

APPEARANCES	Page 1152
CLEAN ENVIRONMENT COMMISSION Terry Sargeant - Chairman Edwin Yee - Member Judy Bradley - Member Jim Shaw - Member Reg Nepinak - Member Michael Green - Counsel to the Board Cathy Johnson - Commission Secretary MANITOBA CONSERVATION AND WATER STEWARDSHIP Elise Dagdick Bruce Webb	
KEEYASK HYRDOPOWER LIMITED PARTNERSHIPDoug Bedford- CounselJanet Mayor- CounselSheryl Rosenberg- CounselBob Roderick- CounselJack London- CounselJack London- CounselVicky ColeShawna PachalKen AdamsChief Walter SpenceChief Louisa ConstantChief Betsy KennedyChief Michael GarsonCONSUMERS ASSOCIATION OF CANADAByron Williams- CounselAimee Craft- Counsel	
Gloria Desorcy Joelle Pastora Sala MANITOBA METIS FEDERATION Jason Madden - Counsel MANITOBA WILDLANDS Gaile Whelan Enns Annie Eastwood PEGUIS FIRST NATION Lorraine Land - Counsel	
Cathy Guirguis - Counsel Lloyd Stevenson Jared Whelan	

CONCERNED FOX LAKE GRASSROOTS CITIZENS Agnieszka Pawlowska-Mainville Dr. Stephane McLachlan Dr. Kulchyski Noah Massan

PIMICIKAMAK OKIMAWIN Kate Kempton – Counsel Stepanie Kearns – Counsel Darwin Paupanakis

KAWEECHIWASIHK KAY-TAY-A-TI-SUK Roy Beardy Page 1153

Page 1154

INDEX OF PROCEEDINGS

Keeyask Aquatic & Terrestrial Environment PanelMs. S. Davies, Dr. F. Schneider-Vieira, Ms. S.Matkowski, Ms. L. Wyenberg, Mr. R. Berger, Dr. B.Knudsen, Mr. J. Ehnes,Presentation1157Cross-examination by Ms. Whelan Enns1282Cross-examination by Ms. Land1316Cross-examination by Mr. Williams1348

INDEX OF EXHIBITS	Page 1155
KHLP41 Aquatic Presentation 1403	
CAC002 Recovery Potential Assessment 1404 article	
CAC003 Home Range article 1404	

INDEX OF UNDERTAKINGS

No undertakings given

		Page 1156
1	Tuesday, October 29, 2013	-
2	Upon commencing at 9:30 a.m.	
3	THE CHAIRMAN: Good morning. Welcome	
4	back to another day in the appropriate word has	
5	escaped me right now, but I believe the	
6	partnership has an undertaking to report?	
7	MR. LONDON: I do, Mr. Chairman. On	
8	the 22nd we undertook to inquire and produce the	
9	summary of meeting with member 2, if available.	
10	And we have delivered the notes of that meeting to	
11	Ms. Pawlowska-Mainville, who had requested it, and	
12	she's satisfied with the satisfaction of the	
13	undertaking.	
14	THE CHAIRMAN: Did you deliver it to	
15	all parties?	
16	MR. LONDON: I didn't. I delivered it	
17	to her. She was the only one who seemed to be	
18	interested in it.	
19	THE CHAIRMAN: Our standard practice	
20	is to make it available to all participants.	
21	MR. LONDON: I'm happy to do that. It	
22	turns out not to have been relevant, but I'm happy	
23	to do that.	
24	THE CHAIRMAN: Thank you. Thank you,	
25	Mr. London.	

		Page 1157
1	This morning we have the aquatic	
2	environmental assessment. Mr. Davies, you're	
3	chairing this panel?	
4	MR. DAVIES: Yes.	
5	THE CHAIRMAN: I think two or three of	
6	you have been sworn in. Others on the front table	
7	will need to be sworn in, and then I'd ask you to	
8	introduce your back table.	
9	MS. JOHNSON: Okay. Those that	
10	haven't been sworn in, could you please state your	
11	names for the record, please?	
12	MR. BERGER: Robert Berger.	
13	MS. MATKOWSKI: Shelley Matkowski.	
14	MS. SCHNEIDER-VIEIRA: Friederike	
15	Schneider-Vieira.	
16	MR. DAVIES: Stu Davies.	
17	MS. WYENBERG: Leane Wyenberg.	
18	Robert Berger: Sworn.	
19	Shelley Matkowski: Sworn.	
20	Friederike Schneider-Vieira: Sworn.	
21	Stuart Davies: Sworn.	
22	Leane Wyenberg: Sworn.	
23	MS. JOHNSON: Thank you.	
24	THE CHAIRMAN: If you could introduce	
25	your back table, Mr. Davies, and then proceed with	

Page 1158 your presentations? 1 2 MR. DAVIES: I have asked each 3 individual to raise their hands so they can be 4 identified. Marc St. Laurent for Manitoba Hydro; Nick Barnes, Manitoba Hydro; Brock Epp with 5 Ecostem; Pete Hettinga with Wildlife Resource 6 Consulting Services; Blair McMahon with Stantec, 7 Megan Cooley with North/South Consultants; Dr. Cam 8 Barth with North/South Consultants; and Dr. 9 10 Wolfgang Jansen with North/South Consultants. If anyone has trouble hearing my 11 12 voice, I've been accused of speaking too lowly, so 13 please let me know. 14 THE CHAIRMAN: You might want to pull the mic closer if you can. 15 MR. DAVIES: We will try to make this 16 more exciting than yesterday's presentation, 17 though. 18 19 THE CHAIRMAN: Are you commenting on 20 the quality of yesterday's presentation? MR. DAVIES: It was excellent but 21 22 we --23 THE CHAIRMAN: You are going to be 24 even better. 25 MR. DAVIES: That's right.

-		age 1159
1	THE CHAIRMAN: We're glad to hear	
2	that.	
3	MR. DAVIES: Good morning and thank	
4	you for the opportunity to describe the effects of	
5	the Keeyask generation project on the aquatic and	
6	terrestrial environments, and the mitigation	
7	that's been developed to manage those effects.	
8	To accommodate the schedule of some of	
9	the experts for the participants, we had been	
10	asked to start with the aquatic environment	
11	presentation, follow up with the aquatic	
12	questions, and then we'll follow with the	
13	presentations for the terrestrial environment and	
14	the terrestrial questions.	
15	So I'd like to introduce the panel	
16	members and presenters. The first is	
17	Dr. Friederike Schneider-Vieira, who we referred	
18	to as Rika for obvious reasons. She's going to be	
19	responsible for the aquatic environment portion of	
20	the Environmental Impact Statement and will be	
21	providing a presentation on that component. She	
22	is the vice-president of North/South Consultants	
23	and has worked as an aquatic scientist for the	
24	past 24 years in Manitoba and in Canada.	
25	Shelley Matkowski is a senior	

-		Page 1160
1	environmental specialist at Manitoba Hydro. She	
2	oversees Manitoba Hydro's Lake Sturgeon	
3	stewardship program and will be providing a	
4	presentation on lake stewardship in Manitoba.	
5	Shelley has worked as a fisheries biologist for	
б	the past 29 years.	
7	Dr. James Ehnes, who we met yesterday,	
8	has been responsible for the terrestrial	
9	ecosystem, habitat and plants portion of the EIS,	
10	and will be providing a presentation on those	
11	components in the overall terrestrial approach.	
12	He's the president of Ecostem and has worked as a	
13	terrestrial ecologist for the past 16 years.	
14	Leane Wyenberg with Stantec has been	
15	responsible for the bird, amphibian and insect	
16	components of the Environmental Impact Statement,	
17	and will be providing a presentation on those	
18	components, as well as mercury and wildlife.	
19	Leane is a project manager at Stantec and has	
20	worked as a wildlife biologist for over 10 years.	
21	Robert Berger with Wildlife Resource	
22	Consulting Services has been responsible for the	
23	mammal component of the EIS and will be making a	
24	presentation on that component. Rob is the	
25	president of Wildlife Resource Consulting Services	

_		Page 1161
1	and has over 20 years of experience as a senior	
2	wildlife biologist.	
3	Dr. Brian Knudsen, who unfortunately	
4	can't be with us right now. He had an emergency	
5	dental surgery this morning but hopes to come	
6	later this afternoon. He was responsible for the	
7	moose modeling component of the EIS and will be	
8	responding to questions on that. He's worked as a	
9	wildlife manager for approximately 30 years.	
10	And I'm Stuart Davies. My	
11	presentation today is to provide some background	
12	on the aquatic and terrestrial assessments for the	
13	Keeyask generation project. I'm the president of	
14	North/South Consultants and have worked in the	
15	aquatic field for about 40 years, actually a	
16	little over 40 years, most of which has been spent	
17	on environmental assessments and environmental	
18	monitoring programs of hydroelectric stations in	
19	Manitoba and across Canada.	
20	Actually, I missed one thing. This	
21	panel is actually the third panel under the	
22	regulatory environmental assessment component and	
23	will be followed by the socio-economic resource	
24	use and heritage resources panel.	
25	In addition to the panel members,	

	Page 1162
1	there are a large number of technical experts on
2	the study team who provided their expertise in
3	specific topics such as water quality, lake
4	sturgeon, mercury, soil statistics and many other
5	areas. The study team has used senior experts
6	with direct experience in Northern Manitoba for
7	each major component. These individuals included
8	experts from Manitoba Hydro, the First Nation
9	Partners, and the consulting community.
10	When additional expertise was
11	required, the study team worked with other
12	organizations to try to fill those gaps.
13	University of Manitoba was particularly helpful.
14	They conducted research on the use of hormones to
15	promote reproduction in sturgeon, and are
16	currently working on methods of marking sturgeon
17	using isotopes to allow us to identify sturgeon
18	that are too small to be tagged.
19	The University of Laval is a leader in
20	the field of genetics and they assisted us greatly
21	with the lake sturgeon genetic studies. Trent
22	University is similar but specializes in caribou
23	genetics and they assisted the mammal team with
24	that component.
25	We also worked a lot with the Rainy

1163

		D
1	River First Nation. They have a long running and	Page
2	successful lake sturgeon hatchery. They provided	
3	a large amount of expertise to us and even	
4	assisted us with the collection of eggs in the	
5	Keeyask study area.	
6	Now, the environmental assessment is a	
7	number of different areas of knowledge and	
8	assessment tools, including Aboriginal traditional	
9	knowledge, local knowledge, historical technical	
10	information, technical field studies specific to	
11	Keeyask, the use of proxies, and the use of	
12	models. Where possible we tried to use more than	
13	one of the above and the results were compared to	
14	improve certainty. An example of that was the	
15	water quality analysis.	
16	In regard to ATK, ATK was used	
17	throughout the environmental assessment, as	
18	discussed in the approach methods and process	
19	panel. Additional information on the ATK process	
20	will also be provided by the First Nation	
21	Partners' environmental evaluation approach and	
22	process panel, which will come after the	
23	socio-economic panel.	
24	Local knowledge was also used	
25	extensively throughout the assessment. I had	

		Page 1164
1	mentioned earlier, on Monday I believe, that on	
2	the previous panel that about 105 First Nation	
3	members and local residents participated in the	
4	field studies and shared their expert knowledge of	
5	the environment with the field technicians,	
6	biologists and engineers. A total of about 3,600	
7	person weeks or 144,000 hours of their time was	
8	spent working side-by-side in the field with	
9	Manitoba Hydro and the consulting team.	
10	The First Nation Partners also	
11	provided considerable input through aquatic and	
12	mammal working groups. They were fully engaged in	
13	the field studies, which substantially assisted	
14	the study team and provided the communities with a	
15	better understanding of the types of studies that	
16	were being conducted in their area.	
17	In addition to the field work, there	
18	were also several First Nation members who	
19	assisted the study team, as part of the study team	
20	on the assessment with us in Winnipeg, as well as	
21	on other projects. One Fox Lake Cree Nation	
22	member, who was a university student, worked out	
23	of our office for three summers, processing	
24	information on Keeyask, as well as conducting	
25	field work on lake sturgeon in Manitoba,	
l		

1		Page 1165
1	Saskatchewan and Alberta.	
2	A TCN student assisted us with	
3	benthic invertebrate lab work. The York Factory	
4	member worked on Keeyask and other projects out of	
5	Winnipeg for several seasons. And this year a	
6	young TCN student worked with us for part of the	
7	summer and probably saw more gill nets than he	
8	ever wanted to see in his life.	
9	Overall, a great deal of knowledge was	
10	gained from the First Nation partners that were	
11	working on the project, and very positive working	
12	relationships were developed between the First	
13	Nation members and the Winnipeg staff, some of	
14	whom have now been working together for over 10	
15	years.	
16	One thing that's important to note is	
17	that the lower Nelson River is actually one of the	
18	most heavily studied areas in Canada. In addition	
19	to the ATK that was provided by the First Nation	
20	Partners, the scientific information and knowledge	
21	gained over the past 40 years provided the study	
22	team with a better understanding of the potential	
23	effects of Keeyask on the environment, and in some	
24	cases provided the historical context for the	
25	VECs.	

		Page 1166
1	One of the largest studies was	
2	conducted by the Lake Winnipeg, Churchill and	
3	Nelson River Study Board from 1971 to 1975. This	
4	was a broad scale environmental assessment	
5	conducted by the Department of Fisheries and	
б	Oceans, Department of the Environment, Manitoba	
7	universities, and a number of consultants. The	
8	studies were conducted over a period of five years	
9	and a 10,000 page Environmental Impact Statement	
10	was produced. The studies were state of the art	
11	for their day, and a large amount of the	
12	information collected is still valid today,	
13	including some of the first information that was	
14	available on the link between flooding and	
15	mercury.	
16	Mercury has been and continues to be a	
17	concern in northern communities. Actually, one of	
18	the reasons that it's such a concern is that when	
19	the Government of Canada made a video, there	
20	wasn't a Cree word for mercury, so they used the	
21	word poison. And the video came out with the word	
22	that your fish have poison. And so it became a	
23	concern for all of the First Nations that have	
24	been affected. And it's still a very large	
25	concern in the communities. Because of that, a	

		Page 1167
1	great deal of information has been collected on	. agee.
2	mercury in fish in Manitoba. It is one of the	
3	largest and most complete databases in existence	
4	and is used by other utilities in Canada. As of	
5	2012, about 80,000 fish had been sampled for	
б	mercury from 400 water bodies in Manitoba.	
7	Mercury samples had been collected almost	
8	continuously from 1975 to present. There are	
9	actually some samples that were collected prior to	
10	1975, but they were collected in relation to the	
11	chlorakalkali plants that were putting mercury	
12	into the system through the Winnipeg River.	
13	And the map that's in front of us	
14	right now, we refer to that as the measles map for	
15	obvious reasons. But it does provide an overview	
16	of the number of water bodies that have been	
17	sampled for mercury since 1975, and it's clearly	
18	very good coverage, particularly in the area of	
19	interest.	
20	Until Wuskwatim, the Limestone	
21	Generating Station was the last major generating	
22	station constructed by Manitoba Hydro.	
23	Environmental assessment studies were conducted	
24	from 1985 to 1992, and environmental monitoring	
25	studies from 1993 to 2003. The study program	

		Page 1168
1	assembled a long-term database to verify predicted	
2	impacts, identify unpredicted impacts, and managed	
3	those impacts. Over 70 reports were published on	
4	the monitoring program, and a final report	
5	integrating the results of all of the studies has	
6	been produced.	
7	We had mentioned the Lake	
8	Winnipeg/Churchill Nelson River Study Board. They	
9	made a number of recommendations in 1975 in their	
10	summary document. And one of the recommendations	
11	was recommendation number 10, and that was that	
12	the appropriate government agencies were to	
13	provide long-term monitoring in relation to the	
14	CRD and LWR.	
15	A claim was filed by the Northern	
16	Flood Committee, that was called claim 18,	
17	alleging that insufficient monitoring had	
18	occurred. And this was the case, and this lead to	
19	a monitoring program being conducted by both	
20	Manitoba and Canada, two separate programs, but	
21	coordinated.	
22	The Federal ecological monitoring	
23	program went from 1986 to 1992. It was a	
24	five-year study program conducted by the	
25	Department of Fisheries and Oceans and the	

1	Department of the Environment. The results were	Page 1169
2	provided in a series of over 20 reports, as well	
3	as a videotape called "Changes" which was produced	
4	in Cree and in English. A separate report was	
5	written in 1992 for the Government of Canada by	
6	Randy Baker and myself that provided a review and	
7	synthesis of all available information on the	
8	physical, chemical, and biological effects of the	
9	Churchill River Diversion and Lake Winnipeg	
10	Regulation on the aquatic environment. The report	
11	focused on the resource areas of the signatories	
12	to the Northern Flood Agreement.	
13	The Manitoba ecological monitoring	
14	program actually got started a year earlier in	
15	1985, and Manitoba and Canada worked together to	
16	avoid duplication of effort. Manitoba focused	
17	their efforts on several lakes, including Split	
18	Lake and Stephens Lake, which provided us with a	
19	great deal of information.	
20	One of the most relevant studies	
21	undertaken for the Keeyask generation project was	
22	the Split Lake post project environmental review.	
23	It covered an area that was actually slightly	
24	larger than the Split Lake resource management	
25	area. It was approximately 5 million hectares in	

		Page 1170
1	size. The study was used extensively in the	
2	Environmental Impact Statement. It was conducted	
3	jointly by TCN, then called Split Lake Cree, and	
4	Manitoba Hydro between 1992 and 1996, and looked	
5	at the effects of all of Manitoba Hydro's	
6	facilities, not just the generating stations,	
7	using ATK and science.	
8	In 1996, a series of reports were	
9	produced, including analysis of change, history	
10	and first order effects, environmental matrices,	
11	environmental baseline evaluation, summary and	
12	conclusions, and both ATK and technical	
13	information were used jointly throughout the	
14	development of the reports. Both had equal value	
15	and both parties signed off on the final post	
16	project environmental review.	
17	CAMP. During the Wuskwatim hearings	
18	the Clean Environment Commission expressed	
19	concerns regarding the scope of Manitoba Hydro's	
20	monitoring programs. The same concerns were	
21	expressed by several communities under the section	
22	35 process. For Wuskwatim, the coordinated	
23	aquatic monitoring program, which is referred to	
24	as CAMP, was undertaken by Manitoba and Manitoba	
25	Hydro through a memorandum of understanding to	
1		

		Page 1171
1	address those concerns. Manitoba and Manitoba	
2	Hydro, with input from Department of Fisheries and	
3	Oceans, the Department of the Environment, the	
4	University of Manitoba, consultants, external	
5	experts one of the external experts was one	
6	actually that worked on the original Lake	
7	Winnipeg/Churchill/Nelson River Study Board	
8	report designed the coordinated aquatic	
9	monitoring program, which was implemented in 2008	
10	and remains ongoing. The program includes all	
11	areas affected by Manitoba Hydro's hydroelectric	
12	facilities in Manitoba, including the Keeyask	
13	area.	
14	The primary objective is to provide	
15	long-term environmental data on waterways affected	
16	by Manitoba Hydro's existing hydraulic system.	
17	The information is being collected on aquatic	
18	habitat, water quality, lower trophic levels,	
19	which includes phytoplankton, benthic	
20	invertebrates, fish populations and fish mercury	
21	levels.	
22	This map shows the various areas that	
23	are being covered by CAMP. As previously noted,	
24	it is a provincial-wide program, basically from	
25	the top right to the Churchill estuary. And one	

		Page 1172
1	of the main advantages of the program is that all	Tugo TTZ
2	of the parameters in all of the areas, both on	
3	system and off system, are being sampled in	
4	exactly the same way every year, which makes it	
5	much easier for comparisons, both spatially and	
6	temporally.	
7	There has also been a very large	
8	number of other studies conducted by Manitoba,	
9	Manitoba Hydro and Canada, and the First Nations.	
10	And the majority of these have been what they	
11	would call site specific studies. And this is a	
12	map, a first map showing sort of the large number	
13	of studies that were conducted. And if we look	
14	at I'm going to use my pointer here each one	
15	of these symbols represents a different type of	
16	study, whether it's fish, aquatic, fur bearer	
17	studies, bird studies, mercury studies, lower	
18	trophic level studies, ungulate studies, or water	
19	quality studies.	
20	In some cases, the studies were	
21	multi-disciplinary and may have more than one	
22	component in them. In other cases, if we take a	
23	look at Cross Lake and we see one fish sorry,	
24	one fish, it could actually mean that that's the	
25	study that was conducted from 1992 to present.	

