bit	

1	this morning about the monitoring plan at	Page 1004
T	chis morning about the monitoring plan at	
2	different stages in the presentation, so there is	
3	an overall question or confirmation sought that	
4	monitoring will be thorough during the	
5	construction period. So that's one level of the	
б	question. The other is whether or not the data	
7	that you are collecting and the monitoring that	
8	you are doing and the results from it will be	
9	taken into consideration in terms of monitoring	
10	for climate change during the construction period?	
11	MR. DE WIT: I just want to check with	
12	someone in the back row on something here.	
13	MS. KOENIG: We believe that during	
14	the construction period that climate change	
15	impacts will be very minimal, so they won't be	
16	considered.	
17	MS. WHELAN ENNS: Thank you. This is	
18	a sort of next question is pages 7 and 8 but	
19	overarching, and that is it is challenging to tell	
20	from your presentation whether your presentation	
21	pertains, so please help us, whether it pertains	
22	to the RSA, the LSA or the project footprint or a	
23	combination of those, depending on topic, in your	
24	presentation?	
25	MR. EHNES: In general it would vary	

October 28 2013

		Page 1005
1	by topic. The areas that are included in the	Tage 1000
2	local study area for physiography, was generally	
3	included for all of the physical environment	
4	topics, and that captured the hydraulic zone of	
5	influence of the project as well as the areas that	
6	would be affected by roads, borrow areas and other	
7	inland features.	
8	MS. WHELAN ENNS: Thank you. The	
9	definition in terms of being in the physical	
10	environment presentation is that it does vary.	
11	The contents then in the presentation will vary	
12	depending on topic and whether we are in the	
13	regional study area, the local study area or the	
14	project footprint. Am I hearing you correctly?	
15	MR. EHNES: The local study area has	
16	essentially overlapped for all of the topics, and	
17	most of the presentation you were hearing about	
18	water regime effects upstream and downstream, and	
19	because the hydraulic zone of influence created by	
20	the project has a similar zone of influence for	
21	most physical environment effects, of course, for	
22	some it extends larger than others, but in general	
23	the area was overlapping.	
24	MS. WHELAN ENNS: So that our water	
25	effects upstream and downstream, beyond the RSA,	

Page 1006 some of them? 1 2 MR. EHNES: No, they would all be 3 inside the local study area. 4 MS. WHELAN ENNS: How does the zone of influence term you used relate then to the 5 regional study area, the local study area and the 6 project footprint? 7 MR. EHNES: The project footprint 8 would be, for example, the areas that are flooded 9 or cleared for borrow areas, roads, et cetera. 10 The zone of influence would be the surrounding 11 12 area that's affected by those project impacts. So the size of the zone of influence would vary 13 depending on the physical environment component 14 that you are looking at. Groundwater effects 15 might extend inland 100, 200, 300 metres, whereas 16 the effects on vegetation might only be 125 or 50 17 18 metres. 19 MS. WHELAN ENNS: Thank you. On page 20 9 there is a reference to proxy area studies on 21 other Manitoba Hydro reservoirs. Would you tell 22 us then which reservoirs were the proxy for these studies? 23 24 MR. EHNES: It varied by study and in 25 terms of the most broad reaching components, that

-		Page 1007
T	would be the peat land disintegration studies,	
2	which considered Stephens Lake, which is the	
3	Kettle reservoir, Long Spruce reservoir, which is	
4	just downstream of the Kettle reservoir, the	
5	Kelsey reservoir, which is at the upstream extent	
6	of our, depending on topic, regional study area.	
7	Also the back water effects created by the Notigi	
8	control structure on the Burntwood River was used	
9	as one of the proxy areas, and Wuskwatim Lake,	
10	which was reported in the Wuskwatim Environmental	
11	Impact Statement was used to show simply the	
12	effects of or pardon me, the effects of water	
13	regulation and flooding as well, but not related	
14	to a dam.	
15	MS. WHELAN ENNS: Thank you. The full	
16	operation of Wuskwatim generation station is	
17	only it is less than a year away or a year back	
18	when it started; would Wuskwatim Lake in fact be	
19	showing us those effects and the complete effects	
20	at this point?	
21	MR. EHNES: We were studying the	
22	effects of Churchill River Diversion on Wuskwatim	
23	Lake and Wuskwatim Lake peat lands and shorelines,	
24	so this would go back to the early 70s or mid 70s,	
25	pardon me.	

		Dogo 1009
1	MS. WHELAN ENNS: So that's what you	Page 1006
2	were studying rather than the full results of the	
3	generation station at Wuskwatim operating,	
4	correct?	
5	MR. EHNES: Yes. This had nothing to	
6	do with the Wuskwatim generation project.	
7	MS. WHELAN ENNS: The Stephens Lake	
8	reservoir has, as we heard last week, has a fairly	
9	significant and different variance in water	
10	levels, and fluctuations in water levels, than	
11	Keeyask will have based on the EIS. That's a	
12	significant difference from a non-scientist point	
13	of view. So how did Stephens Lake reservoir	
14	inform your proxy studies?	
15	MR. EHNES: That's a good question.	
16	We looked at a number of reservoirs, and one of	
17	the reasons that we did look at a number of	
18	reservoirs is no existing reservoir is going to be	
19	identical to Keeyask. So by looking at more than	
20	one, I listed I think six, just in my last	
21	question, and the reason for doing that was to see	
22	how different ranges of water fluctuation affected	
23	peat land disintegration, in particular, is what	
24	I'm talking about here. And we observed similar	
25	patterns throughout the range of water level	

		Dama 1000
1	fluctuations. One thing that I will note is, in	Page 1009
2	terms of peat land disintegration, or terrestrial	
3	habitat effects, it is not simply the range of	
4	water levels that you observe, it is really the	
5	normal range. If water levels are only at the	
6	certain elevation for one day out of a ten-year	
7	period, then that has virtually no effect in terms	
8	of the processes that we are studying. So in	
9	terms of looking at say from the 5th to the 95th	
10	percentiles of water levels, taking what we are	
11	calling the normal range, which is still going	
12	towards the extremes, the difference between	
13	Stephens Lake and the proposed Keeyask Generation	
14	Station is much less.	
15	And then again in TAC round two, there	
16	was an IR that asked this specific question, and	
17	in the response to that IR, we also talked about	
18	how water level fluctuations and the water	
19	elevation range was only one of a number of	
20	factors that determines shoreline erosion and	
21	terrestrial habitat effects. And in fact, in	
22	terms of looking at the six different proxy areas,	
23	it was not the most important driver for the	

24 results that we observed.

25 MS. WHELAN ENNS: Thank you. Would

	Page 1010
1	you give us then the full range, 5 per cent to 95
2	per cent, regarding the projections for water
3	levels in the Keeyask future reservoir?
4	MR. MALENCHAK: Jarrod Malenchak. As
5	Mr. St. Laurent pointed out in the project
6	description panel, the Keeyask reservoir will be
7	fluctuating between the full supply level and
8	minimum operating level. The full supply level
9	being 159 metres, and the minimum operating level,
10	158 metres.
11	MS. WHELAN ENNS: Thank you. And yes,
12	we all heard that last week. For, again, a
13	non-scientist to process this, that's a one foot
14	difference and, yes, we heard that last week.
15	Stephens Lake is acknowledged as at least a three
16	foot difference.
17	So, Dr. Ehnes, you are telling us that
18	this basically does still leave the two
19	comparable, in terms of results once the reservoir
20	for this generation station is in place?
21	MR. EHNES: Yes. And the reason I say
22	that is because we looked at a number of
23	reservoirs with different normal operating ranges,
24	going from I believe it was 20 centimetres up to
25	about 2 metres. So the Keeyask normal range is

		Page 1011
1	within that range of proxy areas that we studied.	
2	MR. MALENCHAK: I should probably just	
3	clarify a couple of statements in regards to the	
4	fluctuations of the two reservoirs. Keeyask would	
5	be a one metre fluctuation, so approximately about	
6	three feet, and a normal operating range where	
7	Stephens Lake would be fluctuating for 90 per cent	
8	of the time, so the vast majority of the time,	
9	would actually be 1.9 metres.	
10	MS. WHELAN ENNS: Thank you.	
11	On page 9 there is a reference to, I	
12	think it is on page 9, yes, in the bold on the	
13	bottom bullet. Does the EIS contain an	
14	identification of all of the analytical tools that	
15	have been used to predict the project effects?	
16	MR. DE WIT: Yes. If you in the	
17	physical environment section, the models used in	
18	the different studies are described. Within the	
19	main section you will have overview descriptions,	
20	and then in a number of cases you will find some	
21	more detail in the appendices.	
22	MS. WHELAN ENNS: Thank you. So your	
23	reference is to different models, correct, as	
24	analytical tools? Thank you.	
25	On page 11 you've referenced soil	

		Page 1012
1	samples again where there is a comparison between	
2	Gull Lake, which is the reservoir, will be a	
3	reservoir, and Stephens Lake which is a reservoir.	
4	What did these samples tell you so	
5	that we can understand I was interested, like	
6	is Stephens Lake much larger and is that why there	
7	is as many soil profiles taken?	
8	MR. DE WIT: James can answer that, he	
9	performed all of those studies.	
10	MR. EHNES: There were probably seven	
11	or eight different studies that involved looking	
12	at soils, depending, because there were a number	
13	of different questions we wanted to answer. Some	
14	of those related to environment soil	
15	relationships.	
16	These particular studies that you are	
17	seeing on this slide, there are two different	
18	types of studies. One is to characterize the	
19	soils in the area that would be flooded, so we	
20	could have a very good idea of how deep the peat	
21	was, how it varied within that area based on	
22	topography, not just how deep is that peat, but	
23	how does its physical character change from being	
24	pretty much undecomposed at the top to moderately	
25	decomposed, to basically being paste at the	

		Page 1013
1	bottom. Because those different kinds of, or	Tage 1010
2	degrees of decomposition really affect things like	
3	peat re-surfacing and how the reservoir will	
4	develop over the time. So the statement that soil	
5	profiles at about 850 sites, and more than 840	
6	bore holes, was all about characterizing the area	
7	that would be flooded, so we could have a really	
8	good understanding of how it was going to change	
9	in response to the project.	
10	The 1700 soil profiles in Stephens	
11	Lake was a completely different kind of study. We	
12	took several different approaches to develop	
13	models to, you know, calibrate these models to	
14	predict reservoir expansion for the Keeyask	
15	project. One approach we took was to look at	
16	historical photos, and using a stereoscope, using	
17	these large scale photos, to map how peat lands	
18	broke down over time. We had, I believe, eight	
19	different photo years for Stephens Lake so we	
20	could really map that trajectory.	
21	The other approach we took, or another	
22	approach, we had several approaches, was to look	
23	at, or go to places on Stephens Lake that were	
24	undergoing peat land disintegration still after 30	
25	years of reservoir expansion. So the way that	

		Page 1014
1	peat land disintegration works is it expands into	Tage 1014
2	these back bay areas, and it just goes further	
3	back in time until it reaches a slope in mineral	
4	soil, or until the peat lands, the peat forming	
5	from the mosses and the plants eventually is	
6	higher or it is happening faster than the peat is	
7	breaking down.	
8	So we went into some of these areas on	
9	Stephens Lake and laid out lines starting in	
10	inland areas, going out to the edges of where the	
11	peat was breaking down and then out into the	
12	deeper water. And we used that as kind of a, what	
13	in science we call space for time substitution.	
14	So it was a way of actually seeing how this	
15	process worked and how it, how the shorelines	
16	moved back from time. So these 1700 soil profiles	
17	were us, you know, digging these holes or going	
18	out in a boat and coring the lake bottom to	
19	characterize how peat land disintegration happens.	
20	MS. WHELAN ENNS: Thank you.	
21	Were these soil bore holes and	
22	profiles also used in establishing the regions	
23	that you have used? So last week you told us	
24	about how you were using soil, surficial geology,	
25	habitat and so on, to define the regions you were	

		Dago 1015
1	using. So depending on when all of this work was	Page 1015
2	done, did the results from this soil work inform	
3	the definition of the regions for the VECs?	
4	MR. EHNES: It would not have factored	
5	into defining the regions, because the regions	
6	were defined, first of all, where is the project	
7	footprint, where are the impacts, what is the	
8	local zone of influence of those impacts, and then	
9	what is the appropriate larger regional context to	
10	use for determining the importance of those	
11	impacts? So I used the example of animals, the	
12	project might affect a few animals in the area,	
13	but really how is that going to affect the	
14	population for that species in the region?	
15	MS. WHELAN ENNS: Thank you. Did the	
16	Keeyask Partnership First Nations, in their	
17	evaluations, have access to the historic	
18	information that you are describing, including,	
19	for instance, the oversize stereoscope photos?	
20	That is, were they able to compare what is now	
21	called Stephens Lake before Hydro and before it	
22	became a reservoir in doing their evaluation for	
23	Keeyask?	
24	MR. DE WIT: I think it would be fair	
25	to say that any of the information that we had,	

Page 1016 had the partners made a request for that, we would 1 have shared that with them. Anything they needed, 2 3 we would have supplied. 4 MS. WHELAN ENNS: The partners perhaps would have needed to know it was available. So 5 did the partners then know that you had gone to 6 7 the trouble, in terms of going all the way back to 1962, in terms of satellite data and having 8 stereoscopic oversized photos available, did they 9 10 know? MR. ST. LAURENT: Last week Vicky Cole 11 12 discussed the process of the environmental studies 13 working groups, which set out a process where the environmental specialists worked closely and 14 communicated results, as well as methodologies 15 that would be employed for the environmental 16 studies. So one of the early meetings that we 17 undertook as part of that process was to give a 18 19 good description of the field studies that we were planning to undertake, as well as to describe the 20 21 various data sets that were planned to be used for 22 the assessment. So we described each of the different 23 studies, what it was, why we were doing it, how we 24 25 are planning on assessing it, as well as what data

1017

		Dogo
1	sets we were planning on using for that	Page
2	assessment. So in the case of James, he certainly	
3	described the process of using air photos, which	
4	particular air photos, and certainly gave some	
5	good examples of how that would be undertaken.	
6	MS. WHELAN ENNS: Thank you.	
7	MR. DE WIT: I would like to add that,	
8	for example, in Ms. Cole's presentation last week,	
9	and as we note in CAC round one 101, there were	
10	things like bilateral environmental study working	
11	groups where we discussed field work plans and	
12	such. They reviewed drafts of the EIS, which	
13	include descriptions of the studies and	
14	information used. So, yes, I would say that they	
15	would have been familiar that we had this	
16	information.	
17	MS. WHELAN ENNS: Thank you.	
18	Is this panel the same group of	
19	individuals who are the working group in terms of	
20	the physical environment?	
21	MR. ST. LAURENT: Which working group	
22	are you referring to? There was a number of them.	
23	MS. WHELAN ENNS: Well, there is	
24	references when we get to page 13 I have to	
25	find it again, sorry. Study teams, the references	

		Daga 1010
1	on page 13 are to study teams.	Page 1018
2	So are the members of this panel today	
3	all part of study teams for the physical	
4	environment? And will the members of this panel	
5	and that study team continue to work together	
6	through the construction period?	
7	THE CHAIRMAN: Why is that relevant?	
8	MS. WHELAN ENNS: Mr. Chair, it is	
9	challenging as a participant to be able to relate	
10	who has, for instance, worked with the First	
11	Nation Partners on different aspects of the EIS,	
12	to this point to get to the EIS, and how the	
13	construction period in particular will flow in	
14	terms of ongoing monitoring, and who will be, for	
15	instance, continuing to work with the First Nation	
16	Partners.	
17	THE CHAIRMAN: But I'm not sure, you	
18	know, and perhaps you have a different view, I'm	
19	not sure why it is necessary to know the "who".	
20	To me, I think the "what" is what is important,	
21	the product that comes out, and the fact that they	
22	will continue to monitor. But whether it is these	
23	people or an entirely different group, as long as	
24	it is done and done properly, I don't think that	
25	the "who" matters.	

		Page 1019
1	MS. WHELAN ENNS: Fair enough.	Fage 1019
2	Would I was going to ask one before	
3	this, but let's move to this. Would you explain	
4	how study team collaboration will continue during	
5	the construction period?	
6	MR. DE WIT: So this would relate more	
7	to monitoring you are referring to? Yes. Okay.	
8	Well, when we as we collect	
9	information and obtain information, we work with	
10	our subject matter experts and share information	
11	between the groups. For example, if you have	
12	erosion or sedimentation information, that's	
13	certainly all available to any of the study	
14	groups. Any of the data collected is available to	
15	everybody. So, yes, there would be ongoing	
16	communication between the groups.	
17	MS. WHELAN ENNS: Thank you very much.	
18	This may be a question for Mr. Rempel,	
19	and that is, when does a reservoir become a lake?	
20	MR. REMPEL: Does this refer to the	
21	label Stephens Lake as a lake instead of a	
22	reservoir?	
23	THE CHAIRMAN: Why is this relevant?	
24	MS. WHELAN ENNS: Well, Mr. Chair, it	
25	is almost impossible to find in the public domain	

Volume 5

		Dogo 1020
1	any information about the fact that Stephens Lake	Fage 1020
2	is actually a reservoir.	
3	THE CHAIRMAN: Again, why is that	
4	relevant to our study, what they call it, as long	
5	as it is doing what it is designed to do? I mean,	
6	we can differ and ask questions of whether or not	
7	it is being properly monitored, but whether it is	
8	called a lake or a reservoir or a pond, I'm not	
9	sure is relevant.	
10	MS. WHELAN ENNS: There is a tendency	
11	I think, Mr. Chair, to lose track of where the	
12	reservoirs are in Manitoba and how they are also	
13	all part of the hydro system. But we can pass on	
14	the question.	
15	THE CHAIRMAN: Please.	
16	MS. WHELAN ENNS: Okay. On page 12	
17	there is a reference to widely accepted industry	
18	standard computer models. May we take that also	
19	as a statement or reference to, you know, widely	
20	accepted methods in terms of GIS, as in global	
21	information systems and mapping techniques?	
22	MR. ST. LAURENT: That slide is	
23	referring to the numerical models that are used to	
24	develop predictions and run simulations of project	
25	effects, not necessarily GIS analysis. Although a	

		D 4004
1	lot of the output from these models is processed	Page 1021
2	within a GIS, a GIS is merely a tool for arriving,	
3	taking spatial data and arriving at the results.	
4	So some of these models are linked with GIS,	
5	others are not, but this is really referring to	
6	the whole host of different models employed for	
7	physical.	
8	MS. WHELAN ENNS: Thank you. Are	
9	there, though, then a set of operational standards	
10	regarding use of data in a GIS system that	
11	Manitoba Hydro fulfills, that you apply to your	
12	work when you are using a GIS system?	
13	MR. ST. LAURENT: Manitoba Hydro, as	
14	well as the consulting companies that work on this	
15	project, employ GI specialists. And those	
16	specialists have the credentials required to	
17	operate and use these GIS tools. They are indeed	
18	specialists. And through that process, protocols	
19	have been developed to develop the data, manage	
20	the data, as well as to develop the appropriate	
21	level of meta data. There are meta data standards	
22	that are available and we are employing that on	
23	our GIS data throughout the physical environment	
24	studies.	
25	MR. DE WIT: And that wouldn't just be	

		Page 1022
1	within Manitoba Hydro, those standards are	Tage Tozz
2	distributed to the consultants working for us as	
3	well.	
4	MS. WHELAN ENNS: Thank you. On page	
5	22 I just have to check tags while I turn. I	
6	want to ask a quick question, if I may, before we	
7	leave this section, and I'm looking for a number,	
8	I think it is 18, just to confirm that the data	
9	numbers and so on regarding project footprint and	
10	material quantities on this slide are all within	
11	the project footprint? It appears that way.	
12	MR. DE WIT: Yes, the material	
13	quantities quoted there are all sourced from in	
14	the footprint area. For example, the earth fill	
15	rock excavations, those are all would be in	
16	some part of the darker green areas, although I'm	
17	not showing the entire footprint here, so some of	
18	those areas are not exactly shown here. So it is	
19	all in part of the footprint.	
20	MS. WHELAN ENNS: Thank you. On page	
21	21, and this is, you know, just prior to your	
22	getting into your climate change section, was	
23	there a sensitivity analysis done with respect to	
24	the cofferdams, the dams, and the dykes and the	
25	roads for drought conditions?	