		Page 1173
1	It's the 20-year study on fish populations after	
2	the Cross Lake River was put in place. So a	
3	single dot can actually represent a 20-year	
4	program. It's been conducted for the entire	
5	CRD/LWR route.	
б	And this is the area that we're	
7	currently concerned, and as you can see, there's a	
8	large amount of scientific knowledge that gives us	
9	a good understanding of the types of effects of	
10	hydroelectric developments. That said, it should	
11	be noted that the majority of studies that are	
12	contained on these maps were conducted post	
13	project, and in many cases they used different	
14	sampling methods, which makes qualitative,	
15	quantitative comparisons difficult. ATK was	
16	invaluable in providing the long-term information	
17	on the environment and the coordinated aquatic	
18	monitoring program now has addressed the	
19	methodology issue.	
20	Keeyask field studies: Field studies	
21	were conducted for over 10 years, which is the	
22	longest period of pre project studies conducted on	
23	a hydroelectric project on Manitoba to date.	
24	Studies were conducted to provide information on	
25	the aquatic and terrestrial environments for the	

		Page 1174
1	environmental assessment of the Keeyask generation	
2	project, address concerns raised by the First	
3	Nation Partners and others, and provide a basis	
4	for comparing pre and post project conditions.	
5	The First Nation partners recommended a number of	
б	the studies and participated in the review of all	
7	study plans.	
8	We also used proxies and models, and	
9	using a proxy is essentially using information	
10	from a similar environment that was affected by a	
11	similar project. For example, the water quality	
12	assessment used information from several similar	
13	reservoirs to help predict changes in water	
14	quality.	
15	Models, various types of models were	
16	developed, ranging from simple to complex, and	
17	were used in the assessment. A mass balance model	
18	was used to help predict changes in water quality,	
19	and the results were compared to the information	
20	from the reservoirs using the proxies, again, to	
21	increase certainty.	
22	The use of proxies and models will be	
23	provided in the following presentations by the	
24	technical specialists.	
25	As noted at the beginning of the	

	Page 1175
1	presentation, the next individual to speak will be
2	Dr. Friederike Schneider-Vieira on the aquatic
3	environment, followed by Shelley Matkowski on
4	sturgeon, and Rika will actually come back to
5	finish the presentation after Shelley.
6	At that point, we will be happy to
7	respond to any questions that you may have. And
8	thank you very much.
9	THE CHAIRMAN: Thank you, Mr. Davies.
10	MR. DAVIES: We're going to play a bit
11	of musical chairs because we have a pointer that
12	we use.
13	THE CHAIRMAN: Okay, go ahead.
14	MS. SCHNEIDER-VIEIRA: Good morning
15	Commissioner and others.
16	As Mr. Davies just indicated, my name
17	is Friederike Schneider-Vieira and I will be
18	presenting to you a summary basically of the work
19	that we have done over the last decade on the
20	aquatic environment. I am going to be going
21	through most of the aquatic components of the
22	aquatic environment, and then when we reach
23	sturgeon, I will take a break and Shelley
24	Matkowski will present to you sort of an overview
25	of lake sturgeon stewardship in Manitoba, before I

-	Page 1176
1	come back and finish off with the Keeyask specific
2	sturgeon effects.
3	And sometime around that time too,
4	Mr. Chair, may be a good time for a break.
5	Now, this is an outline of my
6	presentation. I'm going to start off with an
7	overview of the aquatic studies, followed by
8	describing the existing conditions, effects
9	assessment, and mitigation, for a few of the key
10	components, that is water quality, aquatic
11	habitat, plants and invertebrates. The fish
12	community focusing on Walleye, Lake Whitefish and
13	Northern Pike, and with some information on
14	mercury in fish flesh, followed by lake sturgeon,
15	where Shelley will come and provide her overview,
16	followed by a description of the Keeyask effects.
17	And we'll conclude the presentation today with a
18	summary of our proposed monitoring and follow-up
19	program.
20	Looking first then at the overview of
21	aquatic studies. Now, the first question that
22	many people ask is, how do you figure out what to
23	study? And the answer is that we consider the
24	ecosystem that we have now and how it connects to

25 the project that's being considered in the

Page 1177 1 assessment. Now, I'm going to use my little 2 3 pointer. So this is a very simple picture of the Gull Lake ecosystem, and it's a conceptual diagram 4 but I think it helps people who are not technical 5 understand how we go about structuring our 6 studies. For example, we have here the sun, and 7 through its energy shown here by this arrow, that 8 energy taken up by plants growing along the edge 9 10 of our water. And those plants are either eaten directly or they die and decompose -- and they are 11 12 what is called deritus -- enters the food chain by 13 being consumed by little bugs. Those bugs are 14 eaten by little fish and those fish are then eaten by larger fish. So this is just a very simple 15 little food chain that we have. 16 You can see here I've shown a Northern 17 Pike, or commonly known as jack fish, in the 18 19 shallow water. And this is a species that is 20 dependent on our shallow water or littoral 21 environments, and so we often view it as a good 22 indicator of what's happening in these shallow 23 water systems. 24 A Pike is also a good indicator 25 because it's what we call a top level predator.

		Page 1178
1	You can see that it is relying not only on the	
2	fish it eats, but on the bugs that feed those	
3	fish, and on the plants and algae that feed the	
4	little bugs. So looking at Pike also tells you	
5	what is happening in all of these environmental	
6	components.	
7	Now, looking at other parts of our	
8	aquatic ecosystem, going out here to the deep part	
9	of the lake, we have, for example, a Walleye,	
10	which is more commonly known to fishermen as	
11	pickerel. This is actually a species that uses	
12	both shallow and deep environments, and it is	
13	another top level predator and is a good example	
14	of more generalist species.	
15	We also have here in our diagram lake	
16	whitefish. They live on the open water, they eat	
17	bugs on the bottom of the lake. They are a mid	
18	level predator. They are not usually fish eaters,	
19	they normally eat just bugs. They are a very	
20	sensitive species. They are very sensitive, for	
21	example, to adverse water quality conditions, and	
22	so they are considered a very good indicator	
23	species.	
24	Finally, we also show you at various	
25	places in our diagram lake sturgeon. We've got	

		Page 1179
1	here a sturgeon that is living in the middle of	
2	the deep part of the lake and it's eating bugs	
3	from the bottom. You can see that sturgeon are	
4	different from any of the other species in our	
5	lake in that they require large rapids in which to	
6	spawn. So here, for example, and here you can see	
7	a sturgeon, and there are some eggs on these large	
8	rocks which is representative of the rapids	
9	environments.	
10	The other thing which we've put into	
11	this diagram is a little red area, an area here	
12	called droughts and floods, a little circle here	
13	that says Water Levels, and another area called	
14	Ice Processes. And we have put these here to	
15	remind all of us is that in natural ecosystems,	
16	you can also have what are called disturbances.	
17	We often think of disturbances as something that	
18	humans do, and that's true. But there are also	
19	natural disturbances such as droughts and floods,	
20	high water periods, low water periods, changes in	
21	water levels, and ice, which basically disrupt the	
22	aquatic environment. And those disruptions are a	
23	necessary part of the environment to which the	
24	flora and the fauna in that environment have	
25	become adapted.	

		Page 1180
1	Now, moving on then, the next step	
2	when we're thinking about what to study is we say,	
3	well, that is natural ecosystem that we have.	
4	What will happen then when we are looking at how	
5	the environment is changed by the project? So	
6	this is just a diagram, we have just put in this	
7	area here, it shows a dam built on the rapids. It	
8	also shows that the water levels are now much	
9	higher. We have some flooding and erosion along	
10	the shorelines here. But you can see that many of	
11	the same pathways still exist as in the natural	
12	environments. And so we need to ask the question,	
13	how have these pathways changed? So here once	
14	again you have plants. And one of the things that	
15	we would ask then is the plants that used to	
16	exist on the lake were flooded out, they are no	
17	longer there how will this new environment be	
18	able to support plants which form the basis of the	
19	food chain in this littoral habitat. And you may	
20	recall that this littoral habitat supported little	
21	bugs, little fish, and ultimately pike.	
22	We also would be looking at specific	
23	habitat effects. For example, the sturgeon down	
24	here, we've just shown it going up to the dam.	
25	The habitat that it used to spawn on is no longer	
1		

		Page 1181
1	there. So in doing our assessment, we have to	0
2	consider what habitat was lost. Obviously, the	
3	sturgeon up here still have some spawning habitat,	
4	so what does that mean, and how will that guide	
5	what kind of mitigation we have to do for the	
б	project?	
7	This is a slide of both the valued	
8	ecosystem components and the supporting topics	
9	that we considered in our assessment and that I	
10	will be describing to you today.	
11	The first VEC, or valued environmental	
12	component, is water quality. Water quality was	
13	selected as a VEC because it is fundamental to	
14	aquatic life, and a major pathway by which project	
15	effects are linked to other parts of the aquatic	
16	ecosystem. It is one of the main concerns for the	
17	First Nations, and is also subject to regulatory	
18	guidelines. Both Manitoba and Canada have	
19	guidelines for changes to water quality.	
20	Walleye, which as I mentioned was also	
21	known as pickerel, is a fish species. It was	
22	selected as a VEC, because as I pointed out on the	
23	diagram, it's a top level predator that uses both	
24	the near shore and offshore environments. It	
25	provides a general indication of conditions in the	
I		

		Page 1182
1	aquatic ecosystem and it's also very important to	
2	the domestic, commercial and recreational	
3	fisheries. Like all fishes, it and its habitat is	
4	also subject to protection under the Federal	
5	Fisheries Act.	
6	The next valued environmental	
7	component is Lake Whitefish. Lake Whitefish, as I	
8	mentioned, are particularly sensitive to changes	
9	to the environment such as disruptions to water	
10	quality. They have also been demonstrated in some	
11	environments to be very sensitive to the effects	
12	of hydroelectric development, because they lay	
13	their eggs on reefs in lakes and in rivers. And	
14	in the winter when some reservoirs experience	
15	significant draw down, that is the water level	
16	declines. Those eggs can become exposed, and so	
17	they basically do not successfully reproduce.	
18	It's also important to the First	
19	Nations as a domestic fish. In some places, it's	
20	also important for the commercial fishery, though	
21	that is not the case in the Keeyask area.	
22	Northern Pike, also known as jack	
23	fish, as I already mentioned, are reliant on the	
24	shallow water littoral habitat that is often the	
25	most negatively affected by water level regulation	

1183

		Daga
1	in a reservoir. As a top level predator, it's a	Page
2	good indicator of near shore habitats. It is also	
3	targeted in the domestic, commercial and	
4	recreational fisheries.	
5	Finally, lake sturgeon are	
6	particularly vulnerable to the effects of	
7	hydroelectric development as a result of their low	
8	population numbers and specific habitat	
9	requirements. I pointed out in the diagram that	
10	they require large rapids for spawning, and it is	
11	in many ways their misfortune that hydroelectric	
12	generation also does very well in large rapids,	
13	because it's a place where there's a very large	
14	change in the water elevation. They are also	
15	culturally and spiritually important to First	
16	Nations, and they are also a very important part	
17	of the domestic harvest. They have special status	
18	as a heritage species in Manitoba and are being	
19	they were assessed as endangered by the committee	
20	on the Status of Endangered Wildlife in Canada, or	
21	COSEWIC, and are being considered for protection	
22	under the Federal Species at Risk Act. Lake	
23	sturgeon is one of the species of greatest concern	
24	for the Keeyask project and as such has been the	
25	focus of considerable study and mitigation	

1		Page 1184
1	planning. Effects to lake sturgeon may also be	
2	indicative of effects to other species dependent	
3	on riverine environments.	
4	Now, looking at the supporting topics,	
5	these were not VECs but they were a very important	
6	part of the assessment. And in some ways, we	
7	spent almost equal amounts of time on them,	
8	because in order to understand the effects to the	
9	VECs, we need to understand the effects to our	
10	supporting topics.	
11	The first one is aquatic habitat,	
12	which is required to determine the effects to fish	
13	species. Changes in aquatic habitat are one of	
14	the main causes for changes in the fish community.	
15	The next two are what we often group	
16	as lower trophic levels. Mr. Davies already used	
17	that term. These are food-based fish species, and	
18	that is algae, aquatic plants, zooplankton and	
19	benthic invertebrates. The fish community is	
20	listed as a general supporting topic, we had	
21	several of our VECs were specific fish species,	
22	but we also looked at the fish community as a	
23	whole. We collected basic abundance and	
24	distribution information for all the species, and	
25	described the predicted changes as a group to	

		Page 1185
1	support the assessment of effects to VECs. For	
2	example, it's very important for many of our top	
3	level predators to understand what is happening to	
4	their forage species.	
5	We looked at mercury and fish flesh as	
6	a supporting topic. It may affect fish health,	
7	but the primary interest is in terms of effects to	
8	the health of humans that consume the fish. And	
9	you will be hearing a great deal more about that	
10	and as part of the socio-economic assessment in a	
11	subsequent panel.	
12	This is a slide showing the entire	
13	lower Nelson River extending from here, the Kelsey	
14	Generating Station, through Split Lake, Clark	
15	Lake, the reach of the Nelson River that will be	
16	directly affected by the Keeyask Generating	
17	Station in terms of changes to water levels and	
18	flows. This is Stephens Lake, as has been	
19	previously indicated, this is a reservoir that was	
20	formed when the Kettle Generating Station was	
21	constructed. And then we see there are two more	
22	generating stations currently in existence further	
23	down the river, the Long Spruce Generating Station	
24	here, and the Limestone Generating Station here.	
25	Currently the remainder, approximately	

		Page 1186
1	120 kilometres of the river, are free flowing down	
2	to Hudson Bay. I should note, though, that this	
3	reach of the river is affected by operation of the	
4	Limestone Generating Station as water levels are	
5	regulated at this station.	
6	The other important point that I want	
7	to make on this map, and it's often stressed by	
8	the First Nations, and you have also already heard	
9	about that, is that this is not a natural system,	
10	this is a highly regulated system. And so when	
11	we're thinking about it, we need to think about it	
12	in terms of the fact that it is what the	
13	environment is today, and how that environment has	
14	been altered by the existing hydroelectric	
15	development.	
16	For example, if you are looking at a	
17	hydroelectric development in a natural system, you	
18	may be very interested in the loss of the spring	
19	frechette. In this system, because it's	
20	regulated, that spring frechette no longer occurs,	
21	except under flood years, it no longer occurs as	
22	it did in the state of nature. So that is one	
23	change that we didn't look at.	
24	Focusing in then on my map, once again	
25	to orient you, this is the Kelsey Generating	

		Page 1187
1	Station at the top end, the Kettle Generating	
2	Station at the bottom end. This reached through	
3	Split Lake, Clark Lake, the Nelson River, and	
4	Stephens Lake is the area where most of the	
5	aquatic studies were conducted. And it is	
6	basically our study area.	
7	The area that we looked at most	
8	intensively is this reach, the reach of the river	
9	between Long Rapids and Gull Rapids and the	
10	immediate part of the river downstream where the	
11	water levels and flows will be changed as a result	
12	of the Keeyask Generating Station.	
13	We looked at Stephens Lake downstream,	
14	because Gull Rapids and this part of the river	
15	here does provide important habitat for some of	
16	the fish that live in Stephens Lake. And so there	
17	might be an effect, which to the physical	
18	environment or aquatic habitat is limited to here,	
19	but it could be experienced by fish that live	
20	throughout Stephens Lake.	
21	In addition, we looked at Split Lake.	
22	And we looked at Split Lake for two reasons.	
23	First of all, it is possible at the start of our	
24	studies that fish moving from could move from	
25	the area directly affected by the Keeyask project	

		Page 1188
1	up into Split Lake. Also, both the Tataskweyak	
2	Cree Nation and the York Factory First Nation live	
3	on Split Lake, and they were very concerned about	
4	effects extending upstream from the Keeyask	
5	Generating Station and Keeyask project into the	
6	lake, which is very important to them.	
7	Mr. Davies provided an overview of	
8	many of the studies that have already that were	
9	already available to us when we were starting the	
10	Environmental Impact Statement. Obviously, as a	
11	first step in your assessment, you looked to see	
12	what kind of information is already available.	
13	And this basically provides a list of the studies	
14	that we referenced in the aquatic environment part	
15	of the EIS.	
16	There were studies that were done	
17	prior to and after Lake Winnipeg Regulation and	
18	the Churchill River Diversion. As Mr. Davies	
19	mentioned, they extended from the early 1970s to	
20	the 1980s. There is ongoing Provincial water	
21	quality station, a station close to the community	
22	of Split Lake, which is very useful for us in	
23	terms of assessing longer term trends in water	
24	quality. Because the station is immediately	
25	upstream of the Keeyask area, it is relevant to	

		Page 1189
1	our assessment of what is happening at Keeyask.	
2	As Mr. Davies mentioned, there has	
3	been a large amount of information collected on	
4	mercury in fish. There was one technical study	
5	that was done on sturgeon by the Split Lake	
6	Resource Management Board in Gull Lake in 1995.	
7	The Split Lake Cree post project environmental	
8	review did provide us with an overview of effects	
9	both to Split Lake, and also to a lesser extent	
10	further downstream. And finally, the Tataskweyak	
11	environmental monitoring agency did some aquatic	
12	studies in our area of interest, in 1997 to 1998,	
13	but most of that work was focused on Split Lake.	
14	Now, this information provides us with	
15	very good information on sort of what's been	
16	happening in the area in general. It also	
17	provides us with a very good record of what has	
18	happened in places affected by hydroelectric	
19	development close to our area of interest. But	
20	there was relatively limited technical information	
21	within our direct reach of interest from Clark	
22	Lake to Stephens Lake.	
23	I should also mention, of course, that	
24	the traditional knowledge studies by the First	
25	Nations Partners provided information on the past	

		Page 1190
1	effects, both in our area of interest, as well as	
2	in other areas affected by hydroelectric	
3	development that were close to our for example,	
4	Stephens Lake.	
5	Now, the environmental assessment	
6	studies have been going on for over a decade.	
7	Early work provided the basic information and the	
8	basis on which additional studies were done where	
9	required. So we began our work in 2001. And as	
10	you may note, if you have reviewed the EIS, most	
11	of the basic work was done from 2001 to 2004. And	
12	then this provided us with a very good basis for	
13	determining where do we need to do additional	
14	work? And by having such a long time period, we	
15	were able to basically develop a much more robust	
16	assessment.	
17	For example, one of the places that we	
18	have been doing quite a lot of work in the recent	
19	years is on developing the lake sturgeon	
20	mitigation program. And one of the important	
21	parts of that program is stocking, which I will be	
22	discussing later, and we have been able to test	
23	various spawn collection methods for several years	
24	to better determine how such a program could be	
25	implemented.	

		Page 1191
1	We have also had ongoing data	
2	collection for some parameters, which required a	
3	more continuous record. For example, lake	
4	sturgeon population estimates have been conducted	
5	in alternating years in what we call the upper	
6	Split Lake area and the Keeyask reach since the	
7	early 2000s.	
8	We did, in 2009, recognizing that	
9	there might be concerns about, you know, we did	
10	work in 2001 to '04 have conditions changed?	
11	We did some targeted sampling in 2009, for	
12	example, water quality, just to verify that	
13	conditions have not markedly changed. We have	
14	also, in 2011, initiated some pre-construction	
15	monitoring programs. And those are programs where	
16	you would require some data immediately prior to	
17	the construction period, and progressing into	
18	so that it can continue on into the construction	
19	period. For example, we have long-term tags,	
20	ten-year tags that were put into lake sturgeon,	
21	which I'll be discussing more later. And so we'll	
22	have individuals that have had the opportunity to	
23	move in existing environment, and then we can	
24	observe how their behaviour changes as the	
25	construction of Keeyask proceeds, if indeed the	

		Page 1192
1	project is built.	
2	We used a wide variety of sampling	
3	methods, and they are described in detail in the	
4	aquatic environment supporting volume. Here on	
5	this slide you can see water quality sampling is	
6	being conducted, and this individual is using a	
7	meter to look at water quality, specifically	
8	oxygen conditions in the winter.	
9	Gillnetting is a very common way of	
10	sampling the fish community. This benthograph is	
11	used to, basically you can lower it to the bottom	
12	and set it off and collect a sample of the muck on	
13	the bottom along with any small bugs that are	
14	living there.	
15	And finally, this slide shows a	
16	walleye, and it's been anesthetized, and you can	
17	see here they are applying the anesthetic, and	
18	it's going to have an acoustic tag inserted into	
19	its internal body cavity. It's basically, it is a	
20	type of surgery, you open it up, you put in your	
21	tag and then you stitch it up and release it quite	
22	quickly. And this is a method that we have used	
23	successfully, actually, on well over a hundred	
24	fish.	
25	Now, moving on to the existing	

		Page 1193
1	conditions effects assessment and mitigation.	
2	Looking first at the historic water quality, the	
3	First Nations have reported that water is murky	
4	and of poor quality post hydroelectric	
5	development. And there are reports that report	
6	that the first changes occurred after construction	
7	of the Kelsey Generating Station, and then they	
8	continued to see worsening conditions through the	
9	LWR and CRD, and also looking at the post Kettle	
10	Generating Station.	
11	There was no technical data from water	
12	quality sampling in much of the area prior to	
13	1970, so our ability to assess changes of those	
14	early hydroelectric developments is limited to	
15	major changes.	
16	Basically, in Split Lake, the	
17	technical analysis shows that water is softer,	
18	because the Churchill River diversion, basically	
19	that water contains less dissolved substances so	
20	the water is basically softer. There's been no	
21	change in nitrogen. And following CRD, there was	
22	a temporary increase in phosphorous, which then	
23	decreased again. And we haven't seen any	
24	consistent conclusion in terms of the effects of,	
25	for example, LWR and CRD on water quality.	
1		

		Page 1194
1	Most of the studies that were done	
2	involved the comparison of samples from the early	
3	1970s, a couple of years, to samples collected	
4	through a portion of the 1980s, and some of the	
5	parameters like water clarity very considerably	
6	depending on what's happening in terms of flood	
7	and droughts and so on, so they are quite	
8	variable.	
9	Looking at today's environment, the	
10	water clarity is relatively low. And that's	
11	because in much of Northern Manitoba, there are	
12	fine clays in the watershed. And these clays,	
13	when they are suspended, basically give the water	
14	this murky appearance that you can see here.	
15	The nutrients, such as nitrogen and	
16	phosphorous, occur at moderate levels, the water	
17	is moderately nutrient rich. The phosphorous	
18	levels are what is called a meso-eutrophic to	
19	eutrophic. So basically the Federal Government	
20	has developed various standards, and if	
21	phosphorous levels at certain concentrations, they	
22	classify your water according to those levels.	
23	The dissolved oxygen throughout the	
24	system is generally high. We do measure lower	
25	levels in some off current areas in winter, which	

		Page 1195
1	isn't surprising because there's more organic	
2	material in some of the off-current areas and this	
3	decomposes during the winter months.	
4	Moving now on to the effects of the	
5	Keeyask project. The construction effects were	
6	assessed on the basis of models to estimate	
7	changes to water quality, and then compared to	
8	guidelines and existing conditions. Most of the	
9	effects will be addressed through management	
10	measures such as sediment control, or we also	
11	indicated here effluent control. For example, any	
12	sewage from the camp is collected, it's treated to	
13	meet appropriate standards prior to release.	
14	Most of the effects will only be	
15	measurable near the construction site. And the	
16	exception to that will be there will be some	
17	periods when elevated concentrations of total	
18	suspended solids, which is typically abbreviated	
19	as TSS, extend farther downstream. And TSS is	
20	basically particulate matter in the water, and	
21	it's mud for those of you who are non technical.	
22	And this will occur during periods of intensive	
23	in-stream work. Obviously, when people are	
24	constructing or removing cofferdams, you are going	
25	to have some release of sediments to the water.	

		Page 1196
1	Based on the work that the physical	
2	environment team has done, we expect elevated	
3	levels to occur for one to three months in each of	
4	two years of intensive in-stream construction	
5	during the construction period.	
6	Now, the concentrations will be most	
7	elevated close to the construction site, and then	
8	fairly rapidly increased downstream, such that	
9	downstream of the Kettle Generating Station, the	
10	increases will be very small, less than	
11	5 milligrams per litre.	
12	Looking at the operation effects, the	
13	assessment was based on a variety of techniques.	
14	As Mr. Davies mentioned, we used a variety of	
15	models as well as proxies to do our water quality	
16	assessment. Now, the models that were used	
17	include some that were used by the physical	
18	environment team, for example, to predict the	
19	concentrations of suspended sediments, as well as	
20	dissolved oxygen.	
21	We also did what are called mass	
22	balance models. We estimated the amount of, for	
23	example, nutrients such as nitrogen and	
24	phosphorous that are in some of the plant	
25	materials that will be flooded, we estimated some	

		Page 1197
1	flux rates of those nutrients based on	1 490 1107
2	experimental work that's been done in a variety of	
3	systems, such as the experimental lakes area. And	
4	through those methods we were able to calculate	
5	how much would be released and what the	
6	concentration would be in the water column.	
7	Proxies were a very important part of	
8	the water quality assessment. We have records of	
9	what happened in Stephens Lake following	
10	impoundment by the Kettle Generating Station. The	
11	Stephens Lake is quite a similar environment in	
12	terms of areas that will be flooded, or the types	
13	of land that will be flooded to the Keeyask	
14	project. And so that provides a very valuable	
15	guide. We also were able to use information from	
16	Southern Indian Lake and Notigi Lake on the	
17	Churchill River Diversion route, as well as other	
18	reservoirs, for example, in Quebec.	
19	To determine what the potential	
20	effects will be to the aquatic environment, we	
21	compared the predicted changes in water quality to	
22	guidelines and also to existing conditions in	
23	terms of what kind of a percent change are we	
24	seeing?	
25	I should note that the flooding of	

_	Page	1198
1	land and erosion of peat and mineral shorelines	
2	are the most important causes of change to water	
3	quality.	
4	This slide summarizes the operation	
5	effects. And you will be seeing this slide	
6	actually reappearing throughout my presentation,	
7	because for many of the effects to the aquatic	
8	environment, where you are is actually quite	
9	important in describing the effects.	
10	So, first of all, I want to start off	
11	to reorient you again. This is Clark Lake, which	
12	is at the outlet of Split Lake, in the western	
13	area end of the reach that will be directly	
14	affected by the Keeyask project. And then we go,	
15	extend downstream to the location of the proposed	
16	Keeyask Generating Station. And then here we also	
17	have Stephens Lake, and at the bottom end we have	
18	the Kettle Generating Station.	
19	Upstream in this area of the river we	
20	are not expecting to see any detectable changes to	
21	water quality. Basically, our main pathways of	
22	effect are erosion, which will not really be	
23	affected, or there will be minimal changes up	
24	here, and there also will be minimal flooding.	
25	The water level changes extend up to here, but the	

1		je 1199
1	river has quite steep banks with a large amount of	
2	bedrock, and so we really don't expect to see any	
3	changes in water quality extending downstream at	
4	Birthday Rapids, until you get to the area of	
5	present day Gull Lake, down here, which is shown	
6	in the darker blue, and you can see the flooded	
7	areas are shown in the pale blue on the edges.	
8	The largest changes to water quality	
9	will happen actually in areas that today are land,	
10	in these flooded areas. We expect to see an	
11	increase in TSS nutrients and metals, and a	
12	decrease in clarity, that is how murky the water	
13	is. It will become murkier, if you will. And	
14	oxygen will also be decreased during specific	
15	times, for example, during the winter, and also	
16	during the summer if there's prolonged periods of	
17	very calm winds when there's not very much	
18	opportunity for oxygen to enter the water.	
19	These effects will occur for the first	
20	10 to 15 years. They will be greatest in the very	
21	first years right after impoundment, in the first	
22	couple when there's the most material available	
23	for decomposition, and also when processes such as	
24	peat re-surfacing and breakdown will be the	
25	greatest.	

		Page 1200
1	It's important to note that these	
2	areas are all part of the reservoir, but the main	
3	flow in the reservoir will continue down the	
4	existing river channel. And so these effects will	
5	be largely confined to the flooded area. And in	
6	the main stem of the river, that is the area that	
7	is currently river, we are not expecting the	
8	basically flooding to cause any detectable changes	
9	in the water quality and through this area.	
10	The change that will occur in the	
11	long-term in the main stem is that the total	
12	suspended solids will decrease, not a great deal,	
13	but somewhat. And that's basically because you're	
14	building a dam here, the water will be slowed	
15	down, and the fine sediments that are currently in	
16	the water that are being carried into the system,	
17	some of those will settle down here. That means	
18	that the clarity will increase in this area, and	
19	also in the southern part of Stephens Lake right	
20	here, because of course the water is directly	
21	affected by what's coming in. By the time you get	
22	to the outlet of Stephens Lake, there will no	
23	longer be a detectable change because material	
24	that's settling here in the current environment,	
25	basically settles in this part of Stephens Lake.	

		Page 1201
1	So by the time you reach the outlet, the water	
2	quality will be the same as it is today.	
3	Looking now at the cumulative effects	
4	to water quality. With respect to cumulative	
5	effects, as previously mentioned, CRD and LWR	
6	affected water quality in our entire reach that we	
7	are interested in. During construction, as I	
8	mentioned, most of the effects will happen here at	
9	the Keeyask Generating Station and be detectable	
10	immediately downstream. There will be some	
11	periods when the effects of the elevated total	
12	suspended solids will extend downstream past the	
13	Kettle Generating Station, and potentially all the	
14	way to the site of the Conawapa Generating	
15	Station, which is much further downstream.	
16	Depending on the construction	
17	schedules and what happens in the future, there is	
18	a potential for there to be overlap between the	
19	Keeyask Generating Station construction and the	
20	Conawapa Generating Station construction. If this	
21	occurs, the TSS inputs from both projects will	
22	need to be managed jointly to avoid harmful	
23	effects to aquatic biota.	
24	There are other developments that will	
25	occur during the construction period, such as	

1	development of transmission lines for the project,	Page 1202
2	and also there will be some work in Gillam as part	
3	of the Gillam redevelopment project. However,	
4	these developments are not expected to affect	
5	water quality in the area where Keeyask will	
6	affect water quality during construction, that is	
7	downstream through Stephens Lake.	
8	During operation, as I discussed, we	
9	will expect to see effects to water quality here	
10	in the flooded area as well immediately	
11	downstream. And when we looked at this map as a	
12	whole, we didn't see any other future	
13	developments, developments that would overlap with	
14	basically the operation period of the Keeyask	
15	Generating Station that would affect water quality	
16	in these areas, and thus have the opportunity to,	
17	or potential to interact cumulatively with the	
18	effects of Keeyask.	
19	I should also mention in looking at	
20	this slide, you'll see here that there is darker	
21	water through this main area. This area for	
22	Stephens Lake shows you what parts of Stephens	

Lake were basically flooded by their construction of the Kettle Generating Station. So this is the old river channel, which I'll be talking about in

	Page 1203
1	some of my subsequent presentations. And the pale
2	blue area of Stephens Lake were areas that were
3	flooded by Kettle.
4	So in summary then, during the
5	construction period for water quality, most
6	effects are only measurable near the construction
7	site. There will be small increases in total
8	suspended solids that extend farther downstream
9	for short periods. And there is that potential
10	overlap with the construction of the Conawapa
11	which would require management if both projects
12	are being constructed concurrently. During
13	operation, effects to water quality in the flooded
14	area would last for about 10 to 15 years, and the
15	permanent reduction in the TSS in the lower
16	reservoir and the southern portion of Stephens
17	Lake, that would be a permanent effect.
18	In conclusion, the effects to water
19	quality in combination with the future projects
20	that we discussed are not expected to have a
21	notable adverse effect to the aquatic biota.
22	Moving on to aquatic habitat which is
23	our supporting topic. Aquatic habitat in the
24	existing environment is quite varied. At the
25	upper end of the river reach, that will be

		Page 1204
1	directly changed by the Keeyask project, it's	
2	basically a deep, quickly moving river channel.	
3	The first, there is a set of rapids up here at	
4	Long Rapids which extends for several kilometres	
5	and is actually upstream of most of the changes	
6	that will occur in water level as a result of	
7	Keeyask.	
8	Then the first rapids that we reach	
9	are Birthday Rapids here. And as was discussed	
10	yesterday, Birthday Rapids will experience a water	
11	level increase such that this white water area	
12	wouldn't exist in the future.	
13	Then we continue on down through the	
14	river channel until we reach present day Gull Lake	
15	right here. And Gull Lake is essentially a	
16	splitting and a widening of the river. There's	
17	actually detectable flow right through the lake	
18	and much of the bottom consists of the kinds of	
19	materials you can see here from the edge. It's	
20	sand, gravel and cobble. Or actually it's cobble	
21	and gravel in the main part and then there's an	
22	area of sand along the northern part of Caribou	
23	Island.	
24	Gull Rapids is about three kilometres	
25	long of rapids. There's smoother areas but much	

		Page 1205
1	of the rapids is very very intense white water.	
2	It doesn't look that impressive from this aerial	
3	photo, but if you're just downstream of Gull	
4	Rapids in a boat and look at those very large	
5	standing waves, you'd recognize that these are	
6	very very strong and very powerful rapids.	
7	And then at the bottom end of the area	
8	that will be directly affected by Keeyask, as I	
9	mentioned, is Stephens Lake. And once again, here	
10	you can see there's the flooded river channel as	
11	well as the flooded areas of the north arm of	
12	Stephens Lake.	
13	The changes to aquatic habitat were	
14	predicted based on were basically on sorry.	
15	The effects to aquatic habitat were based on	
16	models and other methods to predict what would	
17	happen to the habitat. For example, we looked at	
18	Stephens Lake as a proxy. We developed some	
19	models to predict how will the substrate in the	
20	reservoir change. And we used Stephens Lake,	
21	which is a very useful model, to help us predict	
22	that.	
23	At the upper end of the reach, the	
24	habitat will be essentially unchanged. At	
25	Birthday Rapids, the white water will be lost.	