1	MR. MALENCHAK: So the design of the	Page 1023
2	cofferdams is as indicated in IR, I think Manitoba	
3	Wildlands 48, round one. We discussed a design	
4	flow for each of the cofferdam structures, and	
5	they are designed to function under that flow and	
б	anything under that flow. So under drought	
7	conditions, we expect that the dams and the dykes	
8	would function perfectly fine.	
9	MS. WHELAN ENNS: Is that a reference	
10	to what we heard last week about the one in 10,000	
11	year event calculation?	
12	MR. MALENCHAK: They are both flows,	
13	but I'm not totally clear of the length between	
14	the drought and one in 10,000.	
15	MS. WHELAN ENNS: Perhaps I need some	
16	help then. I believe that was within the context	
17	of the safety standards for the generation station	
18	itself.	
19	MR. MALENCHAK: That's correct.	
20	MS. WHELAN ENNS: Spillways, turbines,	
21	the hardware, if you will?	
22	MR. MALENCHAK: Yes.	
23	MS. WHELAN ENNS: Fine, I will pass	
24	then. Turn the page. On 22, you have a reference	
25	here to ISO 14040 from 2006. Could you tell us	

		Page 1024
1	whether any other ISO standards were used in the	Tage Toz+
2	lifecycle assessment that you commissioned?	
3	MS. KOENIG: No.	
4	MS. WHELAN ENNS: Thank you.	
5	There is a reference here also at the	
6	bottom of the slide to decommissioning. Does the	
7	Keeyask Generation Station have a decommissioning	
8	plan?	
9	MR. ST. LAURENT: I would have to pull	
10	up the project description supporting volume, but	
11	there is a section on decommissioning. It	
12	describes it describes project decommissioning.	
13	Would you like me to pull that out and read it?	
14	MS. WHELAN ENNS: I agree with you	
15	that there is a section that describes	
16	decommissioning. Depending on where in the EIS	
17	you are looking, there is also some clear	
18	statements early on that a full decommissioning	
19	plan is not required. So is there a	
20	decommissioning plan?	
21	THE CHAIRMAN: I think you just	
22	answered your question. I don't think that we	
23	need the details of the plan, I think a response	
24	to whether or not there is a plan	
25	MR. ST. LAURENT: It is very short.	

		D 4005
1	What I can read here is that:	Page 1025
2	"With respect to project	
3	decommissioning, a hydroelectric	
4	generating station may operate for a	
5	century or more. If and when the	
6	project is decommissioned at some	
7	future certain date, it will be done	
8	so according to the legislative	
9	requirements and industry standards	
10	prevalent at that time."	
11	MR. DE WIT: I will note for the	
12	record that that's page 5-1 of the project	
13	description.	
14	MS. WHELAN ENNS: Thank you.	
15	So we will have a decommissioning plan	
16	when we decommission; correct?	
17	THE CHAIRMAN: Long after we are here.	
18	MS. WHELAN ENNS: Will there be	
19	THE CHAIRMAN: If it gets built.	
20	MS. WHELAN ENNS: Long after we are	
21	finished participating in hearings.	
22	THE CHAIRMAN: Participating in	
23	anything.	
24	MS. WHELAN ENNS: Will we have a	
25	presentation of the lifecycle assessment from the	

Volume 5

		Dama 4000
1	individuals who did the lifecycle assessment work	Page 1026
2	for Manitoba Hydro?	
3	MR. DE WIT: The lifecycle assessment	
4	is reported as part of this presentation, and	
5	that's what we've presented.	
6	MS. WHELAN ENNS: We can take that	
7	then as a no, that we will not have a presentation	
8	in the hearings from the individuals or firm that	
9	provided the lifecycle assessment?	
10	MR. DE WIT: That's correct.	
11	MS. WHELAN ENNS: Thank you.	
12	This is just a quick jump back to the	
13	beginning of the section, so some questions have	
14	to do with several slides, if you will, with the	
15	climate section starting at page 19.	
16	MR. DE WIT: Actually, I would like to	
17	clarify that. I mean, all of the information that	
18	was used for the assessment of the climate change	
19	assessment was well provided in the supporting	
20	volume and the technical memos that were sent to	
21	Manitoba Wildlands and shared with your experts as	
22	well, plus at a meeting where we met with them,	
23	SO	
24	MS. WHELAN ENNS: Thank you.	
25	Did Manitoba Hydro or your consultants	

		Page 1027
1	establish a carbon inventory for the RSA, LSA or	Fage TOZ7
2	project footprint?	
3	MR. ST. LAURENT: Could you clarify	
4	the question with respect to a carbon inventory?	
5	MS. WHELAN ENNS: Carbon inventories	
6	are basically the identification of the carbon	
7	sequestered in all of the elements in a region	
8	and/or location where a project is intended. They	
9	are becoming this kind of an inventory is	
10	becoming quite common both in small and large	
11	projects with a lot of infrastructure, and some	
12	companies and also some countries are beginning to	
13	require them.	
14	The second question would then be	
15	whether Manitoba Hydro if you in fact	
16	established a carbon inventory for, for instance,	
17	the RSA, whether you then established a carbon	
18	budget for this project?	
19	MS. KOENIG: The above ground biomass	
20	was calculated.	
21	MS. WHELAN ENNS: Is that information	
22	in the EIS, and if so, where?	
23	MS. KOENIG: Yes, one moment we are	
24	just going to get the section.	
25	THE CHAIRMAN: Can we come back to	

Page 1028 that and move on? 1 2 MS. WHELAN ENNS: Certainly, Mr. Chair. We will receive the information later. 3 4 THE CHAIRMAN: Yes. MS. WHELAN ENNS: On page 23 we have 5 over half of the emissions from the Keeyask 6 Generation Project identified as coming from land 7 use change. Does this include the dykes, this 51 8 9 per cent? 10 MR. DE WIT: Land use change would include all of the entire footprint that is shown 11 12 on the -- I forget the slide number, but on the project footprint in the physiography piece. So 13 14 that would include dykes and any other structures. 15 MS. WHELAN ENNS: Does it include the burning after clearing? 16 17 MR. DE WIT: The reservoir clearing and the burning of that, yes, it does. 18 19 MS. WHELAN ENNS: Thank you. 20 The 28 per cent here that is 21 identified as building and manufacture includes then all of the residences, all of the external 22 buildings? 23 24 MR. ST. LAURENT: It would include all 25 of the principal structures and all of the

		Page 1029
1	supporting infrastructures that was described last	1 490 1020
2	week in the lifecycle analysis.	
3	MS. WHELAN ENNS: Your 5 per cent for	
4	transportation, would you tell me, tell us all	
5	whether or not that includes all the	
6	transportation materials, all transportation, air	
7	and land and water, in and out of site, and for	
8	what period of time?	
9	MR. DE WIT: Would you be able to	
10	repeat your question, please?	
11	MS. WHELAN ENNS: Sure, certainly.	
12	Does that include all transportation by land, air	
13	and water, in and out of the site, and for what	
14	period of time?	
15	MR. DE WIT: Yes, and for the	
16	duration of the construction, and as well there	
17	was consideration of it in the operation side,	
18	unless it was considered de minimus. It would	
19	take a while to check. So, yes, it includes all	
20	of the transportation factors for the to get	
21	the material from its source to the construction.	
22	MS. WHELAN ENNS: The rest of the	
23	question I was asking has to do with all of the	
24	transportation in and out of the project or the	
25	site through the construction period; is that	

		Page 1030
1	included?	Fage 1050
2	MR. ST. LAURENT: Yes.	
3	MS. WHELAN ENNS: Which greenhouse	
4	gases is Manitoba Hydro including in these	
5	quantums, in terms of greenhouse gases? Are you	
б	including methane?	
7	MS. KOENIG: Carbon dioxide and	
8	methane.	
9	MS. WHELAN ENNS: Are you weighting	
10	methane in terms of its multiplier and its greater	
11	effect than any of the other greenhouse gases?	
12	MS. KOENIG: Yes, of course.	
13	MS. WHELAN ENNS: Thank you.	
14	Did you include understanding that	
15	this is construction, okay, have you included at	
16	any point in your climate change analysis the	
17	results of changes in water quality and bacteria	
18	and anaerobic changes in the water and the	
19	emissions from that?	
20	Mr. Chair, I may have just asked a	
21	question that's for the aquatics panel.	
22	THE CHAIRMAN: Okay, then move on.	
23	MS. WHELAN ENNS: Okay.	
24	MR. DE WIT: I think we can probably	
25	address that from the lifecycle assessment folks	

1	as to what was included wasseding their enclusis	Page 1031
T	as to what was included regarding their analysis,	
2	because they conducted it, not the aquatic folks.	
3	THE CHAIRMAN: Okay. Go ahead, Mr. De	
4	Wit.	
5	MR. ST. LAURENT: Yes, that would have	
6	been captured in the reservoir emissions component	
7	of the lifecycle analysis.	
8	MS. WHELAN ENNS: Thank you.	
9	On page had 24 and thank you for	
10	the answer to the earlier questions. We are going	
11	to assume then that the full range of greenhouse	
12	gases included, for instance, in IPCC assessments	
13	and scenarios are included in these references to	
14	greenhouse gas emissions; is that correct? Page	
15	24?	
16	MR. DE WIT: Sorry, the reference is	
17	to greenhouse gas emissions for Keeyask?	
18	MS. WHELAN ENNS: Um-hum?	
19	MS. KOENIG: Could you please clarify	
20	the question?	
21	MS. WHELAN ENNS: It goes to the	
22	earlier information from the back row that you are	
23	including, you know, CO2, methane, the full range	
24	of greenhouse gases in your assessments.	
25	MS. KOENIG: Yes, that's correct.	

	Page 1032
1	MS. WHELAN ENNS: Is that true then
2	for each of these comparisons?
3	MS. KOENIG: Yes, it would.
4	MS. WHELAN ENNS: Thank you.
5	In assessing and making this
б	comparison in terms of greenhouse gas emissions
7	for different kinds of coal plants, different
8	natural gas plants, nuclear, wind, and then this
9	generation station, was there any inclusion then
10	in the analysis in terms of emissions from the
11	footprint for Keeyask compared to the footprint
12	for wind turbines, nuclear, natural gas or coal?
13	MR. DE WIT: Bear with me one moment
14	here?
15	I was going to quote from the
16	supporting document, the physical environment
17	supporting volume, page 2-3, where it indicates
18	that the levelized lifecycle emissions for the
19	project were compared with published lifecycle
20	emissions for other common forms of generation.
21	So the project was compared to common
22	electricity generating technologies based on the
23	lifecycle GHG emissions produced in delivering one
24	gigawatt hour to the distribution network.
25	MS. KOENIG: I would just like to add

		Page 1033
1	that ours would have included the footprint, but	Fage 1033
2	the other projects would not have.	
3	MS. WHELAN ENNS: Thank you.	
4	So we have some variance because it is	
5	a literature review, correct, if I heard correctly	
6	from the back row? And this is, the greenhouse	
7	gas is, in energy developed production, with more	
8	of a footprint showing in your calculations for	
9	Keeyask, is that correct? Are we hearing	
10	correctly? More emissions from the footprint or	
11	more emissions from the RSA or LSA in the Keeyask	
12	data?	
13	MR. DE WIT: I would say I think we	
14	have already mentioned that the footprint was	
15	included for Keeyask, and I believe Kristina said	
16	it may not have been for the other ones. And	
17	overall the well, the footprint may not be the	
18	largest component of those projects anyway, those	
19	other alternatives.	
20	MS. WHELAN ENNS: Thank you. So the	
21	only remaining part of the question then is	
22	whether for Keeyask, for this analysis and this	
23	data on emissions, you use the project area only	
24	leaving out then either the LSA or the RSA? For	
25	instance, is the reservoir in this number?	
		Dago 1024
----	--	-----------
1	MR. ST. LAURENT: The reservoir is	Fage 1034
2	included.	
3	MR. DE WIT: We already said that the	
4	entire footprint is included in the analysis, and	
5	the reservoir is part of that footprint.	
6	MS. WHELAN ENNS: Thank you.	
7	MR. ST. LAURENT: As well as any	
8	activity that would have occurred outside of the	
9	footprint, manufacturing of structural components,	
10	production of cement at plants well away from the	
11	project, that was all included in this lifecycle	
12	analysis.	
13	MS. WHELAN ENNS: Thank you.	
14	I just moved to page 28, to air	
15	quality and noise. I was somewhat surprised	
16	because we did not hear about the workers. So	
17	what are the noise quality realities for the up to	
18	2,000 people working on the site?	
19	MR. REMPEL: The workers will be	
20	required to wear noise protection equipment and	
21	that's governed by workplace regulations. And at	
22	the camp, which is about one and a half sorry,	
23	three kilometres away, we don't anticipate the	
24	camp workers will be subjected to disruption	
25	during sleep, for example.	

1	Page 1035 MS. WHELAN ENNS: Thank you. There is
2	probably content in the EIS about timing
3	restrictions to reduce effects of noise on
4	animals. This is the bottom of page 28?
5	MR. ST. LAURENT: That's correct,
6	those restrictions are laid out in the EIS.
7	MS. WHELAN ENNS: Thank you.
8	Also approximately page 28, which
9	chemicals will you be using to keep the dust down?
10	MR. ST. LAURENT: Dust suppression is
11	undertaken using water.
12	MS. WHELAN ENNS: Water only?
13	MR. ST. LAURENT: Water only.
14	MS. WHELAN ENNS: Good. Thank you.
15	MR. DE WIT: I would like to clarify
16	related to the noise restrictions you referenced.
17	Just for clarification, those aren't listed in the
18	physical section, those are dealt with separately
19	within other sections such as the aquatic,
20	terrestrial assessments on those study areas.
21	MS. WHELAN ENNS: So the steps to
22	reduce noise effect for certain species are in
23	different locations in the aquatic and terrestrial
24	sections of the EIS, correct?
25	MR. ST. LAURENT: They are initially

		Page 1036
1	summarized in the projection description	Fage 1030
2	supporting volume.	
3	MS. WHELAN ENNS: Thank you.	
4	MR. REMPEL: And also they were	
5	answered in an IR called CEC round one, CEC 0042.	
6	MS. WHELAN ENNS: Thank you.	
7	I have had some help and so there is a	
8	little bit of moving back and forth here in page	
9	numbers and sections of your presentation. I	
10	appreciate your patience on that.	
11	Would you give us what your future	
12	climate conditions your projected climate	
13	conditions are, again, RSA wide, in short	
14	description for 2020, 2040, 2060, and 20 year	
15	periods?	
16	THE CHAIRMAN: What information are	
17	you seeking that they haven't provided in this	
18	slide at page 65?	
19	MS. WHELAN ENNS: That's temperature,	
20	that slide on 65 is temperature, Mr. Chair.	
21	MR. DE WIT: And precipitation.	
22	THE CHAIRMAN: And precipitation.	
23	MS. WHELAN ENNS: Okay. The question	
24	is too general, we will pass. Thank you.	
25	THE CHAIRMAN: Maybe we could take	

	Pogo 1027
1	this opportunity to break for lunch. We will come
2	back at 1:30. Thank you.
3	(Hearing recessed at 12:27 p.m. and
4	reconvened at 1:30 p.m.)
5	THE CHAIRMAN: Okay. I'd like to
6	reconvene. I'd just like to remind participants
7	who are preparing cross-examinations or conducting
8	cross-examinations, please be a little bit better
9	at self-editing. I think there are a lot of
10	questions that are being asked, and that's not
11	only today but later last week. They got better
12	after admonishment, but still it could use some
13	improvement, or there's still room for
14	improvement. Please self-edit a bit more and
15	don't ask questions that are already on the record
16	or that are clearly not relevant to what is before
17	us.
18	So having said that, Ms. Whelan Enns,
19	back to you.
20	And just before I turn it over, we
21	don't want to be here forever, and some of the
22	cross-examinations are taking much longer than we
23	had anticipated or than had been indicated by the
24	participants before we got into this process.
25	So, Ms. Whelan Enns, back to you.

1038

		Dogo
1	MS. WHELAN ENNS: Thank you,	Page
2	Mr. Chair.	
3	MR. ST. LAURENT: Perhaps before we	
4	get started, I have a response to an earlier	
5	question about the carbon stock. It was provided	
6	in IR MWL 94, and it indicates that the carbon	
7	stock in the reservoir is 20.2 tonnes of dry	
8	matter per hectare. And that was also outlined in	
9	technical memo 9.5.6, table 1, and that's an	
10	equivalent of 11,462 tonnes of CO2 equivalent.	
11	And I'd also like a clarify a response	
12	provided earlier with respect to dust suppression.	
13	The question asked, what was planned to be used	
14	for dust suppression and the response was water.	
15	Water is planned to be used the vast	
16	majority of times, but there could be situations	
17	where we may be using other approved products,	
18	particularly when temperatures are really high and	
19	evaporation rates are quite high and water may not	
20	be entirely suitable, so other approved products	
21	could potentially be used.	
22	THE CHAIRMAN: Mr. St. Laurent, your	
23	first response, that was in an IR, was it?	
24	MR. ST. LAURENT: Correct.	
25	THE CHAIRMAN: I would like to point	

Page 1039 out as well, if something was answered in an IR, 1 that is part of the record, it doesn't need to be 2 3 asked again at this session. 4 MS. WHELAN ENNS: Thank you, Mr. Chair. 5 The work on the IRs results in partial б answers on occasion. So the information is 7 appreciated. But the question in terms of there 8 being a carbon inventory for the project and then 9 10 a carbon budget, we haven't quite got to the answers on yet. 11 12 Just checking page numbers. Would Dr. Ehnes let us know whether or 13 not there are climate change ingredients in peat 14 land disintegration and whether climate change can 15 16 affect pace, quantity, the acidity of peat land 17 and peat products? Thank you. DR. EHNES: Could you clarify what you 18 19 mean by peat products? 20 MS. WHELAN ENNS: I'm sorry, my 21 misstatement. I want to call it plants and that's not very good either. So disintegrating peat is 22 23 what the question is about. And could you tell us then whether or not climate change is likely to 24 have an effect on the rate of disintegration, how 25

		Page 10/0
1	much of the peat drops, as described in the EIS,	rage 1040
2	and anything else that may be affected in terms of	
3	peat disintegration?	
4	DR. EHNES: Yes, there is a chapter in	
5	the physical environment supporting volume which	
6	addresses the sensitivity of the predictions to	
7	climate change. And that includes the sensitivity	
8	of the peat land disintegration and reservoir	
9	predictions. And Mr. DeWit had a slide that was	
10	summarizing some of the general conclusions. And	
11	the result of that sensitivity analysis was that	
12	the conclusions would not be changed. And the	
13	primary reason for that is the majority of the	
14	peat land disintegration effects, particularly	
15	with regard to peat resurfacing, happened very	
16	early during the operation phase.	
17	MS. WHELAN ENNS: Thank you. The	
18	conclusion, and I think this is 38 sorry, did	
19	not provide a number. The conclusion overall from	
20	the EIS and this presentation appears to be that	
21	there will be essentially no net change or loss in	
22	peat lands, and that natural ecosystem processes	
23	will resume. Is that a correct understanding of	
24	the EIS?	
25	DR. EHNES: No. There will be a large	

Page 1041
area of peat land loss, I don't recall the amount.
In terms of reservoir expansion, it would be six
to seven square kilometres. And I may have
forgotten the rest of the question, or if there
was another question, I am sorry.
MS. WHELAN ENNS: Good, thank you.
This did not land in an IR but was a
topic of discussion for our understanding of the
EIS. When you refer to peat lands overall in the
EIS and in your studies, are we talking about all
the different kind of peat lands, as in are we
talking about bogs, fens, muskeg, and so on? Do
we have specific variations in kinds of peat that
we don't know about or are unclear to some of the
participants?
DR. EHNES: Yes, we're talking about
all kinds of peat land in the Canadian system of
wetland classification, there are two types of
peat lands, bogs and fens.
MS. WHELAN ENNS: Thank you. On slide
39, do your in-stream work activities include
blasting for aggregate?
MR. DeWIT: The in-stream work
activities involve the placement of materials in
flowing water. Blasting would not be done in the

		Page 1042
1	water, it would be done within the cofferdams or	Tage TO-Z
2	outside the river channel.	
3	MS. WHELAN ENNS: And any area blasted	
4	would be dewatered beforehand if there is water,	
5	correct?	
6	MR. DeWIT: Yes.	
7	MS. WHELAN ENNS: How many monitoring	
8	stations have there been in Stephens Lake over	
9	time? We're talking about 35 years, I guess? And	
10	there seems to be a reference to only two	
11	monitoring stations. Is that accurate? And is	
12	that the way it's been since it was first a	
13	reservoir through to the present?	
14	MR. DeWIT: I would have to if you	
15	could clarify what you're referring to in terms of	
16	monitoring stations? You refer to two	
17	MS. WHELAN ENNS: I'm on 41.	
18	MR. DeWIT: Well, slide 41 is	
19	referring to monitoring stations for the purposes	
20	of monitoring in-stream sediment during in-stream	
21	work. Other studies, and there's various maps	
22	throughout the EIS in physical, aquatic,	
23	terrestrial probably not terrestrial for	
24	Stephens Lake that show monitoring locations	
25	that had been monitored as part of these studies.	

	Pac	ie 1043
1	But these ones on page 41 are specifically to the	
2	in-stream sediment management plan.	
3	MS. WHELAN ENNS: Thank you.	
4	Was there a slide in your presentation	
5	in terms of or is this for the aquatics	
6	panel monitoring stations in both the Stephens	
7	Lake and Keeyask Lake?	
8	MR. ST. LAURENT: I think what Mr.	
9	DeWit is trying to explain is that there's quite a	
10	number of types, different types of monitoring	
11	stations. A wide range of stations have been	
12	established for physical environment studies, a	
13	number of different water quality monitoring	
14	stations captured on the aquatic assessment. So	
15	there's quite a large number of them. I don't	
16	think we have a map that shows every single one of	
17	them, if that's what you're looking for.	
18	MS. WHELAN ENNS: Thank you.	
19	In regards to the aquatics panel, we	
20	may then ask questions. We have aquatics and	
21	terrestrial together, and you, in fact,	
22	anticipated the question in terms of being able to	
23	ask questions about the whole suite of monitoring	
24	activities and monitoring sites. Thank you.	
25	At the early stage of the presentation	

		Dece 1011
1	on page 11, there's a list of certain technical	Page 1044
2	reports, and an indication that data has been	
3	collected since 2001. In going through the list	
4	then of the various technical reports that inform	
5	this EIS, to use the expression from last week's	
6	panel, in some instances it appears the data is	
7	already 10 years old. Okay. I'm going to make	
8	some general observations, not just specific	
9	technical reports, in asking this question.	
10	So has the data collection continued	
11	in the areas the technical reports are informing,	
12	and will the data collection continue through	
13	construction to operation? Another way of saying	
14	it, are we going to have significant data gaps	
15	before we get to the operation phase in the areas	
16	you've been studying technically?	
17	MR. DeWIT: Well, as described at the	
18	end of the presentation, there will be ongoing	
19	monitoring during the construction and operation	
20	phase that will be taking place for physical, and	
21	in later panels you'll see for other topics as	
22	well.	
23	MS. WHELAN ENNS: So that would	
24	include VECs and sub topics?	
25	MR. DeWIT: You would have to discuss	

	Page 1045
1	with the specific panels what their monitoring is
2	for any VECs or their sub topics.
3	MS. WHELAN ENNS: Okay, thank you.
4	A general question, if I may, that
5	happened at about page 45, but it's noticeable in
6	the language that you were using that you were
7	using the present tense as in "are" for a variety
8	of things that you are describing that are
9	theoretical or do not exist yet. So was there a
10	decision made to use the present tense, as if the
11	generation station is in place?
12	MR. DeWIT: Sorry?
13	THE CHAIRMAN: I don't understand why
14	that question is being asked.
15	MS. WHELAN ENNS: Well, fair enough,
16	Mr. Chair. It's odd because this is a future
17	project and a potential project and we're
18	listening to
19	THE CHAIRMAN: I think the information
20	that is presented on the slide as it's written is
21	pretty clear. I don't understand what the tense
22	of the modifying verb has to do with it.
23	MS. WHELAN ENNS: Thank you.
24	I'm just checking questions previously
25	asked.

		Dogo 1046
1	Did this team for this panel	Page 1046
2	participate in the cultural, and I hesitate to say	
3	cultural awareness, but the cultural sessions that	
4	were described to us last week?	
5	THE CHAIRMAN: And what's the	
6	relevance of that?	
7	MS. WHELAN ENNS: The understanding	
8	and application of the traditional knowledge and	
9	the knowledge transfer in the partnership.	
10	THE CHAIRMAN: Okay.	
11	MR. ST. LAURENT: Not everybody on	
12	this panel has attended the cultural awareness	
13	training that you are referring to.	
14	MS. WHELAN ENNS: Thank you. The EIS	
15	in your presentation indicates that you do not	
16	anticipate any effects on the quality of	
17	groundwater. Is there a plan or an intention in	
18	terms of what you would do if there is an effect	
19	on groundwater?	
20	MR. DeWIT: The primary risk to	
21	groundwater seem to be the potential for things	
22	like accidental spills. As noted in the	
23	presentation we mentioned, for example, if you	
24	have a small fuel spill affecting an area, then	
25	there are certainly spelled out requirements for	

		Page 10/7
1	cleaning those sorts of things up, which would	Fage 1047
2	include, for example, remediating any soils that	
3	are affected, and which would be subject to	
4	testing. You would test the ground to determine	
5	that it's all been removed and taken out of the	
6	area.	
7	MS. WHELAN ENNS: Thank you. Perhaps	
8	we could ask Dr. Ehnes if there's less or greater	
9	risk to groundwater on the islands in the	
10	reservoir? Do the steps in terms of the lake	
11	becoming a reservoir have a specific effect in	
12	terms of the groundwater on the islands?	
13	DR. EHNES: Yeah. In the slide here	
14	that's shown, we have indicated the areas in which	
15	there's the potential for there are terrestrial	
16	areas potentially affected by groundwater. I'm	
17	not quite clear on what you mean if there is	
18	greater risk related to groundwater. There's	
19	certainly groundwater changes along the shoreline	
20	and in islands. I wouldn't classify one as more	
21	risk than the other.	
22	MS. WHELAN ENNS: Thank you. The	
23	question was because of the information on 54	
24	about islands. Thank you for the answer.	
25	MR. ST. LAURENT: If I might add,	

1	Page 1048 though, what that slide is showing is the aerial
2	extent that would be, we would expect groundwater
3	to be affected by the reservoir. The supporting
4	volume has a number of other maps that shows the
5	magnitude of the groundwater change, so how much
6	groundwater would be predicted to increase,
7	including within those islands.
8	MS. WHELAN ENNS: Thank you.
9	MR. ST. LAURENT: So there's a lot
10	more information with respect to effects on
11	groundwater within the supporting volume.
12	DR. EHNES: And I would add that this
13	is not the area where terrestrial effects will
14	occur. This is the area where there may be
15	effects based on where the groundwater actually
16	becomes elevated. In many of these areas, it's
17	still going to be way too far below the surface to
18	affect soils or vegetation.
19	MS. WHELAN ENNS: Thank you. With
20	respect to page 58, there was a comment made in
21	the oral presentation that's not on the page, and
22	that is, it was a reference to under typical
23	weather conditions. So are your predictions then,
24	in terms of dissolved oxygen, based on typical
25	weather conditions, and/or did they take climate

		Dema 1010
1	change into consideration?	Page 1049
2	MR. DeWIT: We conducted, I mean, here	
3	we're only showing a small amount of what we did.	
4	In the EIS and the supporting volumes, you'll see	
5	there's a lot more different simulations that were	
6	done. And included in these are conditions where	
7	we got elevated water temperatures that might be	
8	more typical of what climate change might do, that	
9	we're using temperatures above what we'd consider	
10	typical for this area.	
11	MS. WHELAN ENNS: Thank you. Did you	
12	also then run those variances or increases in	
13	temperature against scenarios, for instance, in	
14	20-year intervals for climate change?	
15	MR. DeWIT: Sorry, I didn't catch the	
16	last?	
17	MS. WHELAN ENNS: Did you run then	
18	those variances in increased temperature against,	
19	or with your climate change scenarios, for	
20	instance, in 20-year intervals, 2020, 2060, 2080?	
21	MR. DeWIT: The dissolved oxygen	
22	studies looked at modeling periods considering	
23	different weather conditions, for example, typical	
24	and what we called a critical week with low winds,	
25	high temperatures. And they also considered	

		Page 1050
1	scenarios with elevated water temperatures that	Fage 1050
2	might be potential representation of what future	
3	climate change would be. And moving into the	
4	future, the looking at oxygen demand and that,	
5	that some of those decline over time. But we have	
6	characterized when the largest effects would occur	
7	in the first few years.	
8	MS. WHELAN ENNS: Thank you. On page	
9	60, can we assume then in terms of this short list	
10	of future projects in your presentation, that all	
11	of the other future projects in the region and	
12	that were identified last week are, in fact,	
13	included in your analysis? New converter station,	
14	variety of roads, future transmission, increased	
15	size of town sites?	
16	MR. DeWIT: Well, the Bipole III and	
17	transmission projects are on there, and the Gillam	
18	redevelopment.	
19	DR. EHNES: There were other projects	
20	that were considered, as listed in the	
21	presentation last week. This slide is focusing on	
22	the key ones.	
23	MR. REMPEL: We're really focusing on	
24	those that might interact or overlap with the	
25	effects of Keeyask in terms of the physical	

		Page 1051
1	environment.	Fage 1051
2	MS. WHELAN ENNS: Thank you. On page	
3	62, moving into climate change, there was a	
4	reference then in the oral, and it's in the last	
5	bullet here on this page, okay, to the current	
б	internationally accepted greenhouse gas emission	
7	scenarios from the IPCC.	
8	So will Manitoba Hydro be reviewing	
9	and updating your results on climate change for	
10	the Keeyask Generation Station project based on	
11	the IPCC fifth assessment and results?	
12	MR. DeWIT: I'll ask Kristina to	
13	address this.	
14	MS. KOENIG: We answered this in an	
15	IR, I am just looking it up.	
16	THE CHAIRMAN: Is this a Wildlands IR?	
17	MS. KOENIG: No, it was Peguis First	
18	Nations.	
19	Okay, there's multiple ones. So	
20	different versions of it were asked through Peguis	
21	First Nation 007, Peguis First Nation 0011, Peguis	
22	First Nation 0051, Peguis First Nation 0048, and	
23	Peguis First Nation 0074.	
24	So we had a couple of IRs that kind of	
25	dealt with that issue. I'm just going to pull up	

		Page 1052
1	one so that we can read kind of what we're talking	rage 1052
2	about in them.	
3	We used the intergovernmental panel on	
4	climate change fourth assessment report, Coupled	
5	Model Intercomparison Project Phase 3 data in the	
6	preparation of the Keeyask EIS. That was the most	
7	current climate model data available. The new	
8	IPCC assessment report is going to be released in	
9	stages throughout 2013 and 2014.	
10	The first version of the report came	
11	out in draft form on September 30th, so less than	
12	a month ago. The second working group report is	
13	coming out in March. The third one is coming out	
14	in April of 2014, and the final synthesis report	
15	isn't coming out until October 2014.	
16	So at the times when each one of the	
17	working groups reports are released, we will be	
18	reviewing the documents and the information	
19	provided, and then we'll be incorporating them	
20	into our ongoing climate change studies that we	
21	are conducting inside Manitoba Hydro.	
22	MS. WHELAN ENNS: Thank you. In	
23	arriving at your scenarios then for this project	
24	and this region, did you arrive at or use	
25	scenarios that are the conservative climate change	

		Page 1053
1	effects scenarios, or did you combine scenarios	Fage 1000
2	then from the range of worst case scenario to	
3	least impact?	
4	MS. KOENIG: So I tried to explain how	
5	we went through the process here. We used the	
б	Intergovernmental Panel on Climate Change emission	
7	scenarios that were provided by the scientists.	
8	They range from low to high carbon emissions, so	
9	the B1, A1B and A2 emission scenarios. So these	
10	were all the emission scenarios that were	
11	available and we used them all in our studies.	
12	MS. WHELAN ENNS: And your results	
13	then, are they a 50 percent median or mean, is	
14	that where you arrived?	
15	MS. KOENIG: No, the results that are	
16	shown in the tables are ensemble average. So as	
17	you saw, we had 139 climate scenarios. Each one	
18	of those dots shown here on the slide would	
19	represent a climate scenario. And your confidence	
20	actually increases when you go inside the inner	
21	ellipses. So you'll see that there's three bands	
22	shown on these scatter plots. So the inner band	
23	is a 50th percentile, followed by the 75th	
24	percentile, followed by the 95th percentile. So	
25	as the models start to collide together in the	

		Dogo 1054
1	middle of the scatter plots, that's where we have	Fage 1054
2	the most confidence in the results. So it's the	
3	average of the ensembles.	
4	MS. WHELAN ENNS: Thank you. On	
5	precipitation and temperature?	
6	MS. KOENIG: And temperature, yeah.	
7	MS. WHELAN ENNS: Thank you. The	
8	precipitation increase you identify, I think it's	
9	on page 75 and referred to elsewhere, is it a	
10	combination of rain and snow? Does it have a	
11	particular time of the year where the increase is	
12	projected to happen?	
13	MS. KOENIG: Precipitation would be	
14	rainfall and snowfall, depending on the	
15	temperature. That's when you would have rainfall	
16	or snowfall.	
17	MS. WHELAN ENNS: Yes. In your	
18	analysis, though, did you identify the greater	
19	likelihood of rain or snow, and did you identify	
20	time of the year that the precipitation was more	
21	likely to happen? I'm asking that question in	
22	relation to baseload, resource load, and energy	
23	production. Did you look at	
24	MS. KOENIG: We looked at everything	
25	on a monthly scale, annual scale and seasonal	

Page 1055 1 scale. 2 MS. WHELAN ENNS: Thank you. I may 3 not be able to pronounce correctly the name of 4 this organization that Manitoba Hydro works with in terms of climate change analysis, Ouranos. 5 MS. KOENIG: Correct. 6 MS. WHELAN ENNS: Manitoba Hydro is an 7 affiliate? 8 9 MS. KOENIG: That's correct, affiliate 10 member. MS. WHELAN ENNS: And the membership 11 is made up of? 12 13 MS. KOENIG: Other hydropower 14 utilities, federal organizations, provincial organizations, lots of universities across Canada, 15 and Environment Canada is the major funder. 16 MS. WHELAN ENNS: Are you likely to be 17 working then through this consortium and with the 18 19 affiliates in terms of the IPCC fifth assessment, 20 in the updating of your climate analysis as you 21 were describing? 22 MS. KOENIG: So are you asking if we're working with them on the IPCC report, or are 23 24 they providing us information? 25 MS. WHELAN ENNS: I asked you if

		Dogo 1056
1	Manitoba Hydro is likely to be working with the	Page 1056
2	affiliates in this consortium in terms of what you	
3	described for the IPCC?	
4	MS. KOENIG: Yes, it's ongoing. We	
5	are constantly interacting with them.	
б	MS. WHELAN ENNS: So that would also	
7	apply then to what you were describing in terms of	
8	the IPCC fifth assessment?	
9	MS. KOENIG: We will be getting the	
10	data, like working with them and reviewing the	
11	reports, correct, yes.	
12	MS. WHELAN ENNS: Thank you. On slide	
13	67, it is a challenge to understand when climate	
14	change, in the stages of analysis you have done on	
15	a range of things to do with the physical	
16	environment, when climate change is taken into	
17	consideration. So by that I mean, is climate	
18	change a late ingredient in your analysis or is it	
19	there at the early stages of analysis in terms of	
20	different components in the physical environment?	
21	This is a challenge in the EIS also.	
22	MR. REMPEL: If I understand your	
23	question correctly, you're asking whether we	
24	considered climate change sensitivity later in the	
25	game as opposed to earlier?	

		Dago 1057
1	MS. WHELAN ENNS: Um-hum.	Fage 1057
2	MR. REMPEL: The approach we used was	
3	to look at the effect of the environment on the	
4	project, and that was done early. And Marc	
5	St. Laurent has talked about and will have talked	
6	about that. Then we looked at the effect of	
7	project on climate, which is the greenhouse gas	
8	emissions scenario. And then having done our	
9	initial assessment on the effects of Keeyask on	
10	the physical environment, we then cross-checked	
11	the sensitivity of those conclusions to climate	
12	change. So it was done later in the game.	
13	MS. WHELAN ENNS: Thank you. Passing	
14	on questions that are related. Thank you,	
15	Mr. Rempel.	
16	We have information on temperature and	
17	on precipitation. Did you adjust, update or learn	
18	changes in your approach in terms of climate	
19	change effects from the analysis in the Bipole III	
20	EIS?	
21	MS. KOENIG: The approach would be the	
22	same, no matter what the project.	
23	MS. WHELAN ENNS: Thank you. Asking	
24	then the same question in terms of eight years	
25	ago, nine years ago, and whether there's been any	

		Dogo 1050
1	change in the approach by Manitoba Hydro in	Page 1058
2	assessing climate impacts on a generation station,	
3	and how it was done in the Wuskwatim EIS to this	
4	EIS for Keeyask?	
5	MR. REMPEL: I can respond to advise	
6	you that when we did the Wuskwatim assessment, we	
7	did not have access to the guidance from the CEA	
8	that came out during the hearings actually. It's	
9	called incorporating climate change considerations	
10	in environmental assessment, general guidance for	
11	practitioners. It was prepared in November '03 by	
12	the Federal/Provincial territorial committee on	
13	climate change and environmental assessment and	
14	adopted by CEA. So we had this to inform us in	
15	terms of the Keeyask Generating Station, which we	
16	did not have in conducting the Wuskwatim EIS.	
17	MS. WHELAN ENNS: Thank you.	
18	MS. KOENIG: And I would like to add	
19	that since Wuskwatim EIS, Manitoba Hydro has	
20	formed the Hydro climatic study section group	
21	which I am involved with. And our prime mandate	
22	is to understand the impacts of climate change on	
23	hydropower, and particularly the water resources.	
24	So we have moved quite leaps and bounds since	
25	Wuskwatim.	

1	MS. WHELAN ENNS: Thank you. In your	Page 1059
2	cumulative assessment steps, have you done any	
2	analysis in terms of your production of greenhouse	
1	analysis in coimp of your production of greenhouse	
4	gas emissions from future projects in the region?	
5	MS. KOENIG: Could you please repeat	
6	the question?	
7	MS. WHELAN ENNS: In your cumulative	
8	assessment work, did you include your projection	
9	of greenhouse gas emissions from future projects	
10	in the region? This would ideally include the	
11	additional zones.	
12	MS. KOENIG: So are you referring to	
13	the climate scenarios that were produced in the	
14	section of the EIS?	
15	MS. WHELAN ENNS: No, it's well,	
16	I'm going to ask the Chair about that. But this	
17	is a cumulative assessment question, so is this	
18	the right panel?	
19	THE CHAIRMAN: Well, I'm not sure that	
20	it's even a legitimate question, quite frankly.	
21	MS. WHELAN ENNS: We can pass then,	
22	Mr. Chair.	
23	THE CHAIRMAN: Okay.	
24	MS. WHELAN ENNS: Getting close to	
25	final questions, Mr. Chair.	

		Dege 1060
1	There is on page 69 a fair bit of	Page 1060
2	information in terms of your physical	
3	environmental monitoring plan. And again, thank	
4	you for the earlier information about all the	
5	range of monitoring sites. It's a similar	
6	question then, and it's about the Wuskwatim	
7	Generation Station. And that is, have you been	
8	informed or made adjustments or updates in terms	
9	of the environmental monitoring plan for Keeyask	
10	based on the Wuskwatim experience, noting that	
11	Wuskwatim has only gone into operation?	
12	MR. DeWIT: Marc and I have both	
13	personally been involved with the Wuskwatim	
14	physical monitoring, and others involved in the	
15	team have experience monitoring elsewhere even	
16	beyond that. So I think it would be fair to say	
17	that we draw on our experience from that to look	
18	at the preparation of the plan for Keeyask.	
19	MS. WHELAN ENNS: Are there any	
20	specific lessons or changes made?	
21	THE CHAIRMAN: How is that relevant?	
22	MS. WHELAN ENNS: The questions of	
23	this sort have to do with the questions also about	
24	the moving from the operation to the construction	
25	to the operation phase of this project, and how	

	Page 1061
1	much time passes overall. And whether we're, in
2	the meantime, whether our utility in the meantime
3	is in fact bringing forward from the time they
4	write an EIS, into construction, into operation,
5	lessons learned from other recent projects. We
б	can pass, Mr. Chair.
7	THE CHAIRMAN: I think it's obvious,
8	though. It should be an obvious response, so
9	please move on.
10	MS. WHELAN ENNS: Okay.
11	Is it your conclusion that there are
12	no emissions produced from daily generation of
13	energy from this intended generation station?
14	MR. DeWIT: You're referring to air
15	emissions?
16	MS. WHELAN ENNS: Greenhouse gas.
17	THE CHAIRMAN: I think they have
18	already described that, haven't you, a number of
19	times?
20	MR. DeWIT: Yeah. The operation phase
21	is included as noted in the pie chart on one of
22	the earlier slides.
23	MS. WHELAN ENNS: Okay. I'm going to
24	stop, Mr. Chair, and thank you very much.
25	THE CHAIRMAN: Thank you.