		Page 1206
1	But all of this area will remain very much as	
2	river habitat.	
3	When we get down to Gull Lake, Gull	
4	Lake itself will experience quite a large several	
5	metre increase in depth and a decrease in velocity	
6	such that it will be essentially zero. And these	
7	areas here where there's currently gravel or	
8	cobble bottom will become silt. And we will be	
9	expecting that all of this area over time will	
10	become covered in silt on the bottom. The flooded	
11	land initially will be obviously peat and flooded	
12	vegetation. Over time, it will evolve to	
13	productive aquatic habitat with basically silt	
14	settling over the peat materials. And aquatic	
15	plant beds that currently exist in the shallow	
16	parts of Gull Lake will be flooded out here and	
17	over time established in some of the areas'	
18	flooded habitat.	
19	Gull Rapids will either be flooded out	
20	or a portion of the southern channel here will be	
21	dewatered. And finally you have Stephens Lake.	
22	And basically at Stephens Lake, the habitat is not	
23	being changed.	
24	Looking at the things that we call	
25	lower trophic levels which are important as fish	

		Page 1207
1	food. The phytoplankton, or algae, we don't	0
2	expect a large increase in the amount of	
3	phytoplankton because they are limited by light,	
4	the water clarity as well as how quickly the water	
5	is moving through the system. We do expect that	
6	there might be some blooms of phytoplankton in	
7	shallow flooded areas when the water becomes a	
8	little clearer over time, and possibly in the	
9	clearer water of the lower reservoir and Stephens	
10	Lake.	
11	In terms of the aquatic plants, the	
12	existing plant beds in Gull Lake will die out and	
13	there will be new plant beds that will develop,	
14	but their development will be limited by both the	
15	bottom type and the water level fluctuations in	
16	the reservoir.	
17	The benthic invertebrates, immediately	
18	after impoundment, they will begin to colonize	
19	those flooded areas which are currently land but	
20	it will be limited to species that are tolerant of	
21	poor environmental conditions in the first few	
22	years. And over time, based on work that we've	
23	done in other flooded environments, we expect to	
24	see the full range of aquatic biota that you	
25	typically see in shallow areas with an organic	

1		Page 1208
1	substrate.	
2	In the long term, of course, the total	
3	amount of benthic invertebrates is going to	
4	increase because there will basically be a	
5	doubling of the available aquatic habitat.	
6	Moving on to the fish community. In	
7	terms of historic effects, the Cree Nations report	
8	that Hydro development has caused changes in the	
9	species abundance and distribution and the fish	
10	are of poor quality. They basically say these	
11	fish are all of the fish that come from waters	
12	affected by hydroelectric development are not good	
13	to eat.	
14	With respect to the technical studies,	
15	as I mentioned, it's difficult to make exact	
16	comparisons because of changes in methods over	
17	time. You know, there's differences, for example,	
18	in the kinds of meshes in the gill nets that are	
19	set, so we can't make direct comparisons. However	
20	we can observe that the species composition and	
21	abundance have generally remained similar. Though	
22	there's some evidence that there's been a slight	
23	change in the relative abundance of some species.	
24	One of the most marked changes that we	
25	have observed in the fish community actually began	

		Page 1209
1	in the mid 1990s with the arrival of rainbow smelt	
2	which is an invasive species. And that has become	
3	one of the dominant species in the forage fish	
4	community and one of the most important species in	
5	the diet of many of our predatory fish.	
6	Today, during our technical studies,	
7	we have collected a total of 37 species, Northern	
8	Pike, Walleye And White Sucker were the most	
9	common large bodied species. And the most common	
10	small bodied species, that is those forage	
11	species, are shiners such as spot-tailed shiners,	
12	Trout-perch and of course Rainbow Smelt.	
13	Now this is a very busy figure. And	
14	the purpose of it is to show you how does	
15	basically our area of particular interest, that is	
16	Split Lake, the Keeyask area and Gull Lake and	
17	Stephens Lake, fit into the larger picture of	
18	lakes in the surrounding areas of Manitoba? And	
19	this slide shows what is called Catch Per Unit	
20	Effort, or CPUE, which is the number of fish that	
21	you can capture in a standard length of gill net	
22	over a specific length of time.	
23	So you can see here that for Stephens	
24	Lake to Split Lake, our CPUEs range from 23 up to	
25	35. We can see that that falls within the range	

		Page 1210
1	of natural lakes that we observed. For example,	
2	War Lake is one of the lowest lakes at 21 while	
3	Wasakaiowaka is one of the highest lakes at over	
4	104. But we can see here that there is quite a	
5	range in the CPUEs amongst the lakes and that our	
б	areas of interest fall within sort of the mid to	
7	lower part of that range.	
8	This map compares two areas that are	
9	of particular interest. Stephens Lake, as I	
10	mentioned, is used as a proxy environment for what	
11	the Keeyask reservoir could be like in the future.	
12	So here I'm comparing Stephens Lake and the Catch	
13	Per Unit Efforts, three key species, to Gull Lake.	
14	We can see here that the river	
15	sections of the environment that the CPUE is	
16	somewhat lower. For example, looking at Walleye,	
17	the CPUE in the riverine sections is around 3.	
18	When we move into Gull Lake in this area here, the	
19	walleye are more abundant, as you would expect,	
20	around 6. And in Stephens Lake, we can see that	
21	there's quite a range. In the northern flooded	
22	part of the lake, the CPUE is actually the high	
23	rest, almost 12 for walleye. While in the	
24	southern part where the main river flows, they are	
25	lower, and roughly comparable to what you see in	

1

		Page 121
1	the river, ranging from 1 to 3.	Fage 121
2	Now, leaving the existing environment	
3	and moving on to our assessment of construction	
4	effects. Many of the construction effects are	
5	addressed through management measures such as	
б	following blasting guidelines. The Department of	
7	Fisheries and Oceans have specific guidelines that	
8	they set out for the size of charts and so on.	
9	The effects to water quality, as I mentioned, are	
10	also being addressed through a variety of	
11	management measures to avoid adverse effects to	
12	fish.	
13	As you can imagine, during	
14	construction, as you heard during the project	
15	description, they will be building cofferdams.	
16	And as those cofferdams are dewatered, there is a	
17	potential for fish to be trapped within them and	
18	stranded. And so you conduct what's called a fish	
19	salvage. During construction, we will also see	
20	disturbance and habitat loss at the construction	
21	site in Gull Rapids which will cause a number of	
22	years of disruption to spawning habitat.	
23	The net effect of all of these changes	
24	during the construction, we expect that there will	
25	be potentially week year classes of Walleye and	

		Dogo
1	Lake Whitefish in Stephens Lake due to the reduced	Page
2	spawning habitat at Gull Rapids.	
3	In terms of during the operation, we	
4	looked our assessment was based on changes to	
5	key habitat. For example, we asked what is	
6	happening to spawning habitat. We developed a	
7	habitat-based model where we looked at both what	
8	kinds of aquatic habitat are available in the	
9	existing post project environments, and how are	
10	fish using those specific habitat types today so	
11	that we basically could predict what would be	
12	happening in the reservoir in post-project	
13	environment. We also used proxies, such as	
14	explained to you already, Stephens Lake.	
15	Mitigation was based on providing	
16	habitat for all life history functions, that is	
17	all things that a fish needs to successfully	
18	complete its lifecycle. And that includes things	
19	like laying eggs, rearing of young fish, feeding	
20	and overwintering. And we were targeting that	
21	both in the reservoir and in Stephens Lake.	
22	The plans for specific compensation	
23	measures were described in the aquatic environment	
24	supporting volume and also are described in the	
25	draft Fish Habitat Compensation Plan.	

Page 1212

		Page 1213
1	The Fish Habitat Compensation Plan	C
2	will be required by the Fisheries and Oceans	
3	Canada, or DFO, to issue an authorization under	
4	the Fisheries Act for this project.	
5	Now this slide summarizes the	
6	operation effects to the fish community. First of	
7	all, as I mentioned, the river environment up here	
8	will not experience large changes, though there	
9	will be an increase in water levels through	
10	Birthday Rapids. The spawning habitat in the main	
11	stem will remain suitable.	
12	Moving down to the flooded area,	
13	looking first of all at what's happening in Gull	
14	Lake. There's going to be, because the water will	
15	become deeper and velocity will become lower,	
16	there will be an increase in the foraging and	
17	overwintering habitat for Walleye, Lake Whitefish	
18	and Northern Pike. That being said, there will	
19	also be a loss of existing spawning habitat for	
20	Walleye and Whitefish because these species	
21	require rocky or cobble areas. And as I	
22	mentioned, there will be silt settling on the	
23	bottom of the lake. Also Pike will lose their	
24	existing littoral or near shore habitat.	
25	Over time, this flooded land will	

1214

		Page
1	become suitable for Northern Pike, Lake Whitefish	r ugo
2	and Walleye. And that will basically be as the	
3	initial years pass and dissolved oxygen levels	
4	improve and aquatic plants become re-established.	
5	Moving downstream. First of all, the	
6	generating station will both block and alter	
7	movements of fish. And fish that are moving	
8	downstream or attempting to move downstream past	
9	the generating station would potentially be	
10	subject to turbine mortality. As well, the Gull	
11	Rapids itself provide habitat for fish living in	
12	Stephens Lake. And that spawning habitat for both	
13	Walleye and Whitefish will be lost.	
14	So as I mentioned, when we were	
15	developing our mitigation for this project, we	
16	wanted to create any habitat that would be	
17	missing. And spawning habitat is one of the areas	
18	that I flagged for you. So Walleye and Lake	
19	Whitefish do have other spawning habitat available	
20	to them in Stephens Lake. Also at the latter part	
21	of my presentation, I will describe for you a	
22	spawning shoal that will be developed for lake	
23	sturgeon in the tailrace of the generating station	
24	or downstream of the tailrace and that will also	
25	be used by Walleye.	

		Page 1215
1	In addition, Lake Whitefish will have	
2	a spawning shoal developed for them somewhere in	
3	the area of Stephens Lake. And that's because	
4	Lake Whitefish lay their eggs in fall and they	
5	have to remain on the bottom all through the	
6	winter. And we're not sure whether conditions on	
7	the spawning habitat developed for lake sturgeon	
8	here in the part close to the generating station	
9	would be suitable throughout the winter.	
10	I also mentioned that Lake Whitefish	
11	and Walleye would lose the existing spawning	
12	habitat in the Gull Lake area. And so another	
13	part of the mitigation plan is to create spawning	
14	habitat for Lake Whitefish and Walleye close to	
15	locations where existing habitat will be lost.	
16	So this map basically shows you some	
17	places that have been identified where shallow	
18	rocky reefs could be developed.	
19	The generating station will also alter	
20	fish movements. The movements of adults of all	
21	species have been documented through the	
22	generating station. But they are not common.	
23	It's very unusual to see.	
24	The larval fish drift over the rapids	
25	and that is because after egg hatch, all of these	

		Page 1216
1	species have a larval phase and these drifting	1 490 1210
2	larvae have been caught downstream of the rapids.	
3	Based on our movement data, the post	
4	project habitat and what we have observed in other	
5	reservoirs, the partnership has concluded that	
6	fish passage is not required at the generating	
7	station to maintain the fish populations. In	
8	terms of downstream movements, the turbines have	
9	been designed to reduce effects to fish. However,	
10	fish passage is still an ongoing topic of	
11	discussion, particularly with the Department of	
12	Fisheries and Oceans. And I'll be returning to it	
13	at the end of this presentation.	
14	So looking then at the net effect for	
15	Walleye and Lake Whitefish, during construction,	
16	we expect that there may be some week year classes	
17	in Stephens Lake due to the reduction in the total	
18	amount of spawning habitat available due to the	
19	loss at Gull Rapids. And that will be prior to	
20	having the compensation habitat available.	
21	During operation, we expect a	
22	long-term increase in the reservoir due to the	
23	greater amount of habitat. And we don't expect	
24	any change in Stephens Lake.	
25	Pike are somewhat different. They	

		Page 1217
1	don't use Gull Rapids so we're not expecting a	
2	negative effect during construction. However,	
3	during operation, we do expect an initial decline	
4	in the reservoir due to the loss of those aquatic	
5	plants in the near shore areas. But that will	
6	recover when the plants re-establish in 10 to 15	
7	years. And we don't expect any change in Stephens	
8	Lake.	
9	Now finally, looking at the cumulative	
10	effects. I have described for you changes to	
11	the effects to the Keeyask project occurring	
12	both in the reservoir as well as for a short	
13	period in Stephens Lake. So these areas, as was	
14	previously mentioned, have been affected by past	
15	hydroelectric development and obviously Stephens	
16	Lake itself was created by construction of the	
17	Kettle Generating Station.	
18	In terms of looking towards the future	
19	developments, we don't see an overlap of the	
20	effects, for example, of Conawapa with this part	
21	of the fish community. So we didn't identify any	
22	future developments that had the potential to	
23	overlap with the effects of the Keeyask project.	
24	So in conclusion then, no adverse	
25	effects outside of the Keeyask reservoir and	

		Page 1218
1	Stephens Lake are predicted. For Whitefish and	
2	Walleye, there will be negative effects during	
3	construction. For Northern Pike, we expect	
4	negative effects during the first years of	
5	operation until the abundance can recover.	
6	The long-term effects are predicted to	
7	be either neutral or slightly positive. And that	
8	reflects the fact that the reservoir will,	
9	overtime, evolve to become a productive	
10	environment for these fish species just as we have	
11	seen in Stephens Lake. We didn't identify any	
12	future developments that have the potential to	
13	overlap with the adverse effects of the Keeyask	
14	project.	
15	So in conclusion, we have no long-term	
16	adverse effects to Walleye, Lake Whitefish and	
17	Northern Pike that have been predicted.	
18	My final part of my presentation	
19	involves mercury in fish. This is a conceptual	
20	diagram, similar to the one that I showed you at	
21	the beginning of my presentation. It describes	
22	the mercury cycle and relative mercury	
23	concentrations as are illustrated by these little	
24	red dots. What happens is that mercury, in its	
25	elemental form, for example here, is combined with	

		Page 1219
1	a carbon or what's called a metal group by	1 490 1210
2	bacteria that are basically decomposing organic	
3	carbon as happens after flooding. The mercury	
4	then, which has been attached to this metal group,	
5	can enter the food chain. And, first of all it	
6	can be taken up, for example, by algae here where	
7	it's just in very low concentrations. Then when	
8	it's consumed by bugs, the concentration	
9	increases. And that is because the mercury enters	
10	into the flesh of or the tissues of the	
11	different organisms and there it accumulates. So	
12	then when this bug is eaten by the fish, which	
13	eats many bugs, you can see that the level of	
14	mercury increases once again. Such that by the	
15	time you become fish eating fish, the mercury	
16	levels can be quite high. And it can either be	
17	transferred, for example, to humans or to	
18	fish-eating birds or species such as otter that	
19	also eats mercury.	
20	On this diagram then, you can see that	
21	the mercury concentrations increase through the	
0.0		

food chain so that species like Lake Whitefish have lower mercury concentrations and fish eating fish such as Walleye and Pike have higher mercury concentrations.

1		Page 1220
1	This is a graph that shows you this	
2	slide shows how mercury concentrations in both	
3	Stephens Lake and Gull Lake have changed over	
4	time. You may recall that Stephens Lake was	
5	impounded in the early 1970s, and we don't have	
б	mercury data from that point. But we do know that	
7	again mercury was first sampled in the early 1980s	
8	on this graph, the red triangles are Walleye and	
9	the blue circles are Pike at Stephens Lake. You	
10	can see both these species had very elevated	
11	levels, as you would expect following impoundment,	
12	and they have declined over time such that today,	
13	in the last number of years, they vary a little	
14	bit. But they basically have reached a long-term	
15	stable level.	
16	In comparison, you can see down here,	
17	the green Whitefish from Stephens Lake. There's	
18	no evidence that they were ever elevated though	
19	they might have been very close to impoundment.	
20	And you can see that just their natural base	
21	concentration is considerably lower than the	
22	predatory fish species that is Pike and Walleye.	
23	Also shown here very faintly, you can see a very	
24	faint line here with the open symbols is where	
25	Gull Lake is today. And you can see that Gull	

Page 1221 Lake levels for Pike and Walleye are essentially 1 the same as they are in Stephens. And also, here 2 3 are the open symbols for Lake Whitefish in Gull 4 Lake. And they are essentially the same as they 5 are in Stephens. The effects to mercury were predicted 6 from models that were developed by looking at the 7 reservoir in, various reservoirs in Northern 8 Manitoba. As Mr. Davies mentioned, there were a 9 lot of mercury studies that were done at the time 10 of both CRD and LWR. We also extrapolated from 11 12 the Stephens Lake increases since the terrain that will be flooded in the Keeyask reservoir is much 13 more similar to what was flooded in Stephens Lake 14 than in some of the other reservoirs in Manitoba. 15 And the key point is that it contains a large 16 amount of peat which has a lot of organic 17 substances and can lead to higher mercury 18 19 concentrations. 20 The model predicted concentrations, 21 depending on which model was used, the concentrations for Northern Pike and Walleye 22 increased between .8 and 1.5 parts per million in 23 the reservoir. Based on the strengths and 24 weaknesses of these models and professional 25

		Page 1222
1	judgment, the mercury concentrations are predicted	
2	to reach about one part per million. And the	
3	reason for that is because the Keeyask reservoir	
4	is relatively small and will have a high amount of	
5	water flowing through it. And so you don't expect	
6	mercury to increase as much as it would in a	
7	system with basically less through-flow of water.	
8	The maximum concentrations are expected four to	
9	seven years after flooding and it will take about	
10	20 to 30 years to return to long-term stable	
11	levels as we saw in Stephens Lake.	
12	The mercury concentration in Whitefish	
13	will increase only slightly to about .2 parts per	
14	million.	
15	Now, looking at the effects of mercury	
16	to fish, laboratory studies have demonstrated that	
17	there are some effects. So if you feed fish food	
18	with elevated levels of mercury, you can detect	
19	some effects to their behaviour and reproduction	
20	in a laboratory setting. However, when you look	
21	at what's happening to a population in the	
22	reservoir, we don't have any clear evidence that	
23	concentrations of .5 to 1 parts per million, which	
24	is what we're predicting, will have negative	
25	effects on populations. And also work from other	
1		

		Page 1223
1	areas like Quebec, where the fish mercury	1 490 1220
2	concentrations were much more than double at	
3	levels of 3 to 4 parts per million. Even there	
4	they did not observe any population level effects.	
5	Now the effects to resource users that	
6	is the human consumers of fish, will be addressed	
7	by offsetting programs to provide alternate	
8	sources of fish as well as communication products	
9	with respect to fish mercury levels and	
10	recommended consumption levels. And that is	
11	something that you will hear about in detail from	
12	the socio-economic resource use and heritage	
13	resources panel.	
14	So we have now reached a break in my	
15	presentation. I'm not sure of the time but I	
16	don't know if this would now be a convenient time	
17	for a break. Or Shelley I believe has about a 20	
18	minute presentation.	
19	THE CHAIRMAN: Thank you, Ms.	
20	Schneider-Vieira. I think this would be a perfect	
21	time for a break. It's just a couple minutes to	
22	11:00. So thank you for that presentation and	
23	we'll come back at 10 after 11:00.	
24	(Proceedings recessed at 10:56 a.m.	
25	and reconvened at 11:12 a.m.)	