		Page 1062
1	Peguis First Nation, Ms. Land?	
2	MS. LAND: Thank you, Commissioners.	
3	Thank you panel members for your evidence this	
4	morning. I'm just going to walk you through a few	
5	questions. I don't have that many questions. The	
6	first set of questions that I'm wanting to pursue	
7	have to do with the issue of hydraulic impacts.	
8	And I'm going to take you to a slide, but I was	
9	noting that in the volume on physical, the	
10	physical environment assessment, at page 4-21, and	
11	I'll take to you that. But panel members, I don't	
12	think you need to go through this. I'll read it	
13	into the record.	
14	So this was the explanation of the	
15	Nelson River flows and the hydraulic impacts	
16	anticipated. So I'm quoting from page 4-21 of the	
17	physical environment volume.	
18	"In the unregulated state, the highest	
19	lower Nelson River flows typically	
20	occurred in mid summer and reduced to	
21	the lowest flows in mid winter. With	
22	LWR and CRD, the lower Nelson River	
23	flows are still typically highest in	
24	mid summer, lower in late summer, and	
25	then rising in winter due to increased	

		Dogo 1062
1	power demand, but the post project	Page 1063
2	flows during the winter and open water	
3	periods are much closer together.	
4	Historical water levels on Split Lake	
5	were higher in summer than winter,	
6	whereas post CRD and LWR, the water	
7	levels are an average of about .6	
8	metres higher than summer."	
9	So I'm just trying to make sure that I	
10	understand this evidence correctly. So, in other	
11	words, the water levels historically were highest	
12	in summer, but now they are also higher in winter	
13	than they were historically as a result of the	
14	ongoing effects of LWR and CRD; is that correct,	
15	on Split Lake specifically?	
16	MR. MALENCHAK: So there's actually	
17	two separate things within the passage that you	
18	describe there. The first being that whether in	
19	the regulated or unregulated state, when there's a	
20	flood, those are the highest water levels, there's	
21	a flood. And that typically will still always	
22	occur in the early to mid summer at this location	
23	in the river. But one of the purposes of the CRD	
24	and Lake Winnipeg Regulation projects was to	
25	supplement flow in the winter. So that's why	

		Dawa 4004
1	under more normal flow conditions, you could see	Page 1064
2	an elevated winter flow compared to the summer.	
3	MS. LAND: Okay. And that change is	
4	due to the water management regime as a result of	
5	CRD and the construction of the early projects to	
б	manage water levels to ensure that those flow	
7	rates are high enough to maximize energy	
8	production at peak demand times. Is that correct?	
9	MR. MALENCHAK: Yeah. That was	
10	touched on in the PD panel, but that's correct.	
11	MS. LAND: Okay. So this project then	
12	is linked to, this particular generation project	
13	then is linked to the water management decisions	
14	that are made upstream about when to store and	
15	when to release water to meet that peak demand.	
16	Is that correct?	
17	MR. MALENCHAK: The Keeyask project	
18	will be operated within Manitoba Hydro's	
19	integrated system, that's correct.	
20	MS. LAND: And then in today's	
21	evidence, you testified, you provided	
22	information I'm going to go to slide 32, and	
23	this is the slide on the water regime and	
24	operation period. And in your evidence, you said	
25	that the open water levels upstream beyond Split	

		D 4005
1	Lake are not expected to be affected by the	Page 1065
2	project. Is that correct?	
3	MR. MALENCHAK: That's correct.	
4	MS. LAND: Okay. So then on that	
5	basis, you assessed hydraulic zone of influence of	
6	41 kilometres upstream from the project site, of	
7	the dam site; is that correct?	
8	MR. MALENCHAK: That is the open water	
9	hydraulic zone of influence.	
10	MS. LAND: Okay. Did you assess any	
11	direct and indirect upstream hydraulic effects	
12	beyond that 41 kilometre area upstream?	
13	MR. REMPEL: I'd like to clarify your	
14	question. Is your question related to, or is your	
15	question, will the addition of Keeyask affect	
16	water levels further upstream, such as Lake	
17	Winnipeg and Cross Lake, et cetera?	
18	MS. LAND: Yes, actually my question	
19	goes more to whether you assessed whether it	
20	would.	
21	MR. REMPEL: We had looked at the	
22	question of whether the addition of Keeyask would	
23	affect system operations and would have what we	
24	call a system effect on upstream water bodies.	
25	And in our review, we concluded that the	

Page 1066 dominating factor in terms of how Hydro operates 1 its system is the amount of info coming into Lake 2 3 Winnipeg. And that's by far the biggest factor. 4 Other factors are things like changes in demand, cold, long winter, for example, and 5 also changes in the supply of energy, which could 6 involve the addition of Keeyask, for example. We 7 also determined that those changes are very small 8 in the context of the variation that occurs on 9 10 those lakes. Lake Winnipeg and those other bodies of water are affected by the amount of inflow, 11 12 which can vary greatly. 13 In 2003, for example, there was -- the 14 flows were about 40 percent below average, and in 2005, they were 70 percent or so higher than 15 average. And so those water bodies vary in quite 16 a large range. Cross Lake, I think the variation 17 is something like 10 feet from the low to high. 18 19 For Split Lake it's 12 feet. So in the context of 20 those variations, we don't think that you could 21 find or detect changes brought about by the 22 addition of Keeyask. 23 We also did point out in various IRs, NCN TAC project round 1, NCN 001, and also in CEC 24 round 1 PFN 032. And we responded that water 25

1067

		Daga
1	levels downstream of Lake Winnipeg would follow	Page
2	the same general pattern as presently exists,	
3	since the main factor is the amount of inflow	
4	coming into the system. And the differences in	
5	the water levels in the water bodies downstream of	
6	Lake Winnipeg associated with the addition of	
7	Keeyask are not expected to be discernible or	
8	detectable in the context or those variations that	
9	occur because of the response to inflow.	
10	MS. LAND: Okay. So I'm going to	
11	track this through. So what you're saying is that	
12	you did look at what the water flows would be,	
13	based on the historic information and the existing	
14	regime, existing LWR regime and CRD influences and	
15	so on. You considered that when you were looking	
16	at what was going to happen at the project site.	
17	And you are also saying that this, the project is	
18	going to be linked to the flow regulation for the	
19	purpose of maximizing energy production at demand	
20	time.	
21	So I guess my question is, would you	
22	be looking then at the hydraulic effects of those	
23	decisions about water regulation at LWR, on how	

24 the project is operated, and what the upstream25 effects of that are when decisions are made about

		Page 1068
1	how to vary the water levels and flows on Lake	Tage 1000
2	Winnipeg?	
3	MR. REMPEL: I thought I addressed	
4	that but I'll try again. With respect to Lake	
5	Winnipeg, the regulation of Lake Winnipeg takes	
6	place in the context of the overall system, which	
7	is primarily driven by the demand for power and	
8	also the supply of energy, which is fundamentally	
9	related to the amount of inflow. So we examined	
10	that. But in terms of how Keeyask will be	
11	operated, I think Mr. St. Laurent indicated it	
12	will be operated either on a peak or baseload	
13	operation within that one metre. And the	
14	hydraulic effect of that operation is really	
15	confined to the hydraulic zone of influence that	
16	is shown on that slide.	
17	MS. LAND: So then you would say,	
18	though, that that is an ongoing, that there is an	
19	ongoing effect of that management decision in	
20	terms of the regulation of water on Lake Winnipeg.	
21	So you described it as the management of that	
22	water to keep it within that one metre variance.	
23	And so that is an existing situation, that is how	
24	the water flow is managed now. So that's an	
25	existing and ongoing impact. Would you agree with	

Page 1069 1 me? 2 MR. ST. LAURENT: The one metre 3 operating range that George is referring to is the 4 operating range of the reservoir at Keeyask, which is not in place yet, so he's describing how an 5 operating, once Keeyask is in place in the Gull 6 Rapids to Clark Lake area. The slide above shows 7 the extent, spatial extent of that reservoir, and 8 it raises water level in the vicinity of the 9 project up to about the outlet of Clark Lake. 10 So those variations are limited to that. 11 12 MS. LAND: That is my error. I 13 understand what you're saying. I guess my root question wasn't so much about the amount of the 14 variance being one metre, but just saying that the 15 existing water management system that controls 16 those flows is an existing and ongoing impact as a 17 result of the construction of those past projects, 18 19 and that is tied and does affect how this project 20 will be operated? 21 MR. ST. LAURENT: Those effects that George is referring to, you know, they have 22 occurred in the past as those projects were coming 23 online, and they have occurred in the past and 24 they will certainly continue to occur into the 25
		Dago 1070
1	future based on all the factors that George was	Fage 1070
2	explaining. And that will happen with or without	
3	the construction of the Keeyask project.	
4	MR. REMPEL: And there will be no	
5	changes to the Lake Winnipeg Regulation or CRD in	
6	terms of their licence conditions and their	
7	operation.	
8	MS. LAND: So then if I take you to	
9	some of the monitoring evidence that you gave in	
10	terms of the scope of the monitoring to test that	
11	assumption, that there wouldn't be any impact, you	
12	mentioned in the monitoring evidence, I think it	
13	was slide 69, you looked at the purposes of the	
14	monitoring. And this was the monitoring for	
15	surface water and ice specifically that I was	
16	interested in. And so I was wondering then, what	
17	is the geographic scope of that monitoring that	
18	you will be doing, and whether that extends	
19	upstream beyond the 41 kilometre area into Split	
20	Lake, beyond Split Lake upstream?	
21	MR. DeWIT: The extent of the surface	
22	water and ice monitoring program described in the	
23	physical environment monitoring plan is from Clark	
24	Lake downstream to Stephens Lake, and their	
25	existing site monitoring levels on Split and	

		Dago 1071
1	Stephens that can provide information to the	Page 1071
2	program as well.	
3	MS. LAND: Will there be any	
4	monitoring sites for surface water and ice impacts	
5	upstream in the LWR area?	
6	MR. DeWIT: Well, there is existing	
7	monitoring at stations upstream. They have their	
8	own monitoring sites for water levels.	
9	MS. LAND: And are they specifically,	
10	are you specifically monitoring to see whether	
11	there are any direct or indirect impacts once this	
12	project comes on line in terms of variances that	
13	occur on those monitoring sites in the LWR area?	
14	MR. REMPEL: The present system, the	
15	monitoring on Lake Winnipeg will continue. And as	
16	we say, we don't think that that monitoring will	
17	show any detectable differences when Keeyask is	
18	added to the system. But the monitoring will be	
19	in place and continue.	
20	MS. LAND: And does the plan	
21	specifically anticipate for monitoring, does it	
22	specifically anticipate looking at whether there	
23	is any amplified effects on water flows in levels	
24	and flooding in the LWR area as a result of the	
25	addition of an additional generation into the	

		Dago 1072
1	system?	Fage 1072
2	MR. REMPEL: Well, certainly the	
3	results of the monitoring will be available and	
4	will be examined. But, as I say, we don't think	
5	that there is going to be any detectable effect,	
6	but certainly that information is available and is	
7	reviewed on an ongoing basis.	
8	MS. LAND: I'm going to move on then	
9	to just ask you one other set of questions that	
10	has to do with, it just picks up on a question	
11	that was being asked to you by Wildlands. It has	
12	to do with some of the information about mapping	
13	data.	
14	So Ms. Whelan Enns referred to slide	
15	12 when she was asking you about the industry	
16	standard computer models that were referred to.	
17	And she was asking you about whether those	
18	included modeling for mapping, and she was asking	
19	about GIS. And you refer to the specialists who	
20	develop and employ data to produce these computer	
21	based models. And my question for you is, would	
22	that data that your specialists are developing	
23	include high resolution topography data in order	
24	to build the GIS maps that you are using to scope	
25	the changes to shorelines, to show the scope of	

		Dago 1072
1	changes to shorelines in inundated areas?	Fage 1075
2	MR. ST. LAURENT: So the physical	
3	environment volume in the EIS does lay out all the	
4	different data sets that were used to carry out	
5	the numerical model studies. And first developed	
6	was a high resolution digital elevation model, and	
7	that is actually the basis of a lot of the	
8	physical modeling that was undertaken for Keeyask,	
9	it really starts with that data set. And it is	
10	shown in the supporting volume, we don't have it	
11	in the presentation, but there's a clear map	
12	showing that particular data set.	
13	MS. LAND: Did you allow participants	
14	to access the high resolution topography data in	
15	shape files that you had developed?	
16	MR. ST. LAURENT: No, that particular	
17	data set wasn't posted.	
18	MS. LAND: When my client, Peguis	
19	First Nation, specifically asked for the high	
20	resolution topography data, was it shared?	
21	MR. ST. LAURENT: As I said, that data	
22	set was not provided to any of the intervenors.	
23	MS. LAND: Thank you. Those are all	
24	my questions.	
25	THE CHAIRMAN: Thank you, Ms. Land.	

		Page 1074
1	I don't believe there's anybody here	C
2	from the Manitoba Metis Federation. Consumers	
3	Association?	
4	MR. WILLIAMS: Members of the panel,	
5	our questions are linked to the aquatic and	
б	terrestrial evidence, so rather than split our	
7	questions, we'll just pose them at the appropriate	
8	time. Thank you.	
9	THE CHAIRMAN: Thank you, Mr. William.	
10	Fox Lake Citizens?	
11	MS. PAWLOWSKA: Is it possible that I	
12	have somebody come up with me?	
13	THE CHAIRMAN: Of course.	
14	MS. PAWLOWSKA: Good afternoon. I	
15	have Dr. Stephane McLachlan who is here with me	
16	and he will conduct some of the questioning along	
17	with me, more of the technical stuff than perhaps	
18	I may have. I will go first and then I will allow	
19	Dr. McLachlan to ask his questions.	
20	So the first question I have, would	
21	the bottom of the river be impacted, so the river	
22	bed?	
23	MR. DeWIT: I believe we have also	
24	mentioned in the presentation as well is there	
25	will be sedimentation taking place within the	

		Page 1075
1	reservoir.	. age to e
2	MS. PAWLOWSKA: Would the river get	
3	deeper? Would there be any specific incisions in	
4	the river?	
5	MR. ST. LAURENT: If you go back to	
6	the water surface profile perhaps somebody can	
7	bring that up it does show how the water levels	
8	will change once the project is constructed. The	
9	water level at Gull Rapids will certainly become a	
10	lot deeper than it is right now. The rapids	
11	essentially will be inundated. And at the	
12	powerhouse and the spillway, you're asking if	
13	there's any excavations perhaps? Certainly there	
14	is excavations upstream of the powerhouse and the	
15	spillway to develop channels to allow the water to	
16	better flow through those two structures. So the	
17	bottom graph here shows how the water levels will	
18	get deeper as you move further upstream to the	
19	outlet of Clark Lake, and then beyond that point	
20	the water level won't change.	
21	MS. PAWLOWSKA: Okay. Thank you. So	
22	I will try to go in order of your presentation.	
23	So on page 11, the pictures of the individuals,	
24	are they pictures of First Nation members?	
25	THE CHAIRMAN: That's not relevant.	

	Dama 4070
1	MS. PAWLOWSKA: Okay. Is it relevant
2	to ask if there are elders?
3	THE CHAIRMAN: That's not relevant.
4	MS. PAWLOWSKA: Okay.
5	So on page 12, how far in kilometres
6	does the integrated erosion of the shoreline that
7	you mentioned go up the river, upstream of the
8	river?
9	MR. DeWIT: One moment, I have got to
10	find the slide.
11	THE CHAIRMAN: I think that was
12	answered.
13	MR. DeWIT: This slide here shows the
14	flooded area and there will be some amount of
15	erosion that occurs within the hydraulic zone of
16	influence. The bulk of it really occurs within
17	the Gull lake area, and less in the riverine areas
18	upstream. So actually here sorry, this doesn't
19	show the entire area, but maps in the EIS do.
20	Most of it occurs around Gull lake. Further
21	upstream the river channels, the water level
22	increases are less and the erosion isn't quite as
23	large. And certainly above Birthday Rapids, it's
24	limited, as noted in the presentation.
25	MS. PAWLOWSKA: So up to and above

Page 1077 Birthday Rapids, correct? 1 2 MR. DeWIT: Likely up to about 3 Birthday Rapids, most of it. 4 MS. PAWLOWSKA: Thank you. And on page 12, what is the difference between 5 interaction and collaboration that you discussed, 6 because you have collaborations with the others, 7 and interactions with First Nations? 8 9 THE CHAIRMAN: Are you sure you have 10 the right page? 11 MR. DeWIT: That would be page 13. 12 MS. PAWLOWSKA: Sorry, page 13, I 13 apologize. 14 THE CHAIRMAN: Isn't that a matter of semantics? 15 16 MS. PAWLOWSKA: That's one of the things we'd like to have. 17 MR. DeWIT: No, I think -- yeah, 18 19 it's -- we all worked together with, certainly 20 among the team we worked quite closely because we 21 were working with each other's information, but 22 certainly also working with the Partner First 23 Nation people to discuss results, and if they 24 needed any information from us or whatever. 25 MS. PAWLOWSKA: Okay. Thank you. And

		D
1	on page, well, both pages 71 and 23, is the	Page
2	greenhouse gas emissions of the reservoir included	
3	as part of the chart?	
4	MR. ST. LAURENT: Yes.	
5	MS. PAWLOWSKA: Okay. Thank you.	
6	MR. DeWIT: And it shows right on	
7	there it includes the reservoir.	
8	MS. PAWLOWSKA: Okay, thank you. And	
9	on page 24, you jumped to greenhouse gas emissions	
10	over its life. So what lifetime are we talking	
11	about? Is it the lifetime of the project or the	
12	lifetime of the construction of the project or	
13	MR. DeWIT: It's over the life of the	
14	project. So as the previous chart showed, it had	
15	emissions during construction, operation and	
16	decommissioning. So that would be from	
17	construction through to the end of life.	
18	MS. PAWLOWSKA: Through to	
19	decommissioning.	
20	MR. ST. LAURENT: And for this	
21	assessment, that life was assumed to be a hundred	
22	years, for Keeyask.	
23	MS. PAWLOWSKA: Thank you. So on page	
24	27, you do mention that there was no noise and	
25	continuous noise emissions. Did you also take	

		Page 1070
1	into account the noise generated by the AC	Fage 1079
2	currents from the power lines?	
3	MR. REMPEL: There is audible noise	
4	associated with transmission lines, and there are	
5	regulations that govern the extent of which that	
6	noise can be at the edge of the right-of-way. So	
7	we did not consider it in terms of a noise	
8	emission for this purpose.	
9	MR. DeWIT: And I'd also point out	
10	that the power lines from this station are part of	
11	the Keeyask transmission project and not part of	
12	the Keeyask generation project.	
13	MS. PAWLOWSKA: Okay. Thank you. The	
14	next question I had would be about noise as well.	
15	Would blasting be felt in Gillam?	
16	MR. REMPEL: No, we would not expect	
17	that Gillam residents would be able to detect	
18	blasting.	
19	MS. PAWLOWSKA: Thank you. So would	
20	it be correct for me to say that Birthday Rapids	
21	would not disappear as per the image that you	
22	showed on page 32 and 33?	
23	MR. MALENCHAK: So based on the open	
24	water hydraulic zone influence, you can see that	
25	it goes past Birthday Rapids. So there will be	

		Page 1080
1	some water level effects at Birthday Rapids, and	Fage 1000
2	they will not exist exactly as they do today, but	
3	they will be very swift moving water with a little	
4	bit less head drop than exists now. And this is	
5	discussed in a fair bit more detail in the	
б	physical environment supporting volume.	
7	MS. PAWLOWSKA: Okay, thank you. So	
8	will the loss of all the rapids from Clark Lake to	
9	Gull Lake be so significant that no other projects	
10	can be built on that stretch of the river?	
11	MR. ST. LAURENT: So I think you'd	
12	have to go back to the project description	
13	presentation where we illustrated the different	
14	concepts for developing this reach of river. And	
15	one of those concepts was the development of two	
16	generation stations, a smaller station at Gull	
17	Rapids and another one at Birthday Rapids. And	
18	the preferred concept was the development of a	
19	single site at Keeyask.	
20	The way that Keeyask is being	
21	constructed it wouldn't, it would not prevent	
22	another station from being developed there if	
23	found to be required. However, there's not a lot	
24	of head left. And it would be a question of the	
25	economics of the project, and given that there's	

		D 4004
1	really not a lot of head left at that site. So,	Page 1081
2	technically, a site could still be developed. But	
3	there's a lot of decisions that have to be made to	
4	answer that question about whether or not	
5	something like that would actually proceed.	
6	MS. PAWLOWSKA: Okay, thank you. So	
7	on page 37, you do have a picture of the shore and	
8	the shape of the shore. And the question I have,	
9	is the future profile of the eroding zone, what	
10	future are we looking at? What is the approximate	
11	date that would be? Within five, 10, 50 years?	
12	DR. EHNES: That would depend on the	
13	location within the reservoir. The upstream	
14	reaches are largely bedrock controlled. And in	
15	those areas, there would be little change in the	
16	Gull lake area, which is where most of the	
17	flooding occurs. It would be initially mostly	
18	peat shorelines, flatter areas with different	
19	kinds of peat lands breaking down over time. And	
20	in this not in this slide but in the next	
21	slide, there is could we turn to the next	
22	slide there is an illustration of how the peat	
23	land disintegration process eventually gets to	
24	mineral soil. And in the Gull lake area, there	
25	are some large back-bay areas which are fairly	

	Page 1082
1	flat and gently sloped areas. So in those areas,
2	there will typically be low banks. And then when
3	we get downstream, there are some high banks,
4	five, six, seven metres high. And then that area
5	in the current environment, there are ice jams in
6	most years which creates water backup effects and
7	has consequences for the mineral banks and those
8	areas. And those ice jams are not expected to
9	occur once the project is built. So those banks
10	will remain pretty much as we find them today.
11	And I'm just going to confirm that
12	with my colleague. Yes, that's confirmed, thank
13	you.
14	MS. PAWLOWSKA: Thank you. In your
15	question of the sediment deposit for the less than
16	five milligrams per litre, did you also include
17	alien erosion?
18	MR. ST. LAURENT: Can you explain what
19	alien erosion is?
20	MS. PAWLOWSKA: Alien, it's when the
21	wind blown erosion, when the water levels decrease
22	and you have the dry exposed area of the minerals
23	that would blow in the water?
24	MR. DeWIT: Well, if you're referring
25	to the erosion during the construction phase?