		Page 1224
1	THE CHAIRMAN: Thank you.	raye 1224
2	Ms. Matkowski, you may proceed.	
3	MS. MATKOWSKI: Thank you very much,	
4	good morning ladies and gentlemen. And thank you	
5	for the opportunity this morning to speak to you	
6	about lake sturgeon and stewardship in Manitoba.	
7	As Friederike mentioned, my name is Shelley	
8	Matkowski, and I work for Manitoba Hydro's	
9	Environmental Licensing and Protection Department.	
10	My presentation today will cover lake	
11	sturgeon distribution and biology, just a little	
12	on it, the history of the impacts on lake sturgeon	
13	in North America, the recognition of the need for	
14	recovery, and primarily the stewardship tools and	
15	actions that are being used in Manitoba towards	
16	sturgeon recovery.	
17	Historically, lake sturgeon were	
18	abundant in many large rivers and lakes in North	
19	America. This map illustrates lake sturgeon	
20	distribution in North America.	
21	Unfortunately, unique life history	
22	characteristics make lake sturgeon particularly	
23	susceptible to overharvest and slow to recover	
24	once populations have been depleted. One of these	
25	characteristics is late maturation. Lake sturgeon	

1225

		Page
1	may not spawn until they are 15, 20, or even 30	r ugo
2	years old, depending on whether they are male or	
3	female and what water body they are found in.	
4	Late maturity, combined with large body size,	
5	allows many years of opportunity for them to be	
6	harvested before they can reproduce even once to	
7	replenish their populations. As well, they don't	
8	spawn every year like most freshwater fish.	
9	Instead, individual lake sturgeon may spawn only	
10	every 3 to 7 years. Again, this results in low	
11	population replenishment and plenty of opportunity	
12	for harvest between spawning events.	
13	So, populations across North America	
14	were quickly depleted by commercial overharvest in	
15	the 1800s to 1900s, when European markets looked	
16	to North America as they could no longer be met	
17	with European sturgeon species. In Manitoba	
18	commercial fishing depleted most lake sturgeon	
19	populations from south to north as rail	
20	transportation developed. Accessible populations	
21	on the Nelson River were some of the last to be	
22	depleted in the early to mid 1900s. As stocks	
23	were depleted, the commercial fisheries were	
24	closed and reopened a number of times before final	
25	closure. The last commercial fishery on the	

		Page 1226
1	Nelson River closed in 1992. The last commercial	Ū
2	fishery in Manitoba on the Fox Bigstone River	
3	system closed in 1999.	
4	Following overharvest across Canada,	
5	industrial development, urbanization, and	
б	agriculture further contributed to population	
7	declines or hindered recovery of populations,	
8	primarily through habitat losses and changes.	
9	Multiple impacts often meant that cause and effect	
10	relationships of sturgeon populations were not	
11	immediately obvious. A number of factors may be	
12	limiting recovery of individual populations. For	
13	example, populations in tributaries to the Great	
14	Lakes were first overharvested in the 1800s, and	
15	then through the 1900s habitat was degraded, lost	
16	and altered through pollution, siltation,	
17	fragmentation, flow manipulation and invasive	
18	species.	
19	On the Nelson River, hydroelectric	
20	development began in 1957, just as depletion from	
21	commercial fishing was becoming severe and	
22	commercial fisheries were being closed.	
23	Because lake sturgeon had been	
24	depleted across Canada, the Committee on the	
25	Status of Endangered Wildlife in Canada, or	

		Page 1227
1	COSEWIC, assessed the status of lake sturgeon	
2	populations in 2006. In most rivers and lakes in	
3	Manitoba, including the Nelson River, COSEWIC	
4	determined that lake sturgeon met their criteria	
5	for classification as endangered, one of which is	
6	a population decline of more than 50 per cent in	
7	the last three generations, which for lake	
8	sturgeon is over 100 years and encompasses the	
9	commercial fishing overharvest.	
10	Once COSEWIC has assessed a species as	
11	endangered, it must be considered for listing	
12	under the Federal Species at Risk Act. That	
13	review is currently underway.	
14	Long before the COSEWIC assessment, in	
15	Manitoba the Provincial fisheries managers, First	
16	Nations and stakeholders recognized the need for	
17	recovery of lake sturgeon populations. For over	
18	two decades they have been working collaboratively	
19	to protect and enhance lake sturgeon populations.	
20	One of the earliest measures taken was	
21	the drafting and implementation of the Manitoba	
22	Lake Sturgeon Management Strategy by the Manitoba	
23	Department of Natural resources in 1992. The	
24	complete closure of the commercial fisheries that	
25	I have already outlined was an action taken from	
1		

1		Page 1228
1	this strategy. It continues to be implemented by	
2	Manitoba Conservation and Water Stewardship	
3	Department, and has been updated a number of	
4	times, most recently in 2012.	
5	Another stewardship measure taken	
6	early in the 1990s was development of cooperative	
7	sturgeon management groups consisting of First	
8	Nations, local communities, regulators and	
9	stakeholders. One of these is the Nelson River	
10	Sturgeon Board which was established in 1992, and	
11	has focused its efforts on the upper Nelson River,	
12	from Lake Winnipeg downstream to the Kelsey	
13	Generating Station. The board conducts population	
14	monitoring, habitat assessments, educational	
15	programs, stocking, and voluntary harvest	
16	reduction. Since there is no longer any	
17	commercial harvest of lake sturgeon allowed in	
18	Manitoba, and since the sport fishing limit is	
19	zero, the only allowable harvest is by First	
20	Nations people for subsistence and cultural use.	
21	The Nelson River Sturgeon Board has recognized	
22	that in some areas where sturgeon populations are	
23	severely depleted, any harvest at all can limit	
24	recovery, and so they promote voluntarily harvest	
25	reduction.	

		Page 1229
1	Their efforts have been rewarded, as	
2	recent monitoring confirms increasing numbers of	
3	young sturgeon in the upper Nelson River, both as	
4	a result of stocking where too few spawners were	
5	left for natural recovery, and elsewhere as a	
6	result of natural reproduction, where harvest	
7	reduction has allowed remaining spawners to	
8	successfully reproduce.	
9	More recently the lower Nelson River	
10	Sturgeon Stewardship Committee was established by	
11	a legally binding agreement. It is a 20-year	
12	commitment to work cooperatively to conserve and	
13	enhance lake sturgeon populations from Kelsey	
14	Generating Station down to Hudson Bay. The	
15	committee has membership from Tataskweyak Cree	
16	Nation, War Lake First Nation, Fox Lake Cree	
17	Nation, York Factory First Nation, Shamattawa	
18	First Nation, Manitoba Hydro, and the Keeyask	
19	Hydropower Limited Partnership. The Manitoba	
20	Conservation and Water Stewardship Department also	
21	participates as a non voting member.	
22	In its initial year, the committee has	
23	focused on assembling Aboriginal traditional	
24	knowledge and scientific information on	
25	populations and habitat. They are now discussing	

		Page 1230
1	recovery actions and projects to be undertaken.	
2	This map illustrates the area of	
3	primary focus for the lower Nelson River	
4	stewardship committee, it is the Nelson River from	
5	the Kelsey Generating Station here, downstream to	
6	Hudson Bay, and it includes the Keeyask site at	
7	Gull Rapids.	
8	As a stakeholder, Manitoba Hydro	
9	recognized the need for lake sturgeon stewardship	
10	as long ago as 1987, and has since been working to	
11	fill information gaps on populations, habitat,	
12	ecology, biology, and impacts of hydroelectric	
13	development, as well as undertaking public	
14	education programs. We have worked	
15	collaboratively with regulators, including	
16	Manitoba Conservation and Water Stewardship, and	
17	Fisheries and Oceans Canada, as well as with	
18	sturgeon management groups, First Nations, and	
19	academic institutions.	
20	In 2007, this work was consolidated	
21	into the Manitoba Hydro lake sturgeon stewardship	
22	and enhancement program, with an objective to	
23	maintain and enhance lake sturgeon populations in	
24	areas affected by Manitoba Hydro's facilities and	
25	operations, and with a 30-year plan based on an	

		Page 1231
1	adaptive management approach. The program	
2	continues to expand, including development and	
3	implementation of mitigation and enhancement	
4	measures such as the creation of spawning shoals.	
5	Grand Rapids fish hatchery is another	
6	tool that has played a significant role in	
7	sturgeon stewardship in Manitoba through fish	
8	rearing research and education. Originally owned	
9	and operated by the Province of Manitoba, Grand	
10	Rapids fish hatchery has reared and stocked lake	
11	sturgeon since 1994. For 20 years the hatchery	
12	has worked collaboratively with regulators,	
13	sturgeon groups, academic institutions, and other	
14	hatcheries in Canada and the U.S., to continually	
15	improve egg collection, fish rearing, bio-security	
16	and genetic diversity. Over the past decade,	
17	Grand Rapids hatchery has produced over an average	
18	of 10,000 fingering sturgeon per year for	
19	education, research and stocking.	
20	Manitoba Hydro has owned Grand Rapids	
21	hatchery since 2007, and operated it just over a	
22	year now. As part of assuming full operations, we	
23	have increased staffing and introduced standard	
24	operating procedures for even greater security of	
25	fish production. We are currently undertaking a	

		Page 1232
1	complete review of fish production procedures and	
2	infrastructure by HDR Corporation of Illinois, who	
3	are the foremost in design and operation of lake	
4	sturgeon hatcheries in North America.	
5	Lake sturgeon stocking has been used	
6	as a stewardship tool for 20 years in Manitoba.	
7	The Assiniboine River in Brandon was first stocked	
8	by Manitoba Natural Resources in the mid 1990s, as	
9	a trial to determine whether lake sturgeon	
10	stocking would actually work in Manitoba. The	
11	Assiniboine River was chosen because the natural	
12	population of lake sturgeon had been extirpated or	
13	essentially destroyed decades before. Anglers now	
14	frequently capture sturgeon over one metre long in	
15	the Assiniboine River and the sturgeon have spread	
16	as far upstream as the Qu'Appelle River in	
17	Saskatchewan. The stock fish are now reaching	
18	reproductive age, so a study has been initiated to	
19	determine whether they may have already begun to	
20	reproduce naturally in the Assiniboine River.	
21	On the Winnipeg River, stocking was	
22	conducted in reservoirs of selected generating	
23	stations as a convenient site to facilitate	
24	research on survival, growth and movements of	
25	stocked lake sturgeon. The University of	

		Page 1233
1	Manitoba, the Canadian Rivers Institute, the Deep	
2	Rivers Science Academy, and the University of New	
3	Brunswick all participated in this research.	
4	Since we now know that the natural	
5	populations of lake sturgeon in the Winnipeg River	
6	in Manitoba are all reproducing, and some	
7	populations between generating stations are	
8	actually abundant, stocking is not necessary for	
9	recovery in the Winnipeg River.	
10	The Saskatchewan River has been	
11	stocked by the Saskatchewan River Sturgeon	
12	Management Board since the late 1990s at The Pas	
13	and Cumberland House to supplement natural	
14	reproduction. Over the past decade, board members	
15	have reported and continue to report increasing	
16	captures of small sturgeon in the Saskatchewan	
17	River.	
18	And as mentioned earlier, the upper	
19	Nelson River has been stocked by the Nelson River	
20	Sturgeon Board to recover depleted populations.	
21	Recent monitoring has found a variety of sizes and	
22	ages of young sturgeon, many with tags identifying	
23	when and where they were stocked.	
24	I hope that I have given you an	
25	overview of the variety of tools that are being	

		Page 1234
1	used for lake sturgeon stewardship in Manitoba.	
2	Through the stewardship actions of many people,	
3	some lake sturgeon populations in Manitoba have	
4	begun to recover.	
5	I would like to leave you with the	
6	following quotes from Manitoba Conservation and	
7	Water Stewardship's 2012 lake sturgeon management	
8	strategy.	
9	"The outlook for lake sturgeon has	
10	improved significantly since the first	
11	Manitoba sturgeon strategy in 1992.	
12	The reaches that were the focus of the	
13	1997 strategy on the Winnipeg,	
14	Saskatchewan and Nelson Rivers, all of	
15	which were described as depleted or	
16	declining, are now showing signs of	
17	improvement."	
18	Thank you. And now I believe that	
19	Friederike will tell you about the sturgeon	
20	specifically in the Keeyask area.	
21	MS. SCHNEIDER-VIEIRA: Thank you very	
22	much.	
23	As Shelley has just provided you with	
24	an overview of the best leading situation in	
25	Manitoba, and she has also actually provided some	

235

	Page 1:
1	insights into what will be an important part of my
2	talk, which is what kinds of things work, what
3	kinds of measures work to help re-establish
4	sturgeon where they are in where their
5	populations are very low.
6	So, first of all, as Shelley
7	mentioned, in looking at the historic commercial
8	fishery on the Nelson River, that commercial
9	fishery underwent, well, it began in the early
10	1900s, and the sturgeon were very, very quickly
11	depleted, such that the first closure actually
12	happened already in 1911. And there were a total
13	of four closures between 1911 and 1969 due to
14	overharvesting.
15	It was reopened for the last time
16	during the period 1970 to 1987. At that point
17	they had started getting more detailed records, so
18	we have some idea of how many sturgeon might have
19	been harvested from the Keeyask area. It is
20	anywhere from 250 to 500 fish that we think may
21	have been harvested in that 18-year period from in
22	the Kelsey to the Kettle area. And the Nelson
23	River fishery was finally closed in 1992, in the
24	Nelson River. We know from local resource uses
25	that sturgeon were still relatively abundant in

		Page 1236
1	Stephens Lake until at least the 1980s.	0
2	Moving on to the historic impacts of	
3	hydroelectric development. As I had mentioned in	
4	the first part of my presentation, the lower	
5	Nelson River was affected by the Kelsey, Kettle,	
6	Long Spruce and Limestone generating stations, as	
7	well as both CRD and LWR.	
8	Now, members of the First Nations that	
9	have been working on this project report that	
10	hydroelectric development caused a decline in	
11	sturgeon and fewer remained after each successive	
12	dam.	
13	We do know, though, that reproducing	
14	sturgeon populations remain in the entire lower	
15	Nelson River with the possible exception of the	
16	Long Spruce and Limestone forebays, where the	
17	number of sturgeon are very, very low, and we	
18	haven't documented any successful spawning.	
19	Now, when we were working on sturgeon,	
20	as I mentioned in the first part of my	
21	presentation, it was a very key species, and a	
22	great deal of effort has been expended on studying	
23	the species. So there were several different	
24	kinds of studies. There were studies looking at	
25	the abundance, and unlike the other fish species	

Page 1237 we actually developed population estimates through 1 a mark and re-capture technique. The way this 2 3 works is that, for example, in the Gull Lake area, 4 we go out in spring close to where we know that they are gathering to spawn, and capture as many 5 adults as you can. You put a mark, you tag them 6 7 all, and then you repeat your sampling program a few weeks later. You see how many you recapture, 8 and that allows you to estimate how many sturgeon 9 10 are in that area. Now, sturgeon are actually difficult 11 12 species to estimate their abundance because they actually only spawn, as Shelley mentioned, females 13 might only spawn every five years. So the program 14 that we used also allowed us to estimate, as we 15 16 continued collecting more and more data, estimate how many sturgeon that we are only seeing every 17 few years, that aren't coming back every year to 18 19 spawn, because we know that they don't. However, you will see there is a fair bit of uncertainty in 20 21 the population estimates. We looked at habitat use, because 22 23 habitat is what is being affected by hydroelectric development. We used gill netting, and also what 24 are called radio and acoustic tags. This is a 25

Page 1238 very important technique that we use, where I had 1 showed you the slide earlier where someone was 2 3 placing a transmitter inside the body cavity of a 4 fish. Then you place receivers that can detect the signal, for example, the acoustic signal, or 5 little beep that's emitted by this transmitter, 6 and the receivers are placed in different parts of 7 the river, and then you can find out whether or 8 9 not the sturgeon are passing close to receivers, 10 if they are hanging out in the vicinity and so on. So you get very detailed information on both where 11 12 they are moving and what kinds of habitat they are 13 using. 14 Finally, for the habitat component of

our studies, we developed models which are called 15 habitat suitability index models. We developed 16 them for spawning, for young sturgeon, sub adult 17 sturgeon, and adult sturgeon, just to cover all 18 19 parts of their life history. These indices 20 basically used information from both our work as 21 well as work elsewhere, to identify what kind of velocity, substrate, and water depth sturgeon use 22 23 to complete their various life histories functions, so that we could better predict what 24 25 will happen to them in the new aquatic environment

		Page 1239
1	being created by the Keeyask reservoir.	C
2	We also, as I mentioned, did movement	
3	studies using floy tags, which are little almost	
4	like spaghetti tags that you may have, if you are	
5	a recreational fisher, you may have also seen them	
6	on walleye or trout, as well as the radio and	
7	acoustic tags.	
8	We also did a fairly extensive genetic	
9	study, which is actually, analysis for that work	
10	is actually ongoing. And for that, as Stu	
11	mentioned in his introductory program, we actually	
12	employed some geneticists out of Laval University,	
13	who are actually, basically they are the fish	
14	geneticists across North America. And as we	
15	discussed earlier, all of this work has been	
16	ongoing since 2001.	
17	Now, when we were studying sturgeon in	
18	our area from the Kelsey Generating Station, all	
19	the way down to the Kettle Generating Station, we	
20	discovered very quickly from our movement data	
21	that sturgeon seem to be primarily dividing their	
22	use of this area into three areas. First of all,	
23	there is a group of sturgeon that occupy what we	
24	call upper Split Lake, so we can see them moving	
25	up into the Burntwood River and actually spawning	

		Page 1240
1	here at First Rapids on the Burntwood River. We	0
2	can also capture the sturgeon in the lower parts	
3	of the Nelson River, or the Nelson River below the	
4	Kelsey Generating Station all the way through this	
5	reach. And we have also found some sturgeon going	
б	up into the Grass River here. So we call this the	
7	upper Split Lake area. And these fish are known	
8	to spawn at the First Rapids on the Burntwood.	
9	And we suspect, having caught very few, because	
10	there are very few sturgeon in this area, but we	
11	have caught fish that have eggs in them, or one	
12	female, I should say, that had eggs that looked	
13	like she was ready to spawn in the Grass River, as	
14	well as a couple downstream of the Kelsey	
15	Generating Station.	
16	I should point out that all of these	
17	areas were actually historic sturgeon spawning	
18	areas as well.	
19	Moving down to the area that will be	
20	altered by the Keeyask Generating Station, we	
21	found that there are a group of sturgeon that	
22	lives in Gull Lake, as well as in the river reach	
23	going up to Birthday Rapids, and these sturgeon	
24	can spawn at either Long Rapids or Birthday	
25	Rapids. The orange colour indicates that spawning	

1	has been known to occur in the general area, but	Page 1241
2	it is not as though they are using this entire	
3	reach to spawn.	
4	Similarly, we have found sturgeon in	
5	Stephens Lake, though very, very few, and most of	
6	them live sort of in this area downstream of Gull	
7	Rapids, as well as the upper portion of the	
8	flooded river channel that I showed you on some of	
9	my other maps. We haven't found any sturgeon up	
10	here in the north arm at all. And occasionally	
11	they move further downstream towards Kettle, but	
12	on the whole they are occupying this part of the	
13	lake. And these we know would be spawning	
14	somewhere in Gull Rapids.	
15	As I mentioned, we used a mark	
16	recapture method to estimate the number of mature	
17	or adult sturgeon. We have been collecting these	
18	estimates in alternating years in the Birthday to	
19	Gull Rapids reach and in the upper Split Lake	
20	area. Our most recent population estimates from	
21	Birthday to Gull is 643 fish with a 95 per cent	
22	confidence limit of 384 to 1,178. This is quite	
23	wide, because as I mentioned, the sturgeon don't	
24	come back every year to spawn, and so you have	
25	uncertainty about what those fish are doing that	

		Page 1242
1	you that basically you don't see each year.	1 age 1242
2	In the upper Split Lake area they are	
3	slightly fewer. There are right now 585, once	
4	again with a fairly wide confidence interval.	
5	And too few fish were captured in	
6	Stephens Lake for an estimate. Just to give you	
7	an idea, since we began work in 2001, we have	
8	caught less than 100 adult fish in Stephens Lake.	
9	So there the numbers are very, very low.	
10	Now, I just wanted to compare to the	
11	reach below the Limestone Generating Station,	
12	which is that, just over 100 kilometres where	
13	there the population estimate is anywhere from	
14	3,000 to 8,000 sturgeon. By way of comparison,	
15	the area from Stephens Lake all the way through	
16	upper Split Lake is basically also a single area.	
17	And if you can estimate, that has a couple of	
18	hundred river kilometres, if you sort of estimate	
19	the total distances available through both the	
20	lakes and river segments, and it has around 1,000	
21	sturgeon in comparison.	
22	Now, based on our estimated	
23	recruitment, the upper Split Lake area appears to	
24	be stable, while the Gull Lake area may be	
25	declining, and Stephens Lake is basically, there	

_		Page 1243
1	are too few sturgeon there to be viable	
2	population.	
3	The populations everywhere are very	
4	vulnerable. We see a very small proportion of	
5	older, mature fish. We see a very limited number	
б	of young year classes. That means that when you	
7	go out looking for let's say one year old fish,	
8	you are finding that actually the ten years	
9	that we have worked in the Gull Lake area, we have	
10	only seen one year class from 2008 be successful.	
11	So it is a very, very erratic recruitment.	
12	And finally there is continued	
13	domestic harvest in this reach. And the domestic	
14	harvest quantities that we know of are very low,	
15	we are talking about, you know, 10, 20, 30 fish.	
16	But when your populations are in the low hundreds,	
17	that small amount of harvest can also	
18	significantly reduce the amount of reproducing	
19	adults.	
20	We did work on population genetics,	
21	and there were two basic reasons; one is we wanted	
22	to gain a better understanding in the entire area,	
23	how do these various sturgeon groups relate to	
24	each other, how much interchange is there among	
25	the groups? And I should mention to you that	

		Page 1244
1	these are genetic samples from adult fish, and	
2	this generic structure that we have seen here	
3	would basically pre-date hydroelectric	
4	development. So it would reflect natural	
5	divisions, a natural basically where the fish	
6	were even prior to any kind of construction of	
7	dams.	
8	So we see that there are four groups	
9	in this area. The sturgeon that were collected by	
10	the Nelson River Sturgeon Board upstream of the	
11	Kelsey Generating Station, which showed at the	
12	Landing River area, is genetically distinct from	
13	the sturgeon that we see downstream in the Grass	
14	River and upper Split Lake area. Those,	
15	interestingly, are genetically distinct from the	
16	sturgeon that we caught in the Gull Rapids area	
17	sorry, in the Gull to Birthday Rapids reach. So	
18	even though there is actually no barrier between	
19	these groups, apart from the small rapids at Long	
20	Rapids and Birthday Rapids, they are still	
21	actually not moving amongst the groups enough to	
22	create genetically the same population.	
23	Then moving downstream into the area	
24	downstream of the Limestone Generating Station, we	
25	looked at fish along the main stem from the Weir	

1		Page 1245
1	River and Angling River, and moving up over into	
2	the Hayes. And these are genetically basically	
3	all the same.	
4	Now, I should mention that this	
5	genetic analysis was done on what are called	
6	micro satellite markers, and that currently a	
7	study is being done using much more refined	
8	technique. So we expect when we look more closely	
9	at the genetic structure that we may actually see	
10	further divisions amongst some of these groups.	
11	In addition, this more refined genetic	
12	analysis will help us determine how much	
13	interchange is there between, for example, the	
14	Landing River and Burntwood River, or upper Split	
15	Lake. Because that will help us make decisions	
16	about whether when we are stocking, do we want to	
17	introduce a little bit of spawn from the Landing	
18	River? What would make the most sense?	
19	Now, moving on to the construction	
20	effects. As I talked about for other fish	
21	species, many of those effects or potential	
22	effects are addressed through management. For	
23	example, the dewatering during cofferdam	
24	construction will also be addressed through	
25	basically fish salvage operation, but it will also	

1246

		_
1	be mitigated by the timing of in-stream	Page
2	construction.	
3	The construction group has worked very	
4	hard to avoid certain critical periods for	
5	sturgeon, such as the spring spawning period, so	
6	that you aren't having many sturgeon, or some	
7	sturgeon having entered Gull Rapids to spawn, and	
8	then you are surrounding them with a cofferdam,	
9	and basically potentially adversely affecting, or	
10	stranding them and having to do a fish salvage.	
11	In addition, during the construction	
12	period, there will obviously be disturbance of	
13	habitat loss. During the construction period we	
14	expect that sturgeon may not spawn, even in the	
15	parts of Gull Rapids that are still available.	
16	Just the noise, the commotion and so on, will be	
17	enough to keep them away.	
18	I should mention, though, that during	
19	the past at least half dozen years, we actually	
20	haven't seen any evidence of spawning at Gull	
21	Rapids. So it might almost be a nil effect, just	
22	because there are so few sturgeon.	
23	Also, we have seen in other systems	
24	that as water levels begin to change as people	
25	start to build dams and the water levels start to	

1		Page 1247
1	rise, that may trigger immigration of adult	
2	sturgeon. For example, the reservoir in Quebec,	
3	when it was impounded, they found quite a large	
4	number of their tagged sturgeon actually move	
5	downstream and out of the system. And we have	
6	seen some evidence of that as well after the	
7	Limestone Generating Station was constructed.	
8	Moving on to the operation effects, as	
9	with other parts of our study, we did take several	
10	different approaches. We looked at changes in key	
11	habitats. We looked at experience in other	
12	reservoirs, and for that we used both technical	
13	studies, as well as Aboriginal traditional	
14	knowledge, which provided us with information	
15	about reservoirs for which we had no technical	
16	information. And we also developed, as I said,	
17	the habitat suitability index models and we looked	
18	at the results of those. We compared how suitable	
19	does the habitat look like in existing environment	
20	to how suitable is it in the post project	
21	environment? We also considered all of the	
22	different life history stages. We looked at	
23	spawning and hatch, and immediately after hatch	
24	the larval fish drift down river.	
25	We looked at what happens to the	

Page 1248 young-of-the-year. Those are the fish that have 1 drifted down the river and they settle somewhere 2 3 in the environment. And there is a lot of 4 evidence now that this might be the most critical history stage for lake sturgeon, because they need 5 to drift from a spawning area and arrive in an 6 environment where they can successfully and very 7 quickly find food. 8 9 We also looked at juveniles and some 10 adults, and that's basically all fish between the ages of one up to about 18. We use a 800, I was 11 12 going to say about 850 millimetres as our cut-off for mature fish because that's the youngest 13 mature, smallest mature fish we found. And 14 finally we looked at adults. 15 When we were developing mitigation, 16 the key point to the mitigation was to provide 17 habitat to support all life history requirements, 18 19 both upstream and downstream of the generating 20 station. And the way we did that, we took several 21 different approaches, but one of the things we did was review the characteristics of reservoirs that 22 23 support sturgeon. We know from ATK and from observations on the lower Nelson that there are 24 many reservoirs there which don't support 25

-		Page 1249
1	sturgeon. But we also know there are places, for	
2	example, along the Winnipeg River and the Nelson	
3	River upstream of Kelsey where there were sturgeon	
4	populations a long time after hydroelectric	
5	development. So what is it about those reservoirs	
6	that allows them to basically keep sturgeon when	
7	they have disappeared elsewhere?	
8	The other thing which we did, because	
9	we wished to obviously benefit from the successes	
10	of others, was we did a fairly extensive review	
11	and also talked to several experts about what are	
12	successful approaches to population recovery in	
13	other areas. Shelley just mentioned in her	
14	presentation that there are even some good	
15	examples from here in Manitoba.	
16	So, looking, first of all, at the	
17	recovery and mitigation measures, looked	
18	elsewhere. One of the, perhaps I would say the	
19	most common method for recovering sturgeon is	
20	stocking, and closely related to that is	
21	translocation. So stocking is, as Shelley	
22	described, it is when you collect spawn from	
23	sturgeon, you raise, you hatch the eggs in a	
24	hatchery and you raise them up to a certain life	
25	stage, and then you let them go. Translocation is	

		Page 1250
1	when you actually capture sturgeon in the	
2	environment and then physically move them to	
3	somewhere else. These strategies work very well	
4	where there is habitat available. Lake sturgeon	
5	respond very, very well to stocking. There is a	
6	slough of examples of successful stocking	
7	programs, including here in Manitoba, in the	
8	Assiniboine River, as well as in the upper Nelson	
9	River.	
10	Another thing is very important, and	
11	as Shelley mentioned in her presentation, is	
12	fishing restriction. Sturgeon do not do well with	
13	commercial fisheries, which is currently closed in	
14	Manitoba. But also even a very low level of	
15	domestic fishing can be difficult for a population	
16	to support when it is in very when it is	
17	basically in very, very low numbers.	
18	The recovery in some areas has been	
19	attributed to restricted fishing. As Shelley	
20	mentioned, the Nelson River Sturgeon Board has	
21	used that as one of their tools in recovering the	
22	stocks of sturgeon on the upper Nelson River.	
23	In general, where we do see healthy	
24	populations, that's populations where they are	
25	self-sustaining, they are associated with either	

Page 1251

no fishery at all or a very carefully managed 1 fishery. And we see that on the Rainy River, Lake 2 3 Winnebago, and also on the Winnipeg River. 4 The final method that we saw that 5 people used for recovery and mitigation measures elsewhere, that were applicable to our situation, 6 was habitat creation or hydraulic manipulations, 7 that is altering the flows. And by far and away 8 the largest, the most important method is the 9 creation of spawning habitat. And there are 10 numerous examples where spawning habitat has been 11 12 created. And for us it was of particular interest 13 what was happening in Quebec, because there they have generating stations very similar to what we 14 are constructing here, and they have created 15 spawning habitat that has been demonstrated to be 16 17 used by sturgeon. 18 Now, looking now at how sturgeon are 19 using the existing environment. So once again

20 this is a map that shows you the Clark Lake to
21 Stephens Lake reach. This is the area where water
22 levels and flows will be changed by the Keeyask
23 Generating Station. So beginning with the start
24 of the life stage, spawning habitat. Today
25 sturgeon have spawning habitat in Long Rapids, up

		Page 1252
1	here just below Clark Lake. They have spawning	
2	habitat in Birthday Rapids and a few locations	
3	immediately downstream. And they have spawning	
4	habitat in Gull Rapids, at the bottom end of the	
5	reach that will be changed by Keeyask.	
6	Now, the fish lay their eggs in these	
7	reaches, and then the larval fish hatch as very,	
8	very tiny, a few millimetres long, and they drift	
9	in the river, and they drift downstream until they	
10	reach some point when they can settle to the	
11	bottom. Now, that's influenced in part by, they	
12	have a very limited ability to control where they	
13	are going, so it is largely influenced by the	
14	water velocity.	
15	We have looked very hard for	
16	young-of-the-year sturgeon, that is those little	
17	larval sturgeon, and where they have settled. And	
18	it is actually the life stage that is the most	
19	hard to find. And I should mention that our work	
20	in Northern Manitoba on the Nelson River is	
21	actually one is actually the first time that	
22	young-of-the-year sturgeon were found in a large	
23	river habitat. And where we found them was	
24	actually in very, very deep river channels over a	
25	sandy bottom where there is low flow, a little bit	

		Page 1253
1	of flow but very, very little. And the place	Tage 1200
2	where we found young-of-the-year in the Gull Lake	
3	area is up here in the northern part of Gull Lake.	
4	So they would be drifting down here, the river	
5	flow splits, and some of them would end up here	
6	and they would settle to the bottom here. We also	
7	found young-of-the-year habitat downstream of Gull	
8	Rapids in Stephens Lake. Young-of-the-year	
9	habitat is also, in these areas anyway, the fish	
10	where we found them largely on sand and fine	
11	gravel.	
12	There is an active debate amongst	
13	researchers working on young-of-the-year sturgeon.	
14	Many people believe they need sand or fine	
15	gravels, and other people think, well, you know	
16	what, they could also perhaps be surviving on	
17	silt. And that is actually going to be quite an	
18	important point in our impact assessment later on.	
19	In terms of then as the sturgeon get	
20	older, they move from the areas where they settled	
21	as young-of-the-year fish and start using a wider	
22	range of habitats. We found some adults, that is	
23	the fish that are up to 870 millimetres in length,	
24	were quite widespread in this Keeyask area, though	
25	they did have a few pockets where they were most	

_	Page 1254
1	abundant. So there are some areas that they seem
2	to highly prefer, though we found them in a
3	variety of locations.
4	Finally, once you get up to adults, we
5	found them throughout this reach. They were able
б	to use quite a wide variety of habitats.
7	In terms of the post-project
8	environment, you may remember from the aquatic
9	habitat slide that I showed you, that if Keeyask
10	is constructed here, this area will become much,
11	much deeper. The river channel will not be
12	changed a great deal, though it will become
13	deeper. So, first of all then, the spawning
14	habitat at Long Rapids will remain. The hydraulic
15	changes related to Keeyask stop about here, and so
16	this will still be spawning habitat post-project.
17	Birthday Rapids will remain fast
18	water, deep water, with a suitable bottom type for
19	spawning, but it will no longer have the white
20	water that I showed you on the slide when I showed
21	you Birthday Rapids. So there is some discussion
22	about whether sturgeon will continue to use such
23	habitat or not.
24	Looking further downstream to Gull
25	Rapids, Gull Rapids will no longer be spawning

		Page 1255
1	habitat. Part of the rapids is going to be	
2	flooded under about ten metres of water, part of	
3	the rapids will have the generating station itself	
4	on it, and then this south channel will be	
5	dewatered, basically dewatered river bed.	
6	In terms of the young-of-the-year	
7	habitat, I showed you the area here on the	
8	northern part of Gull Lake. This area will no	
9	longer be accessible because sturgeon that may	
10	be where eggs may be laid and they start	
11	drifting downstream, the water through Gull Lake	
12	will essentially be a very low flow, such that	
13	drifting larval fish would not be able to reach	
14	the area. In addition, we expect fine sediments	
15	to settle over this area of sand, so it may also	
16	no longer be suitable. However, the	
17	young-of-the-year habitat down on Stephens Lake	
18	will not be affected, so it will still be	
19	available post-project.	
20	The other thing that will be happening	
21	is that the generating station itself will be	
22	blocking or altering sturgeon movements.	
23	Obviously, unless you provide passage, they will	
24	not be able to go upstream. In terms of moving	
25	downstream, the larval drift will no longer occur	

		Page 1256
1	through the reservoir just because the water	
2	velocity is very slow. The fish that are	
3	approaching the generating station and looking to	
4	move downstream would either need to go through	
5	the turbines, if they are small enough to pass the	
6	trash racks, or they would go over the spillway.	
7	So I have mentioned that our strategy	
8	for developing mitigation then is to construct or	
9	to provide habitats if they are not available. So	
10	I showed you that in terms of the downstream	
11	environment, what we are losing is the spawning	
12	habitat. And the proposed mitigation measure for	
13	that is to construct a spawning shoal based on	
14	designs that have been successfully used in	
15	Quebec. Basically, this map shows you the river	
16	channel, the generating station is this green	
17	structure, the powerhouse is blue, and then the	
18	dam is green. And post-project in both this	
19	magenta and yellow area, there would be a spawning	
20	shoal created that would consist of large boulders	
21	placed over a course substrate. And there has	
22	actually has been a lot of design work done on	
23	this, where the engineers or the engineering team	
24	used three dimensional hydraulic modeling to	
25	better understand how the flows will go over the	

		Page 1257
1	structure, because we feel that sturgeon need a	
2	very specific pattern of turbulent flow in order	
3	to attract them to an area to spawn and	
4	successfully lay their eggs.	
5	We also will have along this part of	
6	the tailrace and extending at the bottom end of	
7	the tailrace, there will be some remnants from the	
8	cofferdam. You may remember from the project	
9	description that cofferdams were being constructed	
10	to build the station. Most of those will be	
11	removed but there will be course rubble left. And	
12	we see in places like Pointe Du Bois that sturgeon	
13	also use that kind of course rubble.	
14	And in the bottom here is a photograph	
15	of two sturgeon spawning downstream actually,	
16	along, close to, at the Limestone Rapids. This is	
17	a photograph taken from an island. You can see	
18	this coarse kind of rock. This is the kind of	
19	material that they are spawning on.	
20	Now, one of the things that we have	
21	put a lot of time and effort into is trying to	
22	determine how much spawning habitat do you need to	
23	create? I mean, we have got rapids that are three	
24	kilometres long. We have an enormous potential	
25	area that sturgeon may spawn. We know that they	
	· ·	

		Page 1258
1	are only using a very, very small part of the	
2	habitat in Gull Rapids.	
3	During non-spill periods, sturgeon in	
4	Stephens Lake would need to rely on the	
5	constructed spawning habitat, and there is a plan	
6	to construct up to about three hectares. When the	
7	generating station is spilling, because there is a	
8	lot of excess flow in the spring, at high flows	
9	about another 3 hectares of habitat would be	
10	suitable below the spillway.	
11	So the question that's been our	
12	challenge is how much spawning habitat do you	
13	need? We know that what we are creating is less	
14	than what is in the existing environment. But	
15	we've also looked at other areas, for example, at	
16	the Pointe Du Bois Generating Station, there is	
17	downstream a population of a couple of thousand	
18	sturgeon. And there have been very detailed and	
19	extensive studies done on the spawning at below	
20	Pointe Du Bois as part of the redevelopment	
21	project there. And because there is such a large	
22	population, you can do some very detailed work to	
23	determine where sturgeon are spawning, laying	
24	their eggs. And we found that the actual area	
25	they use is less than one and a half hectares. So	

		Dogo 1250
1	we feel that if we are creating an area of up to	Page 1259
2	three hectares, if you know that in a population	
3	where there is a couple of thousand sturgeon, one	
4	and a half hectares is sufficient, we feel this is	
5	good evidence that we are creating sufficient	
6	spawning habitat.	
7	In terms of the upstream spawning	
8	habitat, this is a photograph of Birthday Rapids.	
9	And as I mentioned, the water levels will increase	
10	here. It will still become very, very swift, but	
11	you will no longer see this white water. There	
12	has been some debate amongst sturgeon biologists	
13	about whether sturgeon need white water to attract	
14	them to areas to spawn. We know in flooded rapids	
15	upstream of the Kelsey generating station, the	
16	sturgeon have continued to spawn. So the plan for	
17	this area is to basically monitor the	
18	post-project, and see if sturgeon still spawn in	
19	this area or not, and if they don't, look at	
20	perhaps creating some structures on the edge to	
21	create this kind of turbulent flow.	
22	It is important to remember for the	
23	reservoir that spawning habitat will still be	
24	available definitely upstream of Long Rapids,	
25	because that area will not be altered.	