		Dama 4000
1	MS. PAWLOWSKA: And after	Page 1083
2	construction?	
3	MR. DeWIT: No, I wouldn't anticipate	
4	that there would be large areas that would be	
5	dried out that would be subject to that type of	
6	erosion, or that it would contribute substantially	
7	to any sediment.	
8	DR. EHNES: In addition to that, many	
9	of these banks or shorelines are peat covered	
10	which would be protecting the mineral soil.	
11	MS. PAWLOWSKA: Okay. Thank you. And	
12	the next question I had is about the management	
13	plans. And I hope that this could be part of this	
14	panel but if not, we could ask this at another	
15	panel, about the Sediment Management Plan for the	
16	reservoir. Was that a Two-track approach as well?	
17	MR. DeWIT: So the Sediment Management	
18	Plan for instream construction was shared with.	
19	MS. PAWLOWSKA: Partner First Nations	
20	at working group meetings and discussed what those	
21	plans would entail. And certainly they also had	
22	reviewed that document and provided input to us on	
23	that.	
24	MS. PAWLOWSKA: So how are the	
25	concerns of the First Nations in regards to the	

1	P physical environment and the physical effects in	age 1084
2	terms of sedimentation addressed?	
3	THE CHAIRMAN: I am just not sure that	
4	we could even expect them to have an answer to	
5	that question. We're asking them to assume some	
6	concerns expressed by First Nations that they may	
7	not be aware of but they have said that they work	
8	with their partners in setting this up. So	
9	perhaps you could help me?	
10	MS. PAWLOWSKA: I suppose we are	
11	wondering if this was a Two-track approach and	
12	there was a collaboration, we would like to know	
13	how concerns of the First Nations, that may have	
14	perhaps been contradictory to the scientific	
15	views, been addressed.	
16	THE CHAIRMAN: Okay.	
17	MR. REMPEL: We had a question on that	
18	ATK and the physical environment in CEC round 1.	
19	It's CAC 0101. And we responded to the matter in	
20	which ATK observations were discovered and how we	
21	responded to that in a series of steps in terms of	
22	interaction with the First Nations.	
23	MS. PAWLOWSKA: Okay, thank you. Next	
24	question I had is on sediments and mobile peat.	
25	On page 44, you mentioned that sediments and	

		Dece 1005
1	mobile peat will be discharged downstream if the	Page 1085
2	spillway is open. Does that mean that there will	
3	be additional sediments and peat in Stephens Lake	
4	as well?	
5	MR. DeWIT: Overall, there is, as	
6	noted on the slide, there is reduced sediment load	
7	discharge downstream. There is a potential for	
8	some floating peat in the first year to	
9	potentially move downstream. But there will be	
10	also the waterways management plan in place to	
11	manage this floating material. And a debris boom	
12	or safety boom will be installed upstream of the	
13	spillway during operation that would retain debris	
14	that comes down towards the spillway.	
15	MR. ST. LAURENT: And just to clarify,	
16	the boom that Wil is referring to that was	
17	described in the project description presentation	
18	as a safety boom. And that is the primary purpose	
19	of that boom right upstream of the spillway. But	
20	it will also be designed and will function as a	
21	debris boom and it does span right across the	
22	intake of that spillway. So should there be	
23	larger peat islands or peat mats, it is a	
24	structure or a boom that would impede the movement	
25	of those larger islands through the spillway.	

		D
1	MR. DeWIT: And the other thing, I	Page
2	mean there's only so much we can mention in the	
3	presentation, is that the spillway, the operation,	
4	it's estimated that it would operate in the area	
5	of about 12 percent of the time, 10 to 12 percent	
6	of the time. So essentially one year out of 10,	
7	slightly more frequent. So there would be a lot	
8	of time where it is not actually in operation.	
9	MS. PAWLOWSKA: Okay, thank you. And	
10	I'm not sure if this is a question for this panel	
11	or for the management plans. But for how long	
12	will debris be collected from the river after	
13	construction?	
14	MR. ST. LAURENT: The Waterways	
15	Management Program will be in place through the	
16	entire length of the operation phase of the	
17	project. The amount of debris that is expected to	
18	enter the waterway is expected to be less and less	
19	through time, but will continue to have a program	
20	in place where boat patrols will be monitoring the	
21	area.	
22	MS. PAWLOWSKA: Thank you. On page	
23	50, you mentioned safe use and enjoyment of the	
24	waterway. Does this include winter usage?	
25	MR. ST. LAURENT: That's correct.	

	Page 1087
1	MS. PAWLOWSKA: Okay. Thank you. And
2	on page 34, you do mention a stable ice cover,
3	that is actually more stable ice cover. Is this
4	at high or low reservoir levels?
5	MR. MALENCHAK: That would be under
б	all operating reservoir levels.
7	MS. PAWLOWSKA: Okay, thank you. Am I
8	correct to suggest that when ice cover is formed
9	and water levels go down, there would be an empty
10	space underneath the ice between the water and the
11	ice or am I incorrect?
12	MR. MALENCHAK: There would be no
13	space between the ice and the water level even
14	when it drops toward the minimum operating level.
15	The ice cover will flex due to its weight and
16	continue to float on the reservoir surface.
17	MS. PAWLOWSKA: So is it safe to use a
18	skidoo in the winter on the ice?
19	MR. DeWIT: The Waterways Management
20	Program includes, looking at the table on slide
21	50, it includes the marking of safe travel routes
22	for navigation and ice trails. So there will be
23	ice trails marked out on the reservoir for that
24	purpose.
25	MS. PAWLOWSKA: Okay, thank you. And

Page 1088 another question I have would be, would adjoining 1 rivers to the reservoir swell because of the water 2 3 volume in the reservoir? 4 MR. MALENCHAK: So in the physical environment supporting volume, the water regime 5 section, we discussed the back water effect on 6 some of the small creeks entering Gull Lake and 7 other areas within the hydraulic zone of 8 influence. The water level at the inlet of those 9 creeks into the reservoir would rise along with 10 the reservoir surface. But the back water extent 11 12 would be limited to a few hundred metres upstream 13 those creeks. 14 MR. ST. LAURENT: The figure that is shown on the slide right here, it shows the extent 15 of the flooded area which is mainly around Gull 16 Lake. So it's not entirely clear on this slide 17 here but those creeks that would flow into Gull 18 19 Lake, larger portions of the creek mouths would be 20 inundated and larger sections would be affected by 21 the reservoir. And as you move further upstream, there are still more creeks flowing into the 22 23 Nelson River. And you can see that the amount of 24 flooded area is less and less. Those creeks would have less back water or less flooded area, less 25

		Page 1089
1	impact from the reservoir.	
2	MR. DeWIT: And I just point out that	
3	the creeks are discussed in this physical volume,	
4	page 485.	
5	MS. PAWLOWSKA: Thank you. The final	
6	question I have is have you taken into account	
7	glacial isostatic adjustments for this project?	
8	MR. ST. LAURENT: The answer is yes,	
9	we have certainly considered the effect of	
10	isostatic rebound with the project. And based on	
11	measurements, the current rate of rebound is	
12	between 2.5 and 5 millimeters per year. And based	
13	on the size of the project and really the weight	
14	of the project, we don't expect that the project	
15	won't it's not expected to affect isostatic	
16	rebound. And actually the isostatic rebound	
17	itself is not expected to affect the project.	
18	MS. PAWLOWSKA: Did you also take into	
19	account Limestone, Kettle, Long Spruce and	
20	potentially Conawapa when you looked at the data?	
21	MR. ST. LAURENT: We considered the	
22	area where Keeyask is located and where the new	
23	reservoir would be located.	
24	MS. PAWLOWSKA: Is that a no then?	
25	MR. ST. LAURENT: There is no reason	

		Page 1090
1	to consider the other generating stations further	
2	downstream. It's a very very slow process and the	
3	density of the earth's crust won't result in any	
4	sort of effect from a project this small. Again	
5	this is also described in detail in the physical	
б	environment supporting volume.	
7	MS. PAWLOWSKA: Okay, thank you. I	
8	will hand over the mic to my colleague here.	
9	THE CHAIRMAN: Could you please	
10	introduce yourself for the record?	
11	MR. McLACHLAN: Yep. I'm Dr. Stephane	
12	McLachlan. I work in the Department of	
13	Environment and Geography at the University of	
14	Manitoba. And I'll be partaking in the hearings	
15	for the next few weeks.	
16	THE CHAIRMAN: Go ahead.	
17	MR. McLACHLAN: So thank you, panel	
18	members, for all your presentations. I appreciate	
19	that I'm new to this. I hope I don't make too	
20	many mistakes. And I also appreciate it's getting	
21	late in the afternoon.	
22	I guess what I'll do is what everyone	
23	else is doing and just go through in order. Agnes	
24	has asked a number of my questions so I'll	
25	obviously avoid those.	

		Dec. 1001
1	But if we go to slide 9. So here you	Page 1091
2	talk about your different sources of data. And I	
3	just wanted to confirm what the proxy area is that	
4	you make most use of in terms of the physical	
5	studies?	
6	DR. EHNES: Stephens Lake, which is	
7	the Kettle reservoir, is the proxy area that was	
8	used the most in the physical environment studies.	
9	MR. McLACHLAN: Right. And I've heard	
10	mention of others like Wapusk and the Lower	
11	Churchill Diversion. And so are there others that	
12	you make use of in terms of anticipating physical	
13	changes?	
14	DR. EHNES: Yes. And some of those	
15	included the Long Spruce reservoir, which is the	
16	next one downstream from Kettle. We also looked	
17	at the Kelsey reservoir which is the next one	
18	upstream of the proposed Keeyask project. We	
19	looked at the reservoir created by the Notigi	
20	control structure which is on the Burntwood River	
21	just south of South Indian Lake. And we also	
22	looked at Wuskwatim Lake which doesn't have a	
23	control structure but it was highly affected by	
24	diverting the flows from the Churchill River into	
25	the Burntwood River.	

		Page 1092
1	MR. McLACHLAN: Okay, great. Thank	
2	you. And then you talk about local knowledge and	
3	ATK. How do you distinguish those things?	
4	MR. REMPEL: In terms of the	
5	information we received, and again it's responded	
б	to in that CAC 0042, we didn't attempt to make any	
7	direct distinction. What information we got from	
8	local people or from ATK was considered in our	
9	assessment, but we didn't try to partition them.	
10	MR. McLACHLAN: Right. I guess what	
11	I'm wondering is did you also interview long-term	
12	employees of Hydro, or scientists retired or still	
13	functioning or otherwise, as sources of local	
14	knowledge that might have been incorporated into	
15	your predictions?	
16	MR. DeWIT: In terms of past data, we	
17	looked certainly at past reports and such. And	
18	there is other people involved in the projects who	
19	have been with Hydro for a time who are familiar	
20	with some of the past works that have gone on.	
21	MR. McLACHLAN: But no formal	
22	documentation of their own experiences in the	
23	past?	
24	DR. EHNES: I might give one example	
25	while my colleagues are conferring. In terms of	

		Dogo 1002
1	peat resurfacing in Stephens Lake, I had some	Page 1093
2	communications, informal communications with a	
3	Hydro employee as to what his, you know,	
4	observations were in terms of how much was	
5	actually floating up and coming up against the	
6	dam. That would be an example.	
7	MR. DeWIT: I wouldn't say there was a	
8	formal, necessarily formal process. There are	
9	certainly interactions with many of our colleagues	
10	who had been in Hydro, some of them for a great	
11	many years, in our own departments and other	
12	departments involved in the project.	
13	MR. McLACHLAN: Perfect, thank you. I	
14	guess on page 12, obviously you have made	
15	extensive use of computer-based models and some	
16	severe mapping. I guess what I'm wondering, and I	
17	apologize if this is in the supplementary	
18	information, but what I'm missing from these	
19	models is any real sense of standard areas of	
20	variance or variability. Did you run multiple	
21	models, kind of looking for impacts? And if you	
22	had modeling exercises that gave you different	
23	results which you had anticipated? As you're	
24	managing your different parameters, did you	
25	incorporate those formally into your outcomes?	

		D 4004
1	MR. DeWIT: If you read the supporting	Page 1094
2	volume, you'll see in many instances where it	
3	talks about sensitivity analyses. I myself being	
4	involved in one study on temperature and dissolved	
5	oxygen, we ran many different scenarios of input	
6	conditions to push the system and see what	
7	happens.	
8	MR. McLACHLAN: And if you had	
9	differing outcomes, how did you decide which	
10	outcome to present, say today?	
11	MR. REMPEL: While my colleague is	
12	conferring, I'd just like to correct the IR that I	
13	referred to. I referred to 0042, it's actually	
14	CEC Round 1 CAC 0101.	
15	MR. McLACHLAN: Okay.	
16	DR. EHNES: In general, the EIS talks	
17	about what is expected to happen when we look at	
18	or model or predict what is expected to happen.	
19	It's not one single point. There's usually a	
20	range that is identified through sensitivity	
21	analysis or other approaches such as qualitative	
22	information available from others. So in terms of	
23	that range of most likely what is used in the EIS	
24	is a precautionary approach. So whatever the	
25	range is, we took the larger effects from that	

	Page 109)5
1	range. So in most cases, you are going to hear in	J
2	some of the forthcoming presentations we talk	
3	about, these are expected to be overestimates of	
4	what the effects will be.	
5	MR. DeWIT: I think one good example	
6	will be, for example, on the mineral erosion side.	
7	It was run, for example, assuming hundred percent	
8	baseloaded operation which wouldn't happen. So	
9	out into the future, keeping it at full supply all	
10	the time. And it also used a scenario where it's	
11	running at peaking modes, so where the water level	
12	can vary on a day-to-day, week-to-week basis and	
13	assumed it operated like that 100 per cent of the	
14	time, one produces a higher estimate of erosion,	
15	one produces a low estimate of erosion. And the	
16	actual operation will be somewhere between those	
17	two.	
18	And as noted in the Water Regime and	
19	Ice section, the plan would be anticipated to	
20	operate roughly 88 percent of the time in a	
21	peaking mode potentially, and the other 12 percent	
22	of the time in a baseloaded mode. So we feel we	
23	captured the range of potential effects and the	
24	actual operation is within that range.	
25	MR. McLACHLAN: And so, for example,	

		Dago 1006
1	if you're looking at dissolved oxygen or	Fage 1090
2	sedimentation or changes in water flow, then we	
3	could just assume that if you depict data, that	
4	you had chosen and reflected the maximum impacts	
5	that you found?	
6	MR. ST. LAURENT: Maybe while my	
7	colleagues are conferring, I'll just maybe clarify	
8	what Mr. De Wit was explaining with respect to how	
9	often the project could operate in a peaking or	
10	baseload.	
11	As explained, the assessment assumed	
12	either 100 percent of the time baseload or peaking	
13	whatever possible, which based on historical flow	
14	conditions would be about up to 88 percent of the	
15	time. How it will operate is likely to be	
16	somewhere in between. We don't have we don't	
17	have an estimate of the duration of the peaking or	
18	the duration of baseload. But based on flow	
19	conditions, it could be baseloaded up to 100 per	
20	cent of the time or peaking up to 88 percent of	
21	the time. So that's just to clarify.	
22	MR. DeWIT: I think coming back to	
23	your question, we report in many instances a range	
24	of effects for the different assessments.	
25	MR. McLACHLAN: Right. But in the	

		Dogo 1007
1	absence of your reporting range, then I can assume	Page 1097
2	then you were looking for the maximum impact in	
3	terms of your assumptions around the modeling.	
4	DR. EHNES: They asked me to explain	
5	this very simply. I think I have a reputation for	
б	something. I'm sorry.	
7	So we don't want to give the	
8	misimpression or misunderstanding that the effects	
9	prediction that you're seeing in the EIS are a	
10	absolute worst case scenario or even a reasonable	
11	worst case scenario.	
12	I still have this cold, so I	
13	apologize.	
14	The EIS is predicting the expected	
15	effects of the project. In general, when we're	
16	running models, we're using 50th or median values	
17	in order to run those models.	
18	And based on input variability, you	
19	were talking about confidence intervals say even	
20	around a median, we would be looking at, for	
21	example, you know, every modeling approach and	
22	every model is different. But when we are	
23	choosing a median within that range, we would be	
24	choosing something that would produce larger	
25	project effects rather than smaller project	

		Page 1098
1	effects or even the middle of that range.	r ugo roco
2	And I have temporarily lost my train	
3	of thought.	
4	Oh, yes. We looked at various	
5	scenarios. Wil talked about baseloaded and	
6	peaking which is kind of the range in terms of	
7	reservoir operation. Reservoir operation is a key	
8	input or a driver for the rest of the physical	
9	environment effects around the Nelson River. So	
10	we looked at two possible or reasonable scenarios	
11	in terms of reservoir operation. But then when we	
12	did the sensitivity analysis for the models, then	
13	we drove model input parameters say from median	
14	levels or 50th percentile levels to 95th	
15	percentile levels or 99 percentile levels to see	
16	how much your predictions change, you know, how	
17	much larger the effects get. And in that process,	
18	it also helps you develop an understanding of	
19	which of those drivers and pathways are most	
20	important for producing the changes that are seen.	
21	THE CHAIRMAN: Dr. McLachlan, I'm not	
22	cutting you off, but I'm looking to an afternoon	
23	break. Do you have more questions?	
24	MR. McLACHLAN: Some, but I'd be happy	
25	to take a break.	

		Daga 1000
1	THE CHAIRMAN: Okay. We'll break for	Page 1099
2	15 minutes and then return.	
3	(Proceedings recessed at 3:04 p.m. and	
4	reconvened at 3:18 p.m.)	
5	THE CHAIRMAN: We will reconvene. We	
6	still have a few questions left with this	
7	participant, and then another participant to	
8	follow, so we will not be starting with the	
9	aquatic environmental presentation this afternoon.	
10	We will start with that presumably first thing	
11	tomorrow morning, if we complete the cross this	
12	afternoon. If we don't complete the cross exam	
13	this afternoon, I may boot a few people out. But	
14	carry on, please, carry on Dr. McLachlan.	
15	MR. McLACHLAN: Thank you.	
16	I guess I have another related	
17	question, and we could probably find it most	
18	easily by going to page 10. And it is also around	
19	methodology here in terms of working with GIS and	
20	reconciling different types of data, data	
21	collected in different ways, from different years,	
22	from different projects.	
23	Did you indicate explicitly anywhere	
24	in the EIS in terms of what that process was in	
25	terms of the differences among the data sources	

		Page 1100
1	and how you reconciled those differences?	Fage 1100
2	MR. De WIT: Well, I would say in the	
3	EIS and likely more detail in the different	
4	technical memoranda, in the different areas, the	
5	studies list the information sources they used,	
б	and generally how they've integrated that data	
7	into their study, into the different study areas.	
8	MR. EHNES: I will just add to that,	
9	if I may, specifically for physiography and	
10	shoreline erosion, most of those historical	
11	sources of information were of limited use because	
12	of the coarse scale of the data. And that was the	
13	main reason for the project effects assessment,	
14	why we used recent stereo air photos and photo	
15	interpreted at a one to 15,000 scale the	
16	conditions at Keeyask, and historical photos were	
17	also used for mineral bank erosion to look at how	
18	far those banks had receded over a long period of	
19	time in order to calculate an average annual	
20	erosion rate.	
21	MR. McLACHLAN: So when we look at	
22	these different historical data sets up here, can	
23	you tell me which ones were of greatest use, or	
24	were none of them of particular use because of	
25	those limitations?	

		Dago
1	MR. EHNES: I would say that very	Faye
2	considerably by the topic, these studies for the	
3	most part were focusing on the Nelson River.	
4	There were a lot of aquatic studies, so you will	
5	hear much more about that in the presentation	
6	tomorrow.	
7	MR. McLACHLAN: And in terms of the	
8	physical data?	
9	MR. De WIT: Which physical data?	
10	MR. McLACHLAN: Again, let's take a	
11	look at those associated with sedimentation say,	
12	or in past projects, or water flows, or were any	
13	of the data that you reported on today?	
14	MR. MALENCHAK: In regards to the	
15	water regime, the water level and flow data that's	
16	collected by Manitoba Hydro and then others as	
17	published by Water Survey of Canada were our	
18	primary sources of information for that particular	
19	topic.	
20	MR. McLACHLAN: As a follow-up, are	
21	those data generally publicly available or are	
22	they kind of restricted access through Hydro or	
23	MR. MALENCHAK: The Water Survey of	
24	Canada data for sure is publicly available on	
25	their website, and as well Manitoba Hydro on their	

	Page 11	02
1	external website publishes some water level sites,	02
2	which is publicly available, anybody can go and	
3	check. We also address this with some references	
4	in a couple of IRs. I will just double check the	
5	number here.	
6	Yeah, that would be PFN round one IR	
7	30 and 31. There is some sources of information	
8	there.	
9	MR. McLACHLAN: Okay, perfect. Thank	
10	you.	
11	In 21, you talk here about	
12	accommodating permafrost conditions. And again, I	
13	might have missed it, but there didn't seem today	
14	to be much mention of permafrost in terms of	
15	either direct impacts, secondary impacts around	
16	permafrost associated with operations or	
17	otherwise, you know, in terms of construction.	
18	Can you talk about that a little bit more, what	
19	you anticipate those impacts might be?	
20	THE CHAIRMAN: I think the definition	
21	of the range of permafrost was described last week	
22	and there was some questioning on it. Whether you	
23	can add a bit about what the impacts are?	
24	MR. ST. LAURENT: The discussion last	
25	week focused on how the dykes will be designed to	

		Dogo 1102
1	accommodate melting, the melting of frozen	Page 1103
2	foundation soils or permafrost, and how over time	
3	that design will able to accommodate that. With	
4	respect to the assessment, certainly the effects	
5	of permafrost are included and considered in	
6	various areas. For example, in the groundwater	
7	assessments studies, permafrost is certainly	
8	considered as an input, as it affects the amount	
9	of groundwater flow through the region, and there	
10	was sensitivity analysis carried out around the	
11	amount of permafrost, as well as the shoreline	
12	erosion modeling that was undertaken. The various	
13	sites that were established around Stephens Lake	
14	as a proxy, certainly some of those sites had	
15	shoreline erosion characteristics that were	
16	influenced by permafrost processes, so the erosion	
17	rates that would have been developed based on	
18	those sites certainly include the effects of	
19	permafrost.	
20	MR. McLACHLAN: Thank you.	
21	So, kind of with erosion, greater	
22	exposure to mineral soils, are you anticipating	
23	there will be a domino effect or secondary effects	
24	on permafrost in the future?	
25	MR. EHNES: Those were incorporated	

		Page 110/
1	into the peat land disintegration and the mineral	Page 1104
2	bank erosion modeling. The mapping of the peat	
3	land types includes their permafrost conditions.	
4	In the Keeyask area, with the model that was	
5	built, incorporates the different permafrost	
6	conditions in terms of the pathways that	
7	particular peat land patch will follow. And then	
8	in terms of the mineral bank erosion rates, those	
9	were estimated or calibrated with information	
10	coming from Stephens Lake as well, which has	
11	permafrost affected banks.	
12	MR. McLACHLAN: So in terms of the	
13	monitoring, will that be reflected in the	
14	monitoring programs that you set up?	
15	MR. De WIT: Could you maybe elaborate	
16	a bit on that?	
17	MR. McLACHLAN: Well, just in terms of	
18	any subsequent kind of secondary, kind of melting	
19	of the permafrost?	
20	MR. EHNES: Yes, the effects on	
21	vegetation and soils will be monitored, and one of	
22	the soil parameters or conditions that will be	
23	monitored is the permafrost type.	
24	MR. McLACHLAN: Okay, perfect. Thank	
25	you.	

		Page 1105
1	I guess page 24, I guess the proxy	Tage 1100
2	question that we were identifying earlier in terms	
3	of greenhouse gas emissions, here you have a	
4	number of different sources of emissions, you	
5	know, varying across different industries.	
6	Did you create a similar kind of	
7	diagram or analysis where you compared greenhouse	
8	gas emissions among the different operations that	
9	have taken place kind of that are comparable in	
10	Manitoba?	
11	MR. De WIT: Are you meaning	
12	comparison to other Manitoba Hydro generating	
13	stations?	
14	MR. McLACHLAN: Other construction	
15	sites, or whatever you felt, so rather than	
16	comparing across industries	
17	MR. De WIT: Well, the intent of this	
18	is to show the emission intensity from the Keeyask	
19	Generation Project versus other comparable methods	
20	of electrical generation. So it is a comparison	
21	of like to like. If we compare to some other	
22	industry, it would be apples and oranges.	
23	MR. McLACHLAN: No, sorry, I'm not	
24	being clear.	
25	So there are other generating stations	
		Dogo 1106
----	--	-----------
1	that are being constructed that perhaps have	Page 1100
2	higher or lower greenhouse gas emissions that were	
3	documented, just to get a sense of, here we	
4	understand that Keeyask is very, very low, but are	
5	there other comparisons that can be made across	
6	other comparable projects?	
7	MR. ST. LAURENT: The only other	
8	recent project where there was a lifecycle	
9	analysis carried out was the Wuskwatim project,	
10	and it is very comparable, comparably low with	
11	respect to emission.	
12	MR. McLACHLAN: Okay, thank you.	
13	Page 28, and I guess this might	
14	actually not be relevant to this panel, but here	
15	you talk about the sorry, it is the with the	
16	cabin, that documents the cabin at four	
17	kilometres. Maybe it is not 28. Sorry, it is 27.	
18	So with 27 you indicate that the closest cabins	
19	are four kilometres away and Gillam is 30	
20	kilometres away. What about other kinds of	
21	traditional land use is there any concern that	
22	the noises will affect people who are hunting or	
23	trapping in the area?	
24	MR. De WIT: Yes, the socio-economic	
25	panel will be discussing the potential impact on	

	Page 1107
resource users.	Tage 1107
MR. McLACHLAN: In terms of noise as	
well?	
MR. De WIT: Noise area and whatever	
the project effects may be.	
MR. McLACHLAN: Okay. Thank you.	
MR. REMPEL: With respect to noise, I	
would like to clarify a comment I made. I was	
asked about noise from transmission lines and I	
may have given the impression we didn't consider	
the other projects like the Keeyask transmission	
project.	
On page 320 of the physical	
environment supporting volume, we do talk about	
interactions with other projects. And so we did	
consider it, but we did not consider that there	
was substantive overlap. So that's just a	
clarification of what I said.	
MR. McLACHLAN: Thank you for that.	
Page 41, in terms of monitoring and	
the different sensors that you have set up for	
monitoring of sedimentation. Again, this may be	
reflected in other documentation.	
Did you consider kind of additional	
sensors, say that were further upstream, like	
	resource users. MR. McLACHLAN: In terms of noise as well? MR. De MIT: Noise area and whatever the project effects may be. MR. McLACHLAN: Okay. Thank you. MR. REMPEL: With respect to noise, I would like to clarify a comment I made. I was aked about noise from transmission lines and I may have given the impression we didn't consider the other projects like the Keeyask transmission project. On page 320 of the physical environment supporting volume, we do talk about interactions with other projects. And so we did consider it, but we did not consider that there was substantive overlap. So that's just a clarification of what I said. MR. McLACHLAN: Thank you for that. Page 41, in terms of monitoring and the different sensors that you have set up for monitoring of sedimentation. Again, this may be reflected in other documentation.

		Page 1108
1	beyond the 41 kilometre kind of reach that might	Tage 1100
2	get at kind of areas that weren't seen as being	
3	affected or, for example, kind of you've got	
4	the kind of the water, the water bodies that are	
5	to the north, for example. I guess what I'm	
6	wondering is why you situated the sensors here the	
7	way that you did?	
8	MR. De WIT: I guess there is two	
9	parts to that question. Then the first part, if I	
10	understand, is monitoring beyond these locations	
11	and the location of these sensors.	
12	These monitoring sites are	
13	particularly for monitoring effects of in-stream	
14	work, so they are located close to the site, so	
15	the upstream site identifying our background	
16	condition coming into the project work area, and	
17	then the two downstream sites measuring in the	
18	immediate vicinity the downstream effect of the	
19	in-stream work. So that's why these sites are	
20	located where they are, is to measure that effect	
21	from the in-stream activity.	
22	In the physical environment monitoring	
23	plan there will also be additional monitoring.	
24	And the physical environment is not a component of	
25	the sediment management plan, they are separate,	

1	but there will be monitoring at this time at other
2	locations upstream and downstream of these sites
3	as well.
4	MR. McLACHLAN: Okay, perfect. Thank
5	you.
6	And are you combining this monitoring
7	with kind of people based monitoring as well, or
8	is it just using the sensors with the real time
9	data?
10	MR. De WIT: What do you mean by
11	people based monitoring?
12	MR. McLACHLAN: So in the sense of
13	actually going out and having people collecting
14	samples?
15	MR. De WIT: Certainly, I mean, this
16	is just a very high level summary. There is
17	routine maintenance that goes on of the equipment,
18	particularly as it is real time, if there is
19	issues seen with the data coming in, people go
20	out, do maintenance work, replace equipment, take
21	water samples, and various activities.
22	MR. McLACHLAN: But these samples will
23	be combined with other sampling efforts that
24	people actually go out and collect data
25	MR. De WIT: You mean from the

		Dogo 1110
1	automated sensors here?	Page 1110
2	MR. McLACHLAN: Yes?	
3	MR. De WIT: Certainly, it is all	
4	combined as part of the sediment management plan	
5	information data base.	
6	MR. McLACHLAN: Okay, thank you.	
7	You talk let me make sure, 50 I	
8	think, but let me check and make sure. Yes, on	
9	the waterways management program on page 50 you	
10	talk about communicating with waterway users. Can	
11	you describe that in greater detail for me, kind	
12	of how you have developed this program and how	
13	it's effective, how you anticipate it will be	
14	effective?	
15	MR. ST. LAURENT: The program will	
16	consist of, or it will include boat patrols during	
17	the open water season where the function of these	
18	boats is to patrol the reservoir, both upstream	
19	and downstream, to monitor and identify, or locate	
20	any debris that has an impact to safety and	
21	navigation and access. This also provides a means	
22	for talking to people that are on the waterway.	
23	And that certainly is the intent for them to be	
24	engaging and communicating with people that are	
25	using the waterway resource harvesting and so	

		Page 1111
1	forth.	0
2	Same goes for the winter, in the	
3	winter there will be a safe trails program that	
4	various teams will be establishing, and there is a	
5	component of communicating the safe trails,	
6	obviously, to different users, getting inputs,	
7	feedback, concerns, in order to shape both of	
8	those programs.	
9	MR. McLACHLAN: Now, it sounds like	
10	those will be face-to-face, mostly face-to-face	
11	initiatives. Are you combining that with other	
12	kinds of, say for people who are traveling when	
13	there aren't, or there isn't anybody on the river	
14	or on the ice?	
15	MR. ST. LAURENT: Yeah. In the	
16	presentation last week we provided an example of a	
17	navigation map that would be produced for the	
18	Keeyask reservoir. And it would show how the	
19	depths would vary through the reservoir. It would	
20	also show the navigation routes, the main routes	
21	that would be established along the main stem of	
22	the river, as well as designated travel routes in	
23	the more shallower back bay areas of the	
24	reservoir, and any access locations. It will also	
25	show hazards, it would also show water level	

		D 44
1	gauges. So that would be established as part of	Page 11
2	the waterways management program. But in addition	
3	to that, there is a waterways public safety	
4	measures that will have been developed for	
5	Keeyask. And again, that was described in the	
6	presentation last week, but that will include, or	
7	there is provisions for signage throughout the	
8	area, including signs at each of the boat	
9	launches. So there will be a boat launch upstream	
10	and downstream of the Keeyask Generating Station	
11	that will have signs that will describe the	
12	hazards of the waterway, the public safety	
13	measures, and any issues. That will also be	
14	established at the boat launch at the Butnau dam	
15	or the Butnau marina, as well as the boat launches	
16	on Split Lake. So at the communities of Split	
17	Lake and York Landing there will also be signage	
18	describing the hazards and measures in place at	
19	the Keeyask reservoir.	
20	MR. McLACHLAN: Okay, perfect. Thank	
21	you.	
22	You had mentioned that around	
23	groundwater quality and petroleum spills, et	
24	cetera, that the risks were likely small. And I	
25	guess, in terms of anticipating that, did you look	

		Page
1	again at other proxy kinds of operations to see	i ugo
2	kind of what likelihood, or kind of what the rate	
3	of those kinds of spills was in other projects as	
4	well?	
5	MR. De WIT: I wouldn't say the	
6	well, the people who worked on that are familiar	
7	with it, and many of the procedures that are used	
8	are industry standard methods. Hydro has got a	
9	quite rigorous safety environment, atmosphere for	
10	things like maintaining safe operations. And	
11	there are also certainly specific regulatory	
12	requirements that have to be adhered to in terms	
13	of say hazardous materials and field storage	
14	issues. So these are these plans are	
15	developed, they are comprehensive to address and	
16	minimize any potential for these types of things	
17	to happen.	
18	MR. ST. LAURENT: Those measures that	
19	Mr. De Wit is summarizing, that's all captured in	
20	the environmental protection plans that would be	
21	established, or have been developed for the	
22	generating station, as well as another plan for	
23	the south access road construction. So those have	
24	been, drafts have been developed and it has got	
25	all of the details and they are available.	

 MR. De WIT: They are part of the record for the hearing. MR. McLACHLAN: Perfect, thank you. On page 66, you talk about this is around sensitivity to climate change. I think you talked about this a bit already, but you talk about a 10 per cent, a reasonably conservative estimate of both a 10 per cent increase and a 10 per cent decrease in flow. I guess my question is, why did you choose the 10 per cent as figures, as opposed to a broader range? MR. MALENCHAK: So, as you probably gathered from the discussion of the sensitivity analysis that was conducted in the absence of estimates of climate change impacts on inflows to Keeyask at the time of the water regime assessment, which by nature had to come before many of the other assessments, because the water regime drives the physical environment, and the physical environment is the pathway to other VECs, let's say. A sensitivity analysis was carried out which demonstrated the conclusions on the environmental assessment would not change even due to what we considered to be a potentially 			Dece 1111
 record for the hearing. MR. McLACHLAN: Perfect, thank you. On page 66, you talk about this is around sensitivity to climate change. I think you talked about this a bit already, but you talk about a 10 per cent, a reasonably conservative estimate of both a 10 per cent increase and a 10 per cent decrease in flow. I guess my question is, why did you choose the 10 per cent as figures, as opposed to a broader range? MR. MALENCHAK: So, as you probably gathered from the discussion of the sensitivity analysis that was conducted in the absence of estimates of climate change impacts on inflows to Keeyask at the time of the water regime assessment, which by nature had to come before many of the other assessments, because the water regime drives the physical environment, and the physical environment is the pathway to other VECs, let's say. A sensitivity analysis was carried out which demonstrated the conclusions on the environmental assessment would not change even due to what we considered to be a potentially 	1	MR. De WIT: They are part of the	Page 1114
3 MR. McLACHLAN: Perfect, thank you. 4 On page 66, you talk about this is 5 around sensitivity to climate change. I think you 6 talked about this a bit already, but you talk 7 about a 10 per cent, a reasonably conservative 8 estimate of both a 10 per cent increase and a 10 9 per cent decrease in flow. 10 I guess my question is, why did you 11 choose the 10 per cent as figures, as opposed to a 12 broader range? 13 MR. MALENCHAK: So, as you probably 14 gathered from the discussion of the sensitivity 15 analysis that was conducted in the absence of 16 estimates of climate change impacts on inflows to 17 Keeyask at the time of the water regime 18 assessment, which by nature had to come before 19 many of the other assessments, because the water 20 regime drives the physical environment, and the 21 physical environment is the pathway to other VECs, 22 let's say. A sensitivity analysis was carried out 23 which demonstrated the conclusions on the environmental assessment would	2	record for the hearing.	
4On page 66, you talk about this is5around sensitivity to climate change. I think you6talked about this a bit already, but you talk7about a 10 per cent, a reasonably conservative8estimate of both a 10 per cent increase and a 109per cent decrease in flow.10I guess my question is, why did you11choose the 10 per cent as figures, as opposed to a12broader range?13MR. MALENCHAK: So, as you probably14gathered from the discussion of the sensitivity15analysis that was conducted in the absence of16estimates of climate change impacts on inflows to17Keeyask at the time of the water regime18assessment, which by nature had to come before19many of the other assessments, because the water20regime drives the physical environment, and the21physical environment is the pathway to other VECs,22let's say. A sensitivity analysis was carried out23which demonstrated the conclusions on the24environmental assessment would not change even due25to what we considered to be a potentially	3	MR. McLACHLAN: Perfect, thank you.	
around sensitivity to climate change. I think you talked about this a bit already, but you talk about a 10 per cent, a reasonably conservative estimate of both a 10 per cent increase and a 10 per cent decrease in flow. I guess my question is, why did you choose the 10 per cent as figures, as opposed to a broader range? MR. MALENCHAK: So, as you probably gathered from the discussion of the sensitivity analysis that was conducted in the absence of estimates of climate change impacts on inflows to Keeyask at the time of the water regime assessment, which by nature had to come before many of the other assessments, because the water regime drives the physical environment, and the physical environment is the pathway to other VECs, let's say. A sensitivity analysis was carried out which demonstrated the conclusions on the environmental assessment would not change even due	4	On page 66, you talk about this is	
 talked about this a bit already, but you talk about a 10 per cent, a reasonably conservative estimate of both a 10 per cent increase and a 10 per cent decrease in flow. I guess my question is, why did you choose the 10 per cent as figures, as opposed to a broader range? MR. MALENCHAK: So, as you probably gathered from the discussion of the sensitivity analysis that was conducted in the absence of estimates of climate change impacts on inflows to Keeyask at the time of the water regime assessment, which by nature had to come before many of the other assessments, because the water regime drives the physical environment, and the physical environment is the pathway to other VECs, let's say. A sensitivity analysis was carried out which demonstrated the conclusions on the environmental assessment would not change even due to what we considered to be a potentially 	5	around sensitivity to climate change. I think you	
about a 10 per cent, a reasonably conservative estimate of both a 10 per cent increase and a 10 per cent decrease in flow. I guess my question is, why did you choose the 10 per cent as figures, as opposed to a broader range? MR. MALENCHAK: So, as you probably gathered from the discussion of the sensitivity analysis that was conducted in the absence of estimates of climate change impacts on inflows to Keeyask at the time of the water regime assessment, which by nature had to come before many of the other assessments, because the water regime drives the physical environment, and the physical environment is the pathway to other VECs, let's say. A sensitivity analysis was carried out which demonstrated the conclusions on the environmental assessment would not change even due to what we considered to be a potentially	6	talked about this a bit already, but you talk	
 estimate of both a 10 per cent increase and a 10 per cent decrease in flow. I guess my question is, why did you choose the 10 per cent as figures, as opposed to a broader range? MR. MALENCHAK: So, as you probably gathered from the discussion of the sensitivity analysis that was conducted in the absence of estimates of climate change impacts on inflows to Keeyask at the time of the water regime assessment, which by nature had to come before many of the other assessments, because the water regime drives the physical environment, and the physical environment is the pathway to other VECs, let's say. A sensitivity analysis was carried out which demonstrated the conclusions on the environmental assessment would not change even due to what we considered to be a potentially 	7	about a 10 per cent, a reasonably conservative	
 9 per cent decrease in flow. 10 I guess my question is, why did you 11 choose the 10 per cent as figures, as opposed to a 12 broader range? 13 MR. MALENCHAK: So, as you probably 14 gathered from the discussion of the sensitivity 15 analysis that was conducted in the absence of 16 estimates of climate change impacts on inflows to 17 Keeyask at the time of the water regime 18 assessment, which by nature had to come before 19 many of the other assessments, because the water 20 regime drives the physical environment, and the 21 physical environment is the pathway to other VECs, 22 let's say. A sensitivity analysis was carried out 23 which demonstrated the conclusions on the 24 environmental assessment would not change even due 25 to what we considered to be a potentially 	8	estimate of both a 10 per cent increase and a 10	
10I guess my question is, why did you11choose the 10 per cent as figures, as opposed to a12broader range?13MR. MALENCHAK: So, as you probably14gathered from the discussion of the sensitivity15analysis that was conducted in the absence of16estimates of climate change impacts on inflows to17Keeyask at the time of the water regime18assessment, which by nature had to come before19many of the other assessments, because the water20regime drives the physical environment, and the21physical environment is the pathway to other VECs,22let's say. A sensitivity analysis was carried out23which demonstrated the conclusions on the24environmental assessment would not change even due25to what we considered to be a potentially	9	per cent decrease in flow.	
choose the 10 per cent as figures, as opposed to a broader range? MR. MALENCHAK: So, as you probably gathered from the discussion of the sensitivity analysis that was conducted in the absence of estimates of climate change impacts on inflows to Keeyask at the time of the water regime assessment, which by nature had to come before many of the other assessments, because the water regime drives the physical environment, and the physical environment is the pathway to other VECs, let's say. A sensitivity analysis was carried out which demonstrated the conclusions on the environmental assessment would not change even due to what we considered to be a potentially	10	I guess my question is, why did you	
12 broader range? 13 MR. MALENCHAK: So, as you probably 14 gathered from the discussion of the sensitivity 15 analysis that was conducted in the absence of 16 estimates of climate change impacts on inflows to 17 Keeyask at the time of the water regime 18 assessment, which by nature had to come before 19 many of the other assessments, because the water 20 regime drives the physical environment, and the 21 physical environment is the pathway to other VECs, 22 let's say. A sensitivity analysis was carried out 23 which demonstrated the conclusions on the 24 environmental assessment would not change even due 25 to what we considered to be a potentially	11	choose the 10 per cent as figures, as opposed to a	
13MR. MALENCHAK: So, as you probably14gathered from the discussion of the sensitivity15analysis that was conducted in the absence of16estimates of climate change impacts on inflows to17Keeyask at the time of the water regime18assessment, which by nature had to come before19many of the other assessments, because the water20regime drives the physical environment, and the21physical environment is the pathway to other VECs,22let's say. A sensitivity analysis was carried out23which demonstrated the conclusions on the24environmental assessment would not change even due25to what we considered to be a potentially	12	broader range?	
14gathered from the discussion of the sensitivity15analysis that was conducted in the absence of16estimates of climate change impacts on inflows to17Keeyask at the time of the water regime18assessment, which by nature had to come before19many of the other assessments, because the water20regime drives the physical environment, and the21physical environment is the pathway to other VECs,22let's say. A sensitivity analysis was carried out23which demonstrated the conclusions on the24environmental assessment would not change even due25to what we considered to be a potentially	13	MR. MALENCHAK: So, as you probably	
 analysis that was conducted in the absence of estimates of climate change impacts on inflows to Keeyask at the time of the water regime assessment, which by nature had to come before many of the other assessments, because the water regime drives the physical environment, and the physical environment is the pathway to other VECs, let's say. A sensitivity analysis was carried out which demonstrated the conclusions on the environmental assessment would not change even due to what we considered to be a potentially 	14	gathered from the discussion of the sensitivity	
 estimates of climate change impacts on inflows to Keeyask at the time of the water regime assessment, which by nature had to come before many of the other assessments, because the water regime drives the physical environment, and the physical environment is the pathway to other VECs, let's say. A sensitivity analysis was carried out which demonstrated the conclusions on the environmental assessment would not change even due to what we considered to be a potentially 	15	analysis that was conducted in the absence of	
17 Keeyask at the time of the water regime 18 assessment, which by nature had to come before 19 many of the other assessments, because the water 20 regime drives the physical environment, and the 21 physical environment is the pathway to other VECs, 22 let's say. A sensitivity analysis was carried out 23 which demonstrated the conclusions on the 24 environmental assessment would not change even due 25 to what we considered to be a potentially	16	estimates of climate change impacts on inflows to	
18 assessment, which by nature had to come before 19 many of the other assessments, because the water 20 regime drives the physical environment, and the 21 physical environment is the pathway to other VECs, 22 let's say. A sensitivity analysis was carried out 23 which demonstrated the conclusions on the 24 environmental assessment would not change even due 25 to what we considered to be a potentially	17	Keeyask at the time of the water regime	
19 many of the other assessments, because the water 20 regime drives the physical environment, and the 21 physical environment is the pathway to other VECs, 22 let's say. A sensitivity analysis was carried out 23 which demonstrated the conclusions on the 24 environmental assessment would not change even due 25 to what we considered to be a potentially	18	assessment, which by nature had to come before	
20 regime drives the physical environment, and the 21 physical environment is the pathway to other VECs, 22 let's say. A sensitivity analysis was carried out 23 which demonstrated the conclusions on the 24 environmental assessment would not change even due 25 to what we considered to be a potentially	19	many of the other assessments, because the water	
21 physical environment is the pathway to other VECs, 22 let's say. A sensitivity analysis was carried out 23 which demonstrated the conclusions on the 24 environmental assessment would not change even due 25 to what we considered to be a potentially	20	regime drives the physical environment, and the	
22 let's say. A sensitivity analysis was carried out 23 which demonstrated the conclusions on the 24 environmental assessment would not change even due 25 to what we considered to be a potentially	21	physical environment is the pathway to other VECs,	
 which demonstrated the conclusions on the environmental assessment would not change even due to what we considered to be a potentially 	22	let's say. A sensitivity analysis was carried out	
24 environmental assessment would not change even due 25 to what we considered to be a potentially	23	which demonstrated the conclusions on the	
25 to what we considered to be a potentially	24	environmental assessment would not change even due	
	25	to what we considered to be a potentially	