		Page 1260
1	When I was discussing the habitat in	
2	the reservoir, I did flag that we will be losing	
3	the existing young-of-the-year habitat.	
4	Young-of-the-year is probably the most challenging	
5	life history stage to work with lake sturgeon. As	
6	I mentioned, they are very hard to find in the	
7	wild, and it is the life stage that's understood	
8	the least well. At the moment what we propose to	
9	do is monitor a post impoundment, to see whether	
10	or not there will be suitable young-of-the-year	
11	habitat in the reservoir.	
12	This is a cut-out map that basically	
13	shows you the upper part of present day Gull Lake.	
14	So here is the Nelson River, and this is the first	
15	basin of Gull Lake. Post project, based on the	
16	hydraulic modeling, the water velocity conditions	
17	right at this upper end will be suitable for where	
18	we think larval lake sturgeon would settle out,	
19	and where you would need to have suitable habitat	
20	for them in order for them to survive and grow up.	
21	Currently, the predictions are that	
22	the substrate in this area, the bottom, will just	
23	continue to be as is, it will be coarse rock. And	
24	that may not be suitable for young sturgeon. And	
25	so the engineering team has developed a	

1	sentingen aler characher there would be alering	Page 1261
1	contingency plan whereby they would be placing	
2	sand in some parts of the deep river channel where	
3	we believe the young sturgeon would settle, if we	
4	find that the habitat without any kind of	
5	mitigation measure is not suitable.	
6	Now, the last effect that I	
7	mentioned to you when I was going over that slide	
8	was the effect of the generating station as a	
9	barrier. Now, this is true for all of the fish	
10	species, all of the VECs fish species that I	
11	discussed. But of all of the species, sturgeon	
12	have showed the most movement over the rapids and	
13	so are the most concern to Fisheries and Oceans	
14	Canada. In terms of upstream movement, if fish	
15	passage is not provided, upstream movement would	
16	be blocked by the generating station.	
17	There is currently the acoustic study,	
18	which started in 2011, as well as studies that	
19	were done about a decade earlier, demonstrated	
20	that about 20 per cent of our tagged sturgeon move	
21	upstream. Now, though that sounds like a fair	
22	bit, I should point out in the current study, for	
23	example, we have managed to tag about 30 sturgeon	
24	downstream. We are talking about 5 sturgeon have	
25	moved upstream. We don't have any evidence that	

		Page 1262
1	they are moving upstream to support a specific	
2	life history requirement. For example, it is not	
3	as if they are migrating upstream over Gull Rapids	
4	to Birthday rapids to spawn in the spring.	
5	Currently, most of the movements that we see are	
6	late summer or early fall. As I say, there is no	
7	definite reason that we have been able to find as	
8	to why they are moving.	
9	In terms of changes to downstream	
10	movement, as I mentioned, creation of the	
11	reservoir will prevent larval sturgeon from	
12	drifting through the reservoir, and that's an	
13	unavoidable effect.	
14	In terms of the adult movements, some	
15	adult movements there is the potential for those	
16	fish to be killed or injured when they go	
17	downstream via the spillway or the turbines. We	
18	are finding, in contrast to the number of fish	
19	moving upstream, we are finding far, far fewer	
20	moving downstream in the current environment.	
21	Actually less than 5 per cent of our tagged adults	
22	have moved downstream. And looking at over a	
23	thousand fish, sturgeon that we have put floy tags	
24	on, so those spaghetti tags on, over the last	
25	decade, I believe that we have caught less than	

1	the new cent have seen downstream. On some	Page 1263
1	two per cent have gone downstream. So very, very	
2	small numbers.	
3	Now, the effect of barriers on lake	
4	sturgeon is an area of considerable interest to	
5	people who work on lake sturgeon, and obviously to	
6	people who want to build generating stations.	
7	Now, there are some researchers who have indicated	
8	that sturgeon require greater than 200 kilometres	
9	of unobstructed river habitat to support a	
10	self-sustaining or a healthy population.	
11	Now, we have many examples here in	
12	Manitoba and elsewhere where there are healthy	
13	populations, that is good, with good numbers and	
14	that are self-sustaining, in much, much smaller	
15	reaches. And the best documented one and the one	
16	that we are most familiar with is the ten	
17	kilometre long reservoir below Pointe Du Bois,	
18	which as I mentioned supports over 2,000 sturgeon.	
19	And really the key factor is the availability of	
20	habitat to support all life history functions.	
21	So, as you can gather from my	
22	comments, this has been something that we have	
23	been discussing very actively between the	
24	Partnership and the Department of Fisheries and	
25	Oceans, and also Manitoba Conservative and Water	

		Page 1264
1	Stewardship. And most recently in a	1 490 1204
2	correspondence that DFO provided this summer to	
3	the Partnership, and it was also attached to one	
4	of the IRs provided to the CEC, DFO indicated that	
5	it could not determine at this time whether or not	
6	fish passage is or is not required. So they	
7	indicated that they will require a contribution	
8	from monitoring and the implementation of passage	
9	as a retrofit, if both DFO and MCWS determine that	
10	it is required based on the results of that	
11	monitoring.	
12	Now, what DFO has required is that the	
13	Partnership provide, or develop some provisions	
14	for retrofits if it is found in the future that	
15	upstream fish passage is required. So the	
16	Partnership has identified options that could be	
17	used for upstream passage, and those include a	
18	conventional fish ladder, a trap and transport	
19	system in which sturgeon are basically collected	
20	downstream and then moved upstream using either a	
21	truck or a boat, or a nature like bypass channel.	
22	And the last method is not that common in our	
23	area, though it has been used fairly widely in	
24	Europe, and that's basically developing a small	
25	stream in which the fish can swim up and around.	

		Page 1265
1	But you can imagine in the Keeyask area, because	
2	it is a very large change in elevation, that small	
3	stream would be in the order of five kilometres	
4	long. So it would be a very large undertaking.	
5	And basically there is a flexibility,	
б	or in the project planning they are maintaining	
7	the flexibility to construct any of these methods	
8	as retrofits. And what would be done is that post	
9	project there will be monitoring. And the first	
10	step in the monitoring will be to determine,	
11	basically, is the mitigation that's being applied	
12	for as is without passage sufficient? Basically	
13	are sturgeon successfully recruiting both upstream	
14	and downstream of the generating station, so that	
15	they are spawning, the young-of-the-year are	
16	surviving, the juveniles are growing up and the	
17	adults have adequate habitat.	
18	So can the system function as two	
19	separate areas, which is basically in the	
20	Partnership's proposal? If it is found that it	
21	actually doesn't work, or if there is some other	
22	evidence that, yes, indeed it would be better for	
23	the sturgeon population if they were connected,	
24	you would need monitoring in order to develop the	
25	best possible fish passage method. The first	

		Page 1266
1	question would be, what parts of the reservoir are	1 490 1200
2	the fish, in this case the sturgeon using?	
3	Because you need to know in developing your fish	
4	passage system, do you want a passage system	
5	that's introducing them immediately upstream of	
6	the station, or do you want a passage system that	
7	maybe is transporting them further upstream to	
8	that river habitat that I showed you earlier on.	
9	The other piece of information that we	
10	cannot obtain until the station is constructed is,	
11	what would be the best type of fish passage to	
12	construct? And one of the critical features in a	
13	fish passage system is where in the downstream	
14	environment should you be collecting the fish?	
15	Where should you develop basically the entrance to	
16	your fish way? And that is something that you	
17	can't see until you do monitoring in the	
18	downstream and see how the fish are actually	
19	responding to changed flows downstream of the	
20	station.	
21	In terms of downstream fish passage,	
22	the turbines have been designed to reduce injury	
0.0	and markeliker . This is the first Maritake Table	

23 and mortality. This is the first Manitoba Hydro
24 station where criteria to improve or to decrease
25 adverse effects to fish have been included in the

turbine design specifications. And two of the most important are to have turbines that rotate more slowly and that are larger. And based on the work done by some specialists in turbine effects, there is a prediction of over 90 per cent survival for fish up to 500 millimetres in length. Now, the survival of larger fish, which includes the majority of lake sturgeon, would be lower. And actually I will get to that in a subsequent slide. Basically, there will be post project monitoring to determine what the actual effects are in terms of downstream passage. Now, here is a photograph actually of the turbine at the Kelsey Generating Station when these were being replaced, and this is just to give you a better idea. They are essentially giant propellers, and you can see that this actually, I mean, some of them are basically as wide as a small house, so they are very, very big. So fish that are moving are entrained in them, may	1267
more slowly and that are larger. And based on the work done by some specialists in turbine effects, there is a prediction of over 90 per cent survival for fish up to 500 millimetres in length. Now, the survival of larger fish, which includes the majority of lake sturgeon, would be lower. And actually I will get to that in a subsequent slide. Basically, there will be post project monitoring to determine what the actual effects are in terms of downstream passage. Now, here is a photograph actually of the turbine at the Kelsey Generating Station when these were being replaced, and this is just to give you a better idea. They are essentially giant propellers, and you can see that this actually, I mean, some of them are basically as wide as a small house, so they are very, very big. So fish that are moving are entrained in them, may	
4 work done by some specialists in turbine effects, 5 there is a prediction of over 90 per cent survival 6 for fish up to 500 millimetres in length. 7 Now, the survival of larger fish, 8 which includes the majority of lake sturgeon, 9 would be lower. And actually I will get to that 10 in a subsequent slide. Basically, there will be 11 post project monitoring to determine what the 12 actual effects are in terms of downstream passage. 13 Now, here is a photograph actually of 14 the turbine at the Kelsey Generating Station when 15 these were being replaced, and this is just to 16 give you a better idea. They are essentially 17 giant propellers, and you can see that this 18 actually, I mean, some of them are basically as 19 wide as a small house, so they are very, very big. 20 So fish that are moving are entrained in them, may	
there is a prediction of over 90 per cent survival for fish up to 500 millimetres in length. Now, the survival of larger fish, which includes the majority of lake sturgeon, would be lower. And actually I will get to that in a subsequent slide. Basically, there will be post project monitoring to determine what the actual effects are in terms of downstream passage. Now, here is a photograph actually of the turbine at the Kelsey Generating Station when these were being replaced, and this is just to give you a better idea. They are essentially giant propellers, and you can see that this actually, I mean, some of them are basically as wide as a small house, so they are very, very big. So fish that are moving are entrained in them, may	
 for fish up to 500 millimetres in length. Now, the survival of larger fish, which includes the majority of lake sturgeon, would be lower. And actually I will get to that in a subsequent slide. Basically, there will be post project monitoring to determine what the actual effects are in terms of downstream passage. Now, here is a photograph actually of the turbine at the Kelsey Generating Station when these were being replaced, and this is just to give you a better idea. They are essentially giant propellers, and you can see that this actually, I mean, some of them are basically as wide as a small house, so they are very, very big. So fish that are moving are entrained in them, may 	
 Now, the survival of larger fish, which includes the majority of lake sturgeon, would be lower. And actually I will get to that in a subsequent slide. Basically, there will be post project monitoring to determine what the actual effects are in terms of downstream passage. Now, here is a photograph actually of the turbine at the Kelsey Generating Station when these were being replaced, and this is just to give you a better idea. They are essentially giant propellers, and you can see that this actually, I mean, some of them are basically as wide as a small house, so they are very, very big. So fish that are moving are entrained in them, may 	
8 which includes the majority of lake sturgeon, 9 would be lower. And actually I will get to that 10 in a subsequent slide. Basically, there will be 11 post project monitoring to determine what the 12 actual effects are in terms of downstream passage. 13 Now, here is a photograph actually of 14 the turbine at the Kelsey Generating Station when 15 these were being replaced, and this is just to 16 give you a better idea. They are essentially 17 giant propellers, and you can see that this 18 actually, I mean, some of them are basically as 19 wide as a small house, so they are very, very big. 20 So fish that are moving are entrained in them, may	
9 would be lower. And actually I will get to that in a subsequent slide. Basically, there will be post project monitoring to determine what the actual effects are in terms of downstream passage. Now, here is a photograph actually of the turbine at the Kelsey Generating Station when these were being replaced, and this is just to give you a better idea. They are essentially giant propellers, and you can see that this actually, I mean, some of them are basically as wide as a small house, so they are very, very big. So fish that are moving are entrained in them, may	
10 in a subsequent slide. Basically, there will be 11 post project monitoring to determine what the 12 actual effects are in terms of downstream passage. 13 Now, here is a photograph actually of 14 the turbine at the Kelsey Generating Station when 15 these were being replaced, and this is just to 16 give you a better idea. They are essentially 17 giant propellers, and you can see that this 18 actually, I mean, some of them are basically as 19 wide as a small house, so they are very, very big. 20 So fish that are moving are entrained in them, may	
11 post project monitoring to determine what the 12 actual effects are in terms of downstream passage. 13 Now, here is a photograph actually of 14 the turbine at the Kelsey Generating Station when 15 these were being replaced, and this is just to 16 give you a better idea. They are essentially 17 giant propellers, and you can see that this 18 actually, I mean, some of them are basically as 19 wide as a small house, so they are very, very big. 20 So fish that are moving are entrained in them, may	
12 actual effects are in terms of downstream passage. 13 Now, here is a photograph actually of 14 the turbine at the Kelsey Generating Station when 15 these were being replaced, and this is just to 16 give you a better idea. They are essentially 17 giant propellers, and you can see that this 18 actually, I mean, some of them are basically as 19 wide as a small house, so they are very, very big. 20 So fish that are moving are entrained in them, may	
13 Now, here is a photograph actually of 14 the turbine at the Kelsey Generating Station when 15 these were being replaced, and this is just to 16 give you a better idea. They are essentially 17 giant propellers, and you can see that this 18 actually, I mean, some of them are basically as 19 wide as a small house, so they are very, very big. 20 So fish that are moving are entrained in them, may	
14 the turbine at the Kelsey Generating Station when 15 these were being replaced, and this is just to 16 give you a better idea. They are essentially 17 giant propellers, and you can see that this 18 actually, I mean, some of them are basically as 19 wide as a small house, so they are very, very big. 20 So fish that are moving are entrained in them, may	
15 these were being replaced, and this is just to 16 give you a better idea. They are essentially 17 giant propellers, and you can see that this 18 actually, I mean, some of them are basically as 19 wide as a small house, so they are very, very big. 20 So fish that are moving are entrained in them, may	
<pre>16 give you a better idea. They are essentially 17 giant propellers, and you can see that this 18 actually, I mean, some of them are basically as 19 wide as a small house, so they are very, very big. 20 So fish that are moving are entrained in them, may</pre>	
17 giant propellers, and you can see that this 18 actually, I mean, some of them are basically as 19 wide as a small house, so they are very, very big. 20 So fish that are moving are entrained in them, may	
18 actually, I mean, some of them are basically as 19 wide as a small house, so they are very, very big. 20 So fish that are moving are entrained in them, may	
19 wide as a small house, so they are very, very big. 20 So fish that are moving are entrained in them, may	
20 So fish that are moving are entrained in them, may	
21 either go down basically with the main part of the	
22 flow, and fish basically become injured if they	
23 hit a part of the turbine, either the blade or	
24 some other part, the leading edge or some other	
25 part of the blade. So if it is bigger, there is a	

		Page 1268
1	greater opportunity for fish to move through	
2	without hitting it, and if it is moving more	
3	slowly, there is a greater chance for fish to get	
4	through basically without being hit.	
5	When we are considering the effects to	
6	the sturgeon population, it depends first of all	
7	on the number moving downstream. As I said, in	
8	the existing environments we are finding a very,	
9	very small percentage of the sturgeon are moving	
10	downstream. So the potential effect to the	
11	population of turbine mortality is very small.	
12	The second important criterion is how	
13	many of the sturgeon, for example, would survive	
14	going through. There has been experimental work	
15	done on other fish, but not on we haven't done	
16	any experimental work on adult sturgeon. We do	
17	have a record of about a dozen sturgeon, about 10	
18	sturgeon that have actually been tagged and have	
19	gone through generating stations on the lower	
20	Nelson River. The majority of those have	
21	survived. Now, some have gone through the	
22	spillway and some through the station.	
23	The last point is, in terms of	
24	population effects, it is important how many	
25	sturgeon are being born upstream and downstream of	

Page 1269 the station. Because the importance of a few 1 sturgeon dying depends very much on how many 2 3 sturgeon are being born. So all those three factors are going to be looked at during the 4 monitoring to determine the importance of 5 mortality associated with turbines. 6 Now, the Partnership is also working 7 on means to identify, or working to identify means 8 to address potential issues. Because when there 9 10 is uncertainty, the approach always is to figure out, well, if the situation is worse than you 11 12 expected, what are you going to do about it? Now, 13 the engineers have been looking at a variety of things. One of the things they are looking at is 14 modifications to the trash racks, which would 15 determine what size of sturgeon could even reach 16 the turbines. What they have found, though, is 17 that a bypass structure, that's basically a 18 19 downstream way of passing sturgeon through the 20 station, is not feasible, it's not technically 21 feasible. 22 Now, I'm going to move on to the last

and perhaps the most important mitigation program being developed for the Keeyask project, and that is the stocking program. The stocking will

Page 1270 maintain the total abundance and increase the year 1 classes in both the Keeyask reservoir and Stephens 2 3 Lake. And that will address the cumulative 4 effects associated with the project like reduced spawning during construction, the potential 5 immigration of older sturgeon either upstream or 6 7 downstream at impoundment. And also I have often mentioned, you know, we are going to look to see 8 if we should construct young-of-year habitat, 9 monitor it and so on. There might be some fine 10 tuning required for these constructed habitats, 11 12 and we don't want to have those all be periods during which no young sturgeon are entering our 13 population. So for all those reasons we would be 14 stocking. And additionally, stocking would be 15 16 used to supplement the existing very, very small populations in these areas. 17 In addition to just looking at the 18 19 Keeyask project, because the Partnership was 20 interested in showing that they would be able to 21 have a net benefit to the sturgeon populations in this area, there also will be stocking done at a 22 23 regional scale, in particular in the area that I showed you in the upper Split Lake area, 24 Burntwood, Grass and Nelson rivers. We know 25

Page 1271 looking at historic accounts that there are fewer 1 sturgeon there today than there were historically. 2 3 And from habitat surveys, we also know that there 4 is much more habitat than there are sturgeon today. And that is actually the same conclusion 5 that the Nelson River Sturgeon Board came to for 6 7 looking at the Nelson River upstream of the Kelsey Generating Station. So habitat in this area will 8 not be affected by the Keeyask project, but it is 9 10 another place where the Keeyask project will be supporting the stocking of sturgeon. 11 12 Now, the main features of this 13 conservation stocking program is either developing another hatchery on the lower Nelson River, or 14 looking at continuing to use the facilities at the 15 Grand Rapids hatchery, which Shelley described to 16 It is very important to use the local fish 17 you. to supply the brood stock, because, as I showed 18 19 you on that slide way at the beginning of this 20 sturgeon presentation, basically the sturgeon in 21 Gull Rapids are different from the sturgeon in the Burntwood/Kelsey area. So if at all possible, we 22 23 would like to maintain those as separate genetic 24 stocks.

25

The stocking program would also

Page 1272 release a range of ages of fish from larvae to 1 fingerlings to yearlings, that is one year old 2 3 fish. Each of these life stages has both 4 advantages and disadvantages. Basically, the younger the sturgeon are released, the higher the 5 mortality, but also the less time they will have 6 been subjected to the artificial conditions in the 7 hatchery. 8 9 The program is also going to be very long term. It will be at least 25 years. Because 10 when you are stocking and you are putting young 11 12 fish into the population, you want to have 13 basically a whole generation. And sturgeon have a generation time of 25 years, and so it is a very 14 long-term initiative. And it may actually be 15 longer than that. We will be looking at how is 16 the population doing in determining how the 17 stocking would continue. And the long-term 18 19 objective of that population is to create a 20 healthy -- that is a self-sustaining population. 21 There is not -- the objective of this stocking 22 initiative is not to essentially create a put and 23 take fishery, where you just stock them in, you 24 fish them out or you lose them. You want to have one where it is a self-sustaining population so 25

		Page 1273
1	you don't have to stock in perpetuity.	
2	So looking at the net effect of the	
3	Keeyask project on sturgeon, during the	
4	construction period measures to protect fish will	
5	reduce the risk of mortality. Adult fish may	
6	leave Gull Lake due to construction disturbance or	
7	water level changes. The proposed habitat	
8	mitigation measures proposed habitat mitigation	
9	measures will address operation effects. And the	
10	objective there is to provide habitat to support	
11	the self-sustaining sturgeon populations in the	
12	Keeyask reservoir and Stephens Lake.	
13	In the long term, there is also the	
14	long-term conservation stocking program. The	
15	intent of that program is to maintain the existing	
16	populations as constructed habitat is fine tuned,	
17	and that gives our entire mitigation program a	
18	great deal more certainty. Because we know that	
19	sturgeon can be supported through a stocking	
20	program, so that even if in the first decade we	
21	still need to do fine tuning of our	
22	young-of-the-year habitat, we have that luxury.	
23	It is not as if the natural sturgeon will	
24	disappear while we are trying to fine tune our	
25	constructed habitat.	

1 Also, we will re-establish a viable	
2 stocking population in Stephens Lake. Today that	at
3 population is simply not viable, there is very,	
4 very few sturgeon, and the majority of them come	e
5 from one they are very young sturgeon and mos	st
6 come from one year class. It will support our	
7 existing sturgeon population in Gull Lake, and i	it
8 will support the recovery of the sturgeon	
9 population in the upper Split Lake area where th	ne
10 habitat is not affected by Keeyask.	
11 Now, here is my almost to last slide	2
12 on lake sturgeon. Looking then at the cumulativ	ve
13 effects, I have here a square that shows you whe	ere
14 the sturgeon population will be potentially	
15 adversely affected by the Keeyask project, that	is
16 in the Keeyask reach, and in the Stephens Lake.	
17 And as I indicated, these effects would be just	
18 during the construction period, just before we a	are
19 able to implement some of our mitigation measure	es.
20 And we know, because we have talked about it, the	nat
21 these projects are being developed in an	
22 environment where sturgeon have been already	
23 impacted, which is why we have taken the approac	ch
24 of basically finding ways to increase the existing	ing
25 sturgeon population.	

1		Page 1275
1	When we look at other developments,	
2	for example, further hydroelectric development at	
3	Conawapa, we don't see an overlap between the	
4	adverse effects of the Keeyask project appear and,	
5	you know, any effects that would be associated	
6	with Conawapa.	
7	In addition, the other future	
8	developments that were considered in the	
9	cumulative effects assessment, such as the	
10	development of transmission lines, are not going	
11	to affect lake sturgeon habitat. So there is no	
12	potential for a cumulative effect there.	
13	So in summary then, during	
14	construction, adverse effects to Gull and Stephens	
15	Lake populations are predicted due to immigration.	
16	During operation we expect to maintain or increase	
17	the numbers in the Keeyask Reservoir and Stephens	
18	Lake due to habitat creation and stocking. We	
19	expect an increase in the population in upper	
20	Split Lake due to stocking. And we haven't	
21	identified any future developments that have the	
22	potential to overlap with the adverse effects of	
23	the Keeyask project.	
24	So, in conclusion, an overall increase	

25 in sturgeon numbers in the Kelsey to Kettle reach

		Page 1276
1	is expected in the long term, and that's largely	
2	due to stocking, as well as the fact that the area	
3	directly affected by Keeyask will continue to have	
4	suitable habitat for all life history stages.	
5	Now, the very last part of my	
6	presentation is the monitoring and follow-up. The	
7	aquatic effects monitoring plan has the basic	
8	objectives of all aquatic environmental	
9	monitoring plans. It is to verify effect	
10	predictions in the EIS, to identify unexpected	
11	effects, to determine the effectiveness of	
12	mitigation, assess the need for doing more	
13	mitigation, and determine the effectiveness of any	
14	of the additional or adaptive mitigation measures,	
15	and finally to confirm the compliance with	
16	regulatory requirements.	
17	This program is being developed in	
18	very close consultation with both Manitoba	
19	Conservation and Water Stewardship and DFO. There	
20	is a draft that has been placed on the	
21	Partnership's website, which was actually provided	
22	to the agencies about a year ago. We have had a	
23	variety of meetings to discuss further	
24	developments with them. So we expect the next	
25	draft that's created will reflect more of their	

		Page 1277
1	comments, as well as input from other	0
2	stakeholders.	
3	The annual results will be reviewed by	
4	the Partnership at the monitoring advisory	
5	committee, and it will also be reviewed by DFO and	
6	MCWS, and both the regulators will base the	
7	requirement for additional mitigation, for	
8	example, fish passage, on the results of that	
9	monitoring.	
10	We are looking at many of the same	
11	components that I discussed with you today, water	
12	quality, aquatic habitat, aquatic invertebrates.	
13	The fish community will focus on walleye, pike and	
14	whitefish, as well as sturgeon, and finally the	
15	mercury in fish flesh. That will actually be	
16	developed to provide the necessary inputs into the	
17	information being provided to resource users that	
18	you will hear about in the socio-economic panel.	
19	I'm just going to talk very briefly	
20	about the lake sturgeon program because just	
21	for reasons of time. It starts off with a	
22	pre-construction program, as I mentioned, the	
23	adult population size has been, work has been	
24	ongoing since about 2001. Recruitment monitoring,	
25	that is looking at whether there are young fish in	

23

Page 1278 the environment, was started in 2008. Adult 1 movements, the program for the construction period 2 3 started in 2011, with the application of acoustic 4 tags that will have a ten-year lifespan, so it will allow us to look at sturgeon now and right 5 through the construction period. And finally sub 6 adult movements, and we have applied three-year 7 tags this year. 8 9 During the construction period, which will last about five to six years until the full 10 supply level is reached in the reservoir, for the 11 12 aquatic studies that is the construction period. I know that there will be some work continuing in 13 the station for a couple of years thereafter, but 14 in terms of the aquatic environment, once the land 15 16 is fully flooded, we move into the operation 17 monitoring. And finally during operation, there 18 19 will be an initial program that will be run for 20 three years, there will be review to see if it needs to be refined. It will be refined, then it 21 22 will continue on until year 10, at which point

24 duration in the long term will depend on the 25 results and vary among components. For example,

there will be another review, and then the

_		Page 1279
1	looking at lake sturgeon and how the stocking	
2	program is doing, that will be a program that will	
3	be for over 25 years.	
4	Now, there are four basic components.	
5	The first is what we call adult and sub adult	
6	spring netting. I explained to you that we do	
7	this netting to obtain the population estimates,	
8	and it is done in alternate years in upper Split	
9	Lake and the Keeyask reservoir and Stephens Lake.	
10	And this work has actually been ongoing since	
11	2001, so we already have a very good idea of what	
12	you should be seeing in the existing environment.	
13	We will use the results to continue to generate	
14	population estimates, so that will tell us	
15	information about long-term population changes,	
16	and also whether there is something unexpected	
17	happening. Like, are we getting an increase in	
18	adult mortality for some unanticipated reason? It	
19	also tells you their condition, in other words,	
20	how fat they are. Fish are fortunate in that the	
21	fatter they are, the better it is. So that's one	
22	thing you monitor, as well as their growth data.	
23	And that will tell us a lot of information about	
24	whether the feeding conditions in the reservoir	
25	are suitable. We are predicting that the habitat	

		Page 1280
1	will be good, but we want to confirm that.	
2	We are also going to continue to do a	
3	great deal of acoustic telemetry studies. This is	
4	the movement work that's ongoing already. It	
5	allows you actually to look at where the sturgeon	
6	are going year round, because in some locations	
7	you can leave your receivers in the water for the	
8	winter. In some places due to ice conditions, you	
9	can't. It will give us a much better idea of what	
10	it means to have the generating station as a	
11	barrier. How are the fish responding to the	
12	generation station from the downstream end, and	
13	how many fish are actually going downstream past	
14	the generating station and what is happening to	
15	them? This is probably one of the best ways of	
16	determining what the actual turbine effects are.	
17	Because rather than experimentally introducing a	
18	fish into a turbine, you are seeing in the natural	
19	environment how many choose to go downstream and	
20	what happens to them.	
21	The telemetry work is also very	
22	valuable in getting a much more refined idea of	
23	habitat use in the reservoir and downstream. And	
24	are they using those constructed habitats? You	
25	know, we are creating spawning habitat, do we have	

		Page 1281
1	fish with tags, with acoustic tags on them that	0
2	are going in to use those habitats?	
3	The recruitment monitoring, this is a	
4	term that we are using for studies actually	
5	targeting young fish, so that is the young fish at	
6	the fall, and also we see them again as one and	
7	two year olds. And this is a very important	
8	program because it is one of the most immediate	
9	measures of effects to lake sturgeon. It tells	
10	you, are young fish present, are they surviving	
11	and are they growing. And you will notice that	
12	many of our it will tell us if our post-project	
13	habitat is suitable, because we weren't certain	
14	about that. It will tell us how effective our	
15	constructed habitat is. And it will also tell us	
16	how successful is our stocking program? And in	
17	particular for the stocking program, there are	
18	questions about how many sturgeon should you	
19	stock? You don't want to stock so few that none	
20	survive, and you don't want to stock so many that	
21	they are actually competing amongst each other and	
22	not having enough space or food, for example, or	
23	you see evidence that they are either too small or	
24	not growing well enough.	

25

We are also going to do some very site

		Page 1282
1	specific sampling on the constructed habitats.	5
2	For example, if we see evidence of sturgeon	
3	spawning in our tailrace area, we may be looking	
4	at trying to determine where exactly they are	
5	spawning by placing eggs mats or other methods	
6	that we have used at Pointe Du Bois.	
7	Monitoring will also occur on other	
8	habitats that might be constructed. For example,	
9	if we develop young-of-the-year habitat in the	
10	reservoir, you would do a very specific targeted	
11	program for that.	
12	And that brings me to the end of my	
13	presentation. Thank you very much for your	
14	attention.	
15	THE CHAIRMAN: Thank you,	
16	Ms. Schneider-Vieira.	
17	Once again, your timing couldn't be	
18	better. It is time to break for lunch. We will	
19	return at 1:30	
20	(Proceedings recessed at 12:30 and	
21	reconvened at 1:30 p.m.)	
22	THE CHAIRMAN: We'll reconvene now.	
23	Cross-examination, Ms. Whelan Enns.	
24	MS. WHALEN ENNS: Thank you,	
25	Mr. Chair. I have a wealth of resources here so	

		Page 1283
1	I'll do my best to be clear, speak quickly without	Ū
2	being too quick. Wave your hand, please. And I	
3	wanted to start by going back to the topic of the	
4	2005 water levels and amount of water in Northern	
5	Manitoba from yesterday afternoon. We heard that	
6	there was 70 percent more water input into the	
7	system in 2005 than in a normal year. And that	
8	included the North Saskatchewan River based on	
9	presentations in MKO sessions I was in.	
10	So the question then would be, given	
11	the amount of flooding in 2005 inside the Split	
12	Lake community, whether the statements in the EIS	
13	that there would be no measurable effects to the	
14	project, aquatic project in this case, from	
15	climate change, whether it's the view of the panel	
16	that's still true? We're talking about the Split	
17	Lake community being flooded in 2005. And yes,	
18	Mr. Chair, I've got the photos, should there be a	
19	need to see them.	
20	MS. SCHNEIDER-VIEIRA: The Split Lake	
21	community was flooded in 2005 as a result of high	
22	inflows to the system. The Keeyask Generating	
23	Station is being developed well downstream of	
24	Split Lake, and there's been extensive analysis of	
25	the water level profile, as you heard during the	

		Page 1284
1	physical environment and project description	
2	presentation, such that there would be no effects	
3	of the Keeyask project on open water levels in	
4	Split Lake.	
5	MS. WHALEN ENNS: Thank you. Did the	
6	team or panel for the aquatics elements in the	
7	Keeyask generation project EIS take into account	
8	the prairie provinces water sharing or water	
9	management agreement, in your analysis?	
10	MS. SCHNEIDER-VIEIRA: The aquatic	
11	environment assessment used the information	
12	provided to us by the physical environment team in	
13	terms of hydraulics, that is the existing and	
14	post-project water regime So a question about	
15	how they, you know, how they developed their water	
16	regime would need to be directed to them.	
17	MS. WHALEN ENNS: This question has to	
18	do with discussion with that panel, including a	
19	question from the Chair yesterday regarding	
20	glacial melting. So there were a variety of	
21	things from yesterday's panel that in fact were	
22	identified to come to this panel. So shall we	
23	take that as a no, that the prairie province's	
24	water management agreement was not taken into	
25	account?	

	F	Page 1285
1	MS. SCHNEIDER-VIEIRA: I'm advised	
2	that one of the engineers who worked on the water	
3	regime is not familiar with that specific	
4	agreement.	
5	MS. WHALEN ENNS: Thank you.	
6	It does dictate what portion of the	
7	water coming from British Columbia across the	
8	three provinces comes into Northern Manitoba and	
9	Southern Manitoba.	
10	Does Manitoba Hydro view the Nelson	
11	River as a shared river? This would be within the	
12	context of the World Commission on Dams	
13	definition?	
14	MR. DAVIES: Could you please tell me	
15	what you are I'm sorry, I'm unclear on the	
16	question. The World Commission on Dams is quite	
17	an old document. I read it about ten years ago.	
18	Can you please expand on that, please?	
19	MS. WHALEN ENNS: Sure.	
20	Vice-president Ken Adams of Manitoba Hydro put the	
21	World Commission on Dams report into the hearing	
22	proceedings on the first day. And there is in the	
23	World Commission on Dams then a set of steps in	
24	terms of a compliance plan for the recommendations	
25	in the World Commission on Dams report. And there	

Page 1286 is quite specific standards then in terms of 1 2 shared rivers. 3 I think, Mr. Chair, we're probably not 4 going to get farther. 5 THE CHAIRMAN: Is that relevant to this panel? 6 MS. WHELAN ENNS: It's relevant to the 7 Nelson basin. 8 THE CHAIRMAN: Yes, but this panel is 9 talking about aquatic effects of the generating 10 station. 11 12 MS. WHALEN ENNS: All right. We'll 13 pass, thank you. 14 THE CHAIRMAN: Please move on. 15 MS. WHALEN ENNS: Okay. There is a series of slides in the 16 presentation which refer to monitoring programs 17 and reports from monitoring programs over about a 18 19 40-year period. Could you tell us whether those 20 reports that are referenced in the presentation 21 are all publicly available? MR. DAVIES: Could you please direct 22 23 us to which page you are on? 24 MS. WHALEN ENNS: I believe they start to be listed on page 12, the section is historic 25

	Page 1287
1	studies. So there's a page that identifies and
2	starts a chronology in 1971.
3	MR. DAVIES: You're referring to my
4	presentation then?
5	MS. WHELAN ENNS: Yes.
б	MR. DAVIES: Okay.
7	That's in the public domain, and
8	there's a number of studies that were actually
9	conducted prior to the Lake Winnipeg/Churchill
10	Nelson River Study Board that are attached to
11	those, most of them by Department of Fisheries and
12	Oceans. And those are also in the public domain.
13	MS. WHALEN ENNS: Thank you.
14	The question then also applies to the
15	Canada/Manitoba Mercury Monitoring Program and the
16	series of Manitoba Hydro and DFO mercury studies.
17	MR. DAVIES: Virtually, I believe all
18	of them, to the best of my knowledge, are
19	available to the public.
20	MS. WHELAN ENNS: Thank you.
21	MR. DAVIES: Actually, I should make
22	one exception. There is some recent information
23	that's being collected in 2012, 2013, that may not
24	be published yet.
25	MS. WHELAN ENNS: It would be a

		Page 1288
1	continuation then of one of these studies?	C C
2	MR. DAVIES: That's correct.	
3	MS. WHALEN ENNS: The same thing is	
4	true then in terms of the Limestone Generation	
5	Station monitoring studies, those are available?	
б	MR. DAVIES: I had said there's 70	
7	reports in total, there is actually about 80	
8	reports, although those studies are also	
9	available.	
10	MS. WHELAN ENNS: Thank you.	
11	MR. DAVIES: I should clarify that a	
12	bit. When I say available, they have been	
13	provided to the Provincial Government, in many	
14	case to the Federal Government, and therefore we	
15	considered them in the public domain.	
16	MS. WHELAN ENNS: Yes, it would be	
17	considered in the public domain. That doesn't get	
18	us quite to whether they are publicly available.	
19	The legislative library my be a thought.	
20	Does Manitoba Hydro post on their	
21	website the ongoing reports from monitoring	
22	programs?	
23	MR. DAVIES: The main monitoring	
24	program that we spoke about before was the	
25	coordinated aquatic monitoring program. There is	

		Page 1289
1	a site developed and it's currently being	
2	populated with information from the CAMP program.	
3	MS. WHELAN ENNS: And it will be a	
4	public website rather than internet?	
5	MR. DAVIES: It's a public website.	
6	MS. WHALEN ENNS: Great, thank you.	
7	I think the first full page map in	
8	this presentation is on 14; is that correct? Is	
9	that the first map?	
10	MR. DAVIES: You're referring to the	
11	map with the mercury site locations?	
12	MS. WHELAN ENNS: Yes. I have some	
13	questions pertaining to the maps and the	
14	presentations. So the next several slides have to	
15	do with certain of these environmental monitoring	
16	programs and sets of reports. And then the next	
17	map is on page 20.	
18	MR. DAVIES: Right.	
19	MS. WHELAN ENNS: Again, to identify a	
20	couple more and then to ask some questions. Page	
21	22 and page 23, we have a pattern that I'd like to	
22	ask about, and that is some of these maps have	
23	titles and some do not. Some of them have legends	
24	and some do not. Is there a reason for that?	
25	MR. DAVIES: I believe that the first	

1290

	_
1	Page map, the fish mercury site locations in Northern
2	Manitoba I'll just check this with
3	Dr. Jansen I believe