	Dogo 11	1 5
1	relatively large increase or decrease in inflow,	15
2	so that's the plus or minus 10 per cent. This	
3	number was arrived at through collaboration	
4	amongst the many disciplines, Manitoba Hydro	
5	system operations, people experienced in managing	
6	the water within our system. And there is a few	
7	specific reasons, I guess, that we could use to	
8	support that the range of plus or minus 10 per	
9	cent is a reasonably conservative estimate. We	
10	feel it is quite conservative actually.	
11	The size, diversity and degree of	
12	regulation and amount of reservoir storage in the	
13	Nelson/Churchill watershed, in which Manitoba	
14	Hydro system operates, offers a degree of	
15	flexibility to adjust to changes in water supplies	
16	and reservoir inflow, which is believed to dampen	
17	the effects of climate change on Nelson River	
18	flows in the system as a whole. The watershed is	
19	extremely large, it is 1.4 million square	
20	kilometres. Manitoba Hydro has operated our	
21	system for a significant amount of time, and	
22	experience that was gained results in a good	
23	understanding of how the system operation may vary	
24	according to different climatic conditions. And	
25	basically, the environmental assessment already	

		Page 1116
1	covers a wide range of flow, from 5 per cent to 95	uge into
2	per cent, which is much larger than the range in	
3	the plus or minus 10 per cent change that was	
4	considered. And under all of those flow	
5	conditions, one of the key parameters is that the	
6	full supply level of the reservoir will not change	
7	under any of those flow conditions. And it was	
8	found that the flow supply level of the reservoir	
9	is what drove a lot of the water regime effects.	
10	So if that's not changing, it is reasonable to	
11	assume that the rest won't change as well.	
12	MR. ST. LAURENT: If I might add, once	
13	we came to that conclusion, what we found is that	
14	the choice of that plus or minus 10 per cent	
15	became less important. And that even if we had	
16	selected plus or minus 20 per cent, it really	
17	wouldn't have changed any of the conclusions,	
18	because the full supply level would still have	
19	been maintained at 150 159 and down to 158. So	
20	it shows that the project effects are quite	
21	robust, or that the reservoir itself is quite	
22	robust, and that a lot of those changes as a	
23	result of the reservoir would still be in place	
24	regardless of those changing inflow conditions.	
25	THE CHAIRMAN: I just wanted to	

		Dogo 1117
1	bootleg a supplementary in here.	Fage III7
2	Earlier today, I am not sure, I think	
3	it was Mr. Rempel, but somebody talked about 2003	
4	having, was it a 40 per cent less inflow into Lake	
5	Winnipeg, and 2005 was at 70 per cent higher than	
б	normal into Lake Winnipeg. What effect does that	
7	have on this?	
8	It was also in the public record that	
9	in 2003, in particular, Manitoba Hydro had a	
10	significant deficit because of the lack of water.	
11	So how would those inflows into Lake Winnipeg	
12	affect this flow in the Nelson River?	
13	MR. MALENCHAK: So I guess the first	
14	thing we should comment on is in relation to that	
15	40 per cent below and 70 per cent above, and	
16	that's in relation to the average. So actually	
17	that illustrates that our existing environment has	
18	experienced a wide range of flows already. So	
19	while those low flows into Lake Winnipeg in that	
20	particular year would eventually make its way	
21	downstream to Keeyask, again, the full supply	
22	level and minimum operating level would remain the	
23	same, so the reservoir would largely look similar	
24	to how we have assessed, regardless of the inflow	
25	condition.	

		Dogo 1110
1	THE CHAIRMAN: Thank you.	Page 1118
2	Dr. McLachlan?	
3	MR. McLACHLAN: As a related question,	
4	you've spoken, and quite rightly focused on	
5	long-term climate change, but obviously there is	
б	short term variations around climate, and so we	
7	have spoken a little bit about that in terms of	
8	water flow. So with your modeling exercises, did	
9	you try to get at kind of cold winters, and warm	
10	winters, and droughts and excessive precipitation	
11	or snowfall? That would be my first question.	
12	And secondly, what were the implications of those	
13	other kinds of variations in your modeling?	
14	MR. De WIT: Are you looking at for	
15	the inflow modeling then?	
16	With respect to water regime, the	
17	water regime information used in the various	
18	studies have generally looked at a range of	
19	conditions from 5th percentile low flows to 50th	
20	percentile up to 95th percentile high flows, so	
21	the range of flow conditions related to the flows	
22	in the river have been considered across study	
23	areas.	
24	MR. McLACHLAN: So that's focusing on	
25	water regime and inflow. And so kind of in terms	

		Dago 1110
1	of the secondary impacts that those kinds of, that	aye mis
2	kind of variability in climate, the short-term	
3	variability in climate might have, did you try and	
4	get at that with your modeling as well?	
5	MR. De WIT: I guess it would depend	
6	on the modeling. I know, for example, for the	
7	water temperature and dissolved oxygen, we looked	
8	at what we called the typical week. In terms of	
9	weather conditions, we looked at what we called a	
10	critical week, high temperature, low wind	
11	combinations. But I'm not sure I can mention	
12	other studies. Groundwater study considered low,	
13	average and high recharge conditions, and	
14	different sets of weather information from a	
15	dry so dry, average, and wet years.	
16	MR. McLACHLAN: And so when you	
17	characterized the impacts of manipulating your	
18	models in those kinds of ways, what, if any,	
19	impacts did you see?	
20	MR. De WIT: Those would be reported	
21	in the different supporting volumes. So, again,	
22	on the dissolved oxygen and water temperature, the	
23	results from the various different model runs or	
24	the analysis are reported, and then that	
25	information is supplied to, for example, the	

		Dogo 1100
1	aquatic environment studies team where water	Page 1120
2	quality and fish are assessed, so that that suite	
3	of information is provided down the line to the	
4	others who are using it.	
5	MR. McLACHLAN: Perfect, thank you.	
6	I'm trying to whip through here, I guess.	
7	When we go down to the end, so	
8	pages I guess it is the monitoring program, and	
9	I was interested in what you've put together in	
10	terms of the monitoring. And you talk about	
11	communicating, obviously debris management, this	
12	was identified as a concern by communities. And	
13	in general, do you characterize the monitoring as	
14	being solely scientific? And if it is, is it	
15	conducted by the communities alongside Manitoba	
16	Hydro, or can you talk about that process?	
17	MR. De WIT: Again, there is a number	
18	of different monitoring programs that will be	
19	implemented. So in here, for example, we have the	
20	physical environment plan, which is maybe more of	
21	a scientifically based study. There would be	
22	Partner First Nations involved, people employed on	
23	the program typically. As far as communities,	
24	they will be implementing their own, I guess,	
25	traditional knowledge programs for gathering	

		Dago 1121
1	information from their communities. And then	Page 1121
2	certainly any of the information collected through	
3	the monitoring plans would be available and shared	
4	amongst the various groups.	
5	MR. McLACHLAN: Thank you for that.	
6	If we pull that apart in terms of kind	
7	of involving community members, in terms of the	
8	science based monitoring say, rather than the	
9	physical components of this system, is Hydro	
10	interested, or does it have plans in terms of	
11	building on existing capacity, or training people	
12	to do that, and can you talk a bit about that	
13	process?	
14	MR. De WIT: I'm not really the	
15	correct person to speak to that. That's a bit	
16	more of a higher level issue, and I believe the	
17	last panel, Moving Forward as Partners, will be	
18	looking at more of that aspect of the project.	
19	MR. McLACHLAN: Okay, perfect, I will	
20	follow up around that.	
21	You talk about kind of sharing results	
22	with communities. And here you talk about the	
23	monitoring advisory committee, but more generally	
24	in terms of kind of sharing results with the	
25	broader community. What are your plans in terms	

		Dama 4400
1	of the physical data that result from the	Page 1122
2	monitoring?	
3	MR. De WIT: Again, I would have to	
4	defer that to the panel. Well, I guess one	
5	example for how we share information, that I'm	
6	more familiar with, would be open houses that are	
7	held with the communities. But some more of those	
8	details on how that's all implemented amongst all	
9	of the programs and the partners would be more	
10	appropriate for the last panel.	
11	MR. McLACHLAN: Okay. Thank you.	
12	That's it for me.	
13	THE CHAIRMAN: Thank you both.	
14	Pimicikamak, Ms. Kearns?	
15	MR. MALENCHAK: Actually, as we are	
16	switching to the next intervenor, if it is all	
17	right with the Chair, I would like to clarify a	
18	comment that was made previously?	
19	THE CHAIRMAN: Certainly.	
20	MR. MALENCHAK: It was by Mr. De Wit,	
21	where he was discussing the spillway operation	
22	based on historical records would be approximately	
23	12 per cent of the time, which was equated to once	
24	every ten years. It should probably be clarified	
25	that that 12 per cent of the time is just as a	

		_
1	whole, so that could occur every year, every	Page
2	second year, every third year, every fourth year.	
3	It depends on the inflow conditions, so it doesn't	
4	necessarily mean once every ten years.	
5	THE CHAIRMAN: Thank you. Ms. Kearns.	
6	MS. KEARNS: Thank you. Stephanie	
7	Kearns for Pimicikamak.	
8	So you stated at the beginning that	
9	there are no VECs coming from the physical	
10	environment. But my question is, did the	
11	Partnership consider including the natural	
12	hydrological regime of the river as a VEC?	
13	MR. REMPEL: No, we did not. We did	
14	not choose VECs in the physical environmental	
15	assessment because we felt it was far more	
16	appropriate to look at pathways of changes in the	
17	physical environment in terms of how they might	
18	affect other VECs. For example, erosion in itself	
19	doesn't really lend itself to be called a VEC. It	
20	is far more important to consider what erosion	
21	does to, for example, mobilization of sediment,	
22	deposition of sediment, effects on water quality,	
23	et cetera.	
24	MS. KEARNS: Thank you.	
25	You referred to air photos that you	

		Page 1124
1	used to gather information about the past. Did	
2	the air photos help the Partnership to gain	
3	understanding of the pre-development, so pre all	
4	hydro development water morphology?	
5	MR. EHNES: Could you clarify what you	
б	mean by the pre-development Hydro morphology?	
7	MS. KEARNS: What I am wondering is,	
8	did the air photos give you an understanding of	
9	what the water, the shorelines would have looked	
10	like before any hydro was developed on the Nelson	
11	River and Lake Winnipeg Regulation?	
12	MR. EHNES: It would have on the	
13	Nelson River. I'm just going to confer with my	
14	colleague about some other sources.	
15	So those photos would relate to	
16	pre-development conditions on the Nelson River and	
17	the reaches that we were considering.	
18	MS. KEARNS: So, just to clarify, so	
19	then just the local study area for Keeyask?	
20	MR. EHNES: The regional study area	
21	for Keeyask.	
22	MS. KEARNS: Thank you. In the 1962	
23	air photos you referred to, would any changes due	
24	to the construction of the Kelsey Generation	
25	Station have been apparent yet downstream?	

		Dogo 1125
1	MR. EHNES: No.	Page 1125
2	MS. KEARNS: So turning to slide 23,	
3	did the greenhouse gas lifecycle assessment	
4	include any emissions that would have been	
5	incurred in the planning stages of Keeyask?	
6	MS. KOENIG: No, it did not.	
7	MS. KEARNS: Thank you.	
8	Slide 34, so did those historical air	
9	photos provide the Partnership with any	
10	information that could be used to describe the	
11	pre-development ice formations in Gull Lake and	
12	Gull Rapids?	
13	MR. De WIT: No, the air photos were	
14	only from open water periods.	
15	MS. KEARNS: Thank you.	
16	Did you analyze what the ice	
17	conditions would have been in that area with no	
18	hydro development and what of the current ice	
19	conditions is caused by the existing Hydro	
20	projects?	
21	MR. REMPEL: I would like to respond	
22	to that by saying that the Lake Winnipeg/Churchill	
23	Nelson River Study Board did comment on this	
24	particular reach, as I mentioned, from Split Lake	
25	to Kettle Rapids, and said that they did not think	

		Page 1126
1	that the ice processes would change substantively	Fage 1120
2	with further development, that basically the ice	
3	formation, the ice jams that were occurring then	
4	would continue to occur with Lake Winnipeg	
5	Regulation and CRD.	
6	MS. KEARNS: So can I follow up? So	
7	then in the study board report when they were	
8	referring to the current ice conditions, that was	
9	post Kelsey, so that would have been ice	
10	conditions that were caused by the development at	
11	the date of that report?	
12	MR. MALENCHAK: Yes, at that time,	
13	given the date of the report, it would be post	
14	Kelsey. But it was it is not anticipated that	
15	Kelsey would have any effect on the ice processes	
16	occurring downstream of Split Lake. Another	
17	source of information that us in the river ice	
18	engineering field go to quite a bit is the 1968	
19	report by Robert Newberry, which basically goes	
20	over all of the ice processes in this reach of the	
21	river, at that time and before, so	
22	MS. KEARNS: So I don't know that I	
23	have heard an answer yet to my question. So did	
24	you then look at what the what of the current	
25	ice conditions are caused by the existing	

		Dawa
1	development and what would have been natural?	Page 1
2	MR. MALENCHAK: So I guess the short	
3	answer to your question would be no, we did not	
4	consider that comprehensively. But aside from the	
5	large hanging ice dam pointed to in the top right	
6	of the slide shown up there, which essentially is	
7	a product of Stephens Lake holding the reservoir	
8	there, the rest of the ice processes would be the	
9	same.	
10	MS. KEARNS: Thank you.	
11	Okay, so turning to slide 36. So, as	
12	discussed at the project description panel, the	
13	stumps and roots will remain after the areas are	
14	cleared of timber. Has the Partnership calculated	
15	how long it is expected to take for the stumps and	
16	roots that are left to be liberated from the	
17	flooded areas?	
18	MR. ST. LAURENT: Before we answer	
19	that question, just to clarify, the plan is not to	
20	leave in all of the stumps throughout the	
21	reservoirs. We expect that the vast majority of	
22	the reservoir would be machine cleared. And I	
23	think there was a slide that shows the reservoir	
24	clearing plan in this presentation, but only a	
25	very small proportion of the reservoir would be	

		D 4400
1	cleared by hand. And it is the hand clearing	Page 1128
2	areas only where stumps would remain in place.	
3	MS. KEARNS: Then to clarify, but	
4	roots will remain everywhere?	
5	MR. ST. LAURENT: That's right. So	
6	where the shearling occurs, once the stump is	
7	removed, there would be the roots that remain in	
8	place after the stump is removed, yes.	
9	MS. KEARNS: So of the stumps and	
10	roots that are left, has the Partnership	
11	calculated how long it will take for those stumps	
12	and roots to be liberated once the land is	
13	flooded?	
14	MR. ST. LAURENT: No, we have not	
15	tried to estimate how quickly or how long it would	
16	take for those roots to free themselves. But	
17	irrespective of that, there will be a waterways	
18	management program in place that should should	
19	that occur, and should that cause a hazard to	
20	navigation or restrict access to the waterway in	
21	certain areas, the program would be in place to	
22	remove those from the waterway.	
23	MS. KEARNS: Do you have an estimate	
24	for how long it will take for the sunken wooden	
25	debris to biodegrade in the reservoir?	

		Dogo 1120
1	MR. ST. LAURENT: The plan is to	Page 1129
2	remove woody debris or wood from the reservoir	
3	prior to reservoir impoundment. Is that what you	
4	are referring to?	
5	MS. KEARNS: Once it is flooded, and	
6	there will be wooden debris left over from roots,	
7	and there is probably going to be other things,	
8	some stumps in some areas, so it is flooded and	
9	that wooden debris is there, it gets water logged	
10	and it sinks, has the Partnership calculated how	
11	long it expects it would take for that wooden	
12	debris to biodegrade in the reservoir?	
13	MR. ST. LAURENT: We have not	
14	estimated that.	
15	MS. KEARNS: Thank you.	
16	Slide 42: The bottom of the slide it states,	
17	mineral shoreline recession rates decline to near	
18	existing rates. What are the existing rates of	
19	erosion in the local study area?	
20	MR. EHNES: Less than half a metre per	
21	year. Some of the shorelines are stable. I	
22	believe that 60 per cent of the shoreline is	
23	currently stable.	
24	MS. KEARNS: And what types of	
25	shoreline and areas would be more prone to	

		Dago 1120
1	continuous erosion after 30 years?	Fage 1150
2	MR. EHNES: Mineral banks that are	
3	exposed to high wave energy, and in some of the	
4	back bay areas where peat land disintegration may	
5	still be ongoing.	
6	MS. KEARNS: Thank you. Slide 45: In	
7	the top left hand corner, the third bullet there,	
8	says average of 13 to 19 milligrams per litre	
9	without project. And I believe that's referring	
10	to the mineral sediment concentrations. And my	
11	question is what would the average sediment	
12	concentrations be, if there were no hydro dams on	
13	the Nelson River?	
14	MR. REMPEL: I referred earlier to the	
15	Lake Winnipeg/Churchill Nelson River Board, and	
16	they did describe the total suspended solids based	
17	on samples taken at Split Lake and Kettle. And	
18	they said it was very much in that range. They	
19	said they had an average I believe about 15,	
20	16 milligrams per litre, and they expected that	
21	these concentrations would actually reduce with	
22	development.	
23	MS. KEARNS: But again that report was	
24	done after hydro development had begun?	
25	MR. REMPEL: Yes, after Kelsey, it was	

Page 1131 actually 1972 to 1975. 1 2 MS. KEARNS: Thank you. And so is 3 there any data on what the average would have been 4 before development began? 5 MR. REMPEL: I don't think that we are aware of data of that type prior to Hydro 6 development. 7 MS. KEARNS: Thank you. So still on 8 slide 45 at the bottom right hand corner, this is 9 the organic sediment concentration, the second 10 bullet says, reduced to about 1 milligram per 11 12 litre or less after year five due to reduced peat disintegration. My question is does this bullet 13 14 refer to the main reservoir area? 15 MR. De WIT: So the milligram per litre after year five was referring to most of the 16 17 reservoir. 18 MS. KEARNS: So what are the 19 predictions for the back bays? 20 MR. De WIT: Related to this bullet? MS. KEARNS: Yes. 21 MR. De WIT: Most of the back bay 22 areas, it was about, I believe, 2 milligrams per 23 24 litre or less. 25 MS. KEARNS: Thank you. Turning to

Page 1132 slide 50; you discussed debris management, 1 including removing debris from navigation routes. 2 3 What about the safe travel of animals? 4 MR. De WIT: Sorry, the safe travel of 5 what? MS. KEARNS: The safe travel of б animals in the waterway. 7 MR. DE WIT: I believe the mammal 8 specialist on the terrestrial environment panel, 9 hopefully tomorrow, would be able to speak to that 10 better. 11 12 MS. KEARNS: Thank you. In preparing your waterways management program, did you look at 13 what has worked and what has not worked for debris 14 management in other generations in the system? 15 MR. ST. LAURENT: The development of 16 the waterways management program for Keeyask was a 17 collaborative effort during the early negotiations 18 19 of the Joint Keeyask Development Agreement. So 20 there was a group of people from Manitoba Hydro, 21 as well as the partner communities, that worked together to develop the program. And that was 22 23 based largely on the program that's implemented within Hydro's system, but also the experiences 24 that were -- the experiences of the partner 25

	Dama 112	2
1	Page 113 communities, particularly on Split Lake or in the	3
2	Gull Lake area, and bringing that knowledge and	
3	that experience of impacts of hydro on shoreline	
4	and debris generation, and that itself made its	
5	way into shaping that program.	
6	MS. KEARNS: And did you talk to	
7	anybody other than the partner First Nations about	
8	their experience with the effectiveness of debris	
9	management programs?	
10	MR. ST. LAURENT: That's something I'm	
11	not aware of. I would have to go back to find out	
12	if people beyond the partner communities were	
13	involved or not. It is a process that I wasn't	
14	personally involved with. But I would have to	
15	look up.	
16	MS. KEARNS: Will it come up in	
17	another panel or is this the panel on it?	
18	MR. ST. LAURENT: This would be the	
19	panel, yep.	
20	MS. KEARNS: Would you able to	
21	undertake to go and look at anyone other than the	
22	partnership First Nations were whether or not	
23	you discussed with anyone other than the	
24	partnership First Nations about the effectiveness	
25	of debris management programs?	

		Dago 1124
1	MR. De WIT: Do you mean people	Fage 1154
2	outside of Manitoba Hydro?	
3	MS. KEARNS: Outside of Manitoba	
4	Hydro, so I'm thinking of people who live near	
5	generation stations, but are not members of the	
6	partner First Nations.	
7	MR. ST. LAURENT: We could undertake	
8	that.	
9	(UNDERTAKING # 9: Advise if Manitoba Hydro	
10	discussed with anyone other than the partnership	
11	First Nations about the effectiveness of debris	
12	management programs)	
13	MS. KEARNS: Thank you. Slide 58:	
14	The diagram shows gray areas, and it is marked as	
15	being excluded from simulation. And my question	
16	is why were those areas excluded?	
17	MR. De WIT: That's explained in the	
18	EIS. But those are areas that were relatively	
19	shallow, in the relatively shallow areas. I	
20	believe most of them, less than half a metre deep	
21	or so or less than 20 centimetres. But they cause	
22	some instability in the model that makes it	
23	difficult for the model to solve. But for those	
24	areas particularly, for example, in the bottom	
25	figure it is assumed that they are in the affected	

	Dogo 1125
1	area that would have low dissolved oxygen. And in
2	discussion with the aquatic folks as well, there
3	is additional most of those areas are also
4	within the area that may be wetted or dried as the
5	reservoir goes up or down.
6	MS. KEARNS: Thank you. And did you
7	do mapping for Stephens Lake reservoir for water
8	temperature and dissolved oxygen during different
9	seasons, or was it just summer?
10	MR. De WIT: There were monitoring
11	was done in summer and winter. The aquatic
12	studies certainly conducted studies in the winter
13	in different areas of the Stephens Lake and the
14	Gull Lake area, and that information was drawn
15	upon.
16	MS. KEARNS: Thank you. So slide
17	67 sorry, slide 70. How will you monitor water
18	levels on Clark Lake and Split Lake?
19	MR. ST. LAURENT: It would occur
20	through the construction phase and through the
21	operation phase. As part of the operation of the
22	project we will need to have water level gauges on
23	the reservoir. There will also actually be
24	multiple gauges on the reservoir that would be
25	used to establish that reservoir upper limit for

		Dogo 1126
1	operations. So in order for the project to	Fage 1150
2	operate it must have water levels all the way	
3	through operation.	
4	MS. KEARNS: And what happens if water	
5	levels are found to be impacted more than what is	
6	expected on Clark Lake and Split Lake?	
7	MR. De WIT: I think that the a	
8	fundamental operating feature of the Joint Keeyask	
9	Development Agreement is that water levels on	
10	Clark Lake and Split Lake would not open water	
11	levels on Clark Lake and Split Lake would not be	
12	affected. And I'm not completely familiar with	
13	it, but there is a process described in the Joint	
14	Keeyask Development Agreement on what processes	
15	would take place should a supplemental operating	
16	feature not be met.	
17	MR. ST. LAURENT: Ms. Cole actually	
18	answered a very similar question on Friday where	
19	she talked about, you know, unanticipated effects	
20	or where, you know, the process for addressing.	
21	And I think the example used was a water level	
22	increase on Split Lake. So I believe the way the	
23	process was laid out is that, you know, we would	
24	certainly be monitoring the level on Split Lake,	
25	and we would need to compare those levels to our	

	Page 1137
predicted levels, and determine if additional	Fage 1137
monitoring needed to be taken needs to occur,	
if there were problems with the monitoring	
equipment, which does happen from time to time,	
and determine if more monitoring would be	
required. Or also, you know, assess the	
effectiveness of any mitigation, and from there	
determine if more monitoring is required or	
depending on the nature of the effect of that	
deviation from the prediction, what that impact	
would be. And any which would then define if	
mitigation is required or the extent of that	
mitigation. And once that's implemented, if it is	
implemented, start by monitoring again.	
MS. KEARNS: Thank you. Are you aware	
of any studies of the ways in which sediment	
passes through the Kelsey control structure?	
MR. De WIT: So there is some data,	
historic data on Split Lake and upstream of Kelsey	
that was available.	
MS. KEARNS: But no studies	
specifically on how sediment travels through the	
Kelsey control structure?	
MR. ST. LAURENT: No, that's out of	
the scope of the study area that was defined for	
	<pre>predicted levels, and determine if additional monitoring needed to be taken needs to occur, if there were problems with the monitoring equipment, which does happen from time to time, and determine if more monitoring would be required. Or also, you know, assess the effectiveness of any mitigation, and from there determine if more monitoring is required or depending on the nature of the effect of that deviation from the prediction, what that impact would be. And any which would then define if mitigation is required or the extent of that mitigation. And once that's implemented, if it is implemented, start by monitoring again. MS. KEARNS: Thank you. Are you aware of any studies of the ways in which sediment passes through the Kelsey control structure? MR. De WIT: So there is some data, historic data on Split Lake and upstream of Kelsey that was available. MS. KEARNS: But no studies specifically on how sediment travels through the Kelsey control structure? MR. ST. LAURENT: No, that's out of the scope of the study area that was defined for</pre>

		Dogo 1129
1	this particular project.	Page 1130
2	MS. KEARNS: And does Manitoba Hydro	
3	conduct the same level of sediment monitoring	
4	proposed for Keeyask in other reaches of the	
5	Nelson River?	
6	MR. De WIT: I'm not sure that's	
7	necessarily relevant to the Keeyask project.	
8	MS. KEARNS: It is relevant because we	
9	are looking at impacts of water quality for	
10	Keeyask. In order to understand those impacts, we	
11	need to look at how water travels down to Keeyask	
12	and the impacts of sediment upstream on the area	
13	where Keeyask is.	
14	MR. ST. LAURENT: There will be	
15	monitoring stations, water quality stations on	
16	Split Lake, which is upstream of the hydraulic	
17	zone of influence, so those gauges or those	
18	locations wouldn't be expected to be impacted by	
19	the project itself. So comparing that data to	
20	gauges further downstream in water that's impacted	
21	by the project would enable would enable a	
22	difference or effect of the project on water	
23	quality to be determined. So no need to go	
24	upstream of Split Lake.	
25	MS. KEARNS: Thank you. Those are my	

Page 1139

questions. 1 2 THE CHAIRMAN: Thank you, Ms. Kearns. I have a couple of short snappers. One of the 3 4 things should be pretty simple. You talked earlier today about life cycle assessment of 5 greenhouse gases. Last week we saw the diagram 6 with sort of three circles. A big one I believe 7 was a coal generating station, and a medium sized 8 one was gas, and a small dot was the Hydro 9 10 project. And the question was asked last week, but we were told to ask it this week of this 11 12 panel. Were those three dots all life cycle 13 assessments? 14 MR. DE WIT: That chart would have been developed from the same information used to 15 16 development the slide chart, same information and 17 format. 18 THE CHAIRMAN: Okay. Thank you. 19 Slide 34, I just have a question. I don't 20 understand, at the bottom left side dialogue box, 21 the potential Split Lake level increase up to 20 22 centimetres. You are saying that the ice might be 23 20 centimetres higher in these 1 in 20 year -- is that what that says? I just don't understand that 24 25 box.

1	MP MAIFNOUAK. Yeah actually	Page 1140
Ŧ	MR. MALENCHAR: IEall, actually	
2	effectively that's what it is saying. Under low	
3	flow conditions, the ice cover is able to advance	
4	upstream earlier in the year and a lot quicker.	
5	And our modeling showed no effect actually on	
6	Split Lake, but it was contingent on two river ice	
7	processes occurring; one being anchor ice at the	
8	outlet of Clark Lake and another one being	
9	sufficient border ice growth. So what we did is	
10	we did a sensitivity, as if those two things did	
11	not occur, as a conservative estimate, and that's	
12	where we arrived at the 20 centimetre rise during	
13	low flow conditions. So that would be an increase	
14	under what would be considered a relatively	
15	already low water level.	
16	THE CHAIRMAN: So this would be a 20	
17	centimetre increase over normal?	
18	MR. MALENCHAK: No. Actually it would	
19	be a 20 centimetre increase over infrequent low	
20	water levels. So it would be a low water level	
21	support.	
22	THE CHAIRMAN: So it is going to be a	
23	low even with the 20 centimetre increase in	
24	ice, it is still going to be low?	
25	MR. MALENCHAK: It is still already	

Page 1141 going to be in the low range. 1 2 THE CHAIRMAN: That helps, thank you. 3 I have another question, I have actually been 4 waiting for nine and a half years for an answer to this question. It was asked during the Wuskwatim 5 hearing and it wasn't answered at that time. 6 Ιt 7 sort of came close to it today, and it is in relation to climate change, and you sort of gave 8 models with increased precipitation, and I think 9 all of us who follow climate change know that 10 there will be increased precipitation. But there 11 12 is also a chance for decrease in water flows, and 13 Ms. Whelan-Enns this morning asked about drought. But the specific question that was asked during 14 Wuskwatim was in relation to glacial melt in the 15 Rockies. And there has been a lot of talk, or 16 some talk in the media about climate change 17 speeding up glacial melt, and what happens when 18 19 the glaciers are gone. And has that been taken 20 into consideration in these climate change models? 21 Because most of the water that comes through the 22 north and south Saskatchewan and probably, maybe 23 the Churchill, I'm not sure, but certainly the north and south Saskatchewan, originates in 24 glacial melt. 25
142

	Paga
1	MR. De WIT: I will ask Ms. Koenig to
2	address that.
3	MR. MALENCHAK: So I guess after
4	conferring with my colleagues here, for the north
5	and south Saskatchewan, the majority of the flow,
б	it is our understanding, comes from rainfall and
7	snow melt and not necessarily glacial melt per se.
8	And on top of that, that particular input to our
9	system is a relatively small contribution. It is
10	a very vast watershed that has many inputs, and
11	that's just one of them.
12	THE CHAIRMAN: But there has been some
13	talk, certainly back at the time of Wuskwatim,
14	there was talk about the possibility of the
15	Saskatchewan River flow being much reduced. Does
16	that show up in your current models?
17	MR. De WIT: Maybe clarify; do you
18	have a sort of a geographic area in mind where it
19	is discussed that that flow would be reduced?
20	THE CHAIRMAN: God no, this was
21	somebody else's question during Wuskwatim that I
22	thought was intriguing, but never got answered.
23	MR. De WIT: Just on a higher level,
24	the effect of the glaciers on flow would be more
25	pronounced, for example, if you are talking about

1	a place like Calgary or Edmonton versus say the	Page 1143
2	site of the Keeyask site, where you've got a vast	
3	watershed that's contributing water from a large	
4	area. So without a geographic context, it would	
5	be hard to say what to address that.	
6	THE CHAIRMAN: Well, I think it is	
7	just the Saskatchewan River, which both north and	
8	south Saskatchewan River takes in half to	
9	two-thirds of Saskatchewan, Alberta and a	
10	reasonable chunk of Manitoba.	
11	MR. MALENCHAK: So, I guess we are	
12	wondering if possibly we could get a chance to	
13	review what was mentioned in Wuskwatim, because we	
14	are not exactly sure, or unless you just want to	
15	talk in generalities?	
16	THE CHAIRMAN: There wasn't much in	
17	the Wuskwatim, it was just a question that was	
18	posed, but it was actually dismissed by the Hydro	
19	panel at that time, I hate to say. But I always	
20	found it intriguing because I do recall reading at	
21	the time concern about the melt of rocky mountain	
22	glaciers, and what that might do to the prairies.	
23	And at that time, I don't think there was as	
24	much this is nine, ten years ago, the science	
25	on climate change hadn't evolved as much as it has	

		Dogo 11//
1	now, and I don't think there was as much	Faye 1144
2	consideration then about increased precipitation,	
3	but there was certainly consideration about	
4	decreased water flows. So I thought I might get	
5	an answer out of you. But it doesn't seem that it	
б	is a major concern or at least one that has been	
7	considered very much. But at least you didn't	
8	dismiss me like somebody else got dismissed nine	
9	and a half years ago.	
10	MR. De WIT: We would never do that.	
11	THE CHAIRMAN: Let's leave that then.	
12	I had hoped for more irradiation, but we will move	
13	over to Mr. Nepinak who has a couple of questions.	
14	MR. NEEPIN: This is for Mr. St.	
15	Laurent. Last week you mentioned excavated	
16	materials, and that they would be used to cover	
17	peat moss. Can you expand on what will be	
18	covered? How much of the peat moss is going to be	
19	covered and how will it be done? Do you remember	
20	that conversation?	
21	MR. ST. LAURENT: Yes. We discussed	
22	the excavating material placement areas that will	
23	be established around the project in order to	
24	construct the principal structures, so the excess	
25	material from the excavations that can't be used	

145

		Page 1
1	for construction would be placed in these	i ago i
2	placement areas. Prior to establishing those	
3	areas, the plan would actually be are you	
4	referring to the peat in the reservoir? Okay.	
5	MR. NEPINAK: Whichever you were	
6	talking about.	
7	MR. ST. LAURENT: I'm starting to	
8	remember what we were talking about. There is a	
9	number of placement areas in the reservoir, and as	
10	Dr. Ehnes explained this morning, there is, you	
11	know, the peat will have the peat can resurface	
12	in the reservoir. Some of our areas have a high	
13	likelihood or moderate likelihood of detaching	
14	from the bottom from where it is, once	
15	submerged, and re-surfacing. So what I described	
16	was taking some of the material, excess material,	
17	and rather than putting it in to an EMP outside of	
18	the reservoir, actually spreading it out on top of	
19	the peat, and putting a layer, I believe it is	
20	about half a metre thick of material over top of	
21	this peat, and that would have the effect of	
22	actually weighing it down such that when the	
23	reservoir is impounded, and the water level goes	
24	up, that material that mineral soil is actually	
25	holding it down and preventing the buoyancy of	

		Dama 4440
1	that peat from detaching and floating upwards.	Page 1146
2	MR. EHNES: I would like to add to	
3	that. In our peat reserve scene predictions we	
4	didn't assume any of the peat would be weighted	
5	down by EMPAs because it is up to the contractor	
6	to decide where they will be and we don't know	
7	that beforehand.	
8	MR. NEPINAK: I said a conversation, I	
9	should have said testimony, because we didn't have	
10	a conversation on it. And would this material be	
11	cleaned or washed prior to being set down or	
12	just	
13	MR. ST. LAURENT: It wouldn't be	
14	cleaned or washed, it would be placed as	
15	extracted.	
16	MR. NEPINAK: Is there going to be any	
17	more in-depth on the blasting that's going to	
18	occur on another panel?	
19	MR. ST. LAURENT: Certainly the next	
20	panel, aquatic and terrestrial and beyond would be	
21	prepared to talk about the effects of blasting.	
22	Certainly we talked about the fact that there will	
23	be blasting as part of this project, but the	
24	effects on mammals and aquatics and so forth will	
25	all be discussed in the next few days.	

		Dogo 11/7
1	MR. NEPINAK: Okay, I will wait.	Page 1147
2	THE CHAIRMAN: Mr. Yee.	
3	MR. YEE: Thank you, Mr. Chairman. I	
4	have sort of a residual question to ask that came	
5	across last Thursday, but it is relation to	
6	today's presentation. I draw your attention to	
7	slide 30, which talked about project impacts on	
8	river flows, water depths, water velocities,	
9	levels, fluctuations and ice formation. And my	
10	question is directed at Mr. Rempel. A similar	
11	question on Thursday was, what was Keeyask's	
12	impact on Hydro's overall system. And I think you	
13	responded by saying something to the effect it is	
14	not discernible. So I guess I would really like	
15	some clarification on what you mean by	
16	discernible, and how it applies to these specific	
17	areas?	
18	MR. REMPEL: My comment did not relate	
19	to water velocities, et cetera. I was really	
20	commenting on the question which I thought was	
21	what would Keeyask, the addition of Keeyask do	
22	what would the addition of Keeyask do to system	
23	operations. And I think I responded that there	
24	are many factors at work in terms of influencing	
25	Hydro's operation, it is not a static operation.	

		Dogo 1140
1	It is dominated in terms of changes by virtue of	Page 1148
2	the variability of the inflow. And I think I	
3	responded that, firstly, that licensed conditions	
4	for the upstream water bodies will not change, the	
5	patterns won't change. And any effects arising	
б	from the addition of Keeyask would not be	
7	discernible. And by discernible I meant would not	
8	be able to be detected by a monitoring program.	
9	MR. YEE: Thank you.	
10	THE CHAIRMAN: That seems to bring us	
11	to the end of our questioning and	
12	cross-examination for today. I would like to	
13	thank this panel, and their back team for their	
14	presentations and responses today. We will	
15	adjourn until 9:30 tomorrow morning, and we will	
16	be back with the aquatic effects presentation at	
17	that time. Thank you.	
18	Did you have any documents to put in?	
19	Before you run away, I'm always forgetting the	
20	document registration. Madam secretary?	
21	MS. JOHNSON: Yes, the presentation	
22	that was given today on the physical environment	
23	will be KHLP40.	
24	(EXHIBIT KHLP40: Physical environment	
25	presentation)	

1		THE CHAIRMAN: Okay. We are	Page 1149
2	adjourned.		
3		(Adjourned at 4:35 p.m.)	
4			
5			
б			
7			
8			
9			
10			
11			
12			
13			
14			
15			
16			
17			
18			
19			
20			
21			
22			
23			
24			
25			

Page 1150

OFFICIAL EXAMINER'S CERTIFICATE

Cecelia Reid and Debra Kot, duly appointed Official Examiners in the Province of Manitoba, do hereby certify the foregoing pages are a true and correct transcript of my Stenotype notes as taken by us at the time and place hereinbefore stated to the best of our skill and ability.

Cecelia Reid Official Examiner, Q.B.

Debra Kot

Official Examiner Q.B.

This document was created with Win2PDF available at http://www.win2pdf.com. The unregistered version of Win2PDF is for evaluation or non-commercial use only. This page will not be added after purchasing Win2PDF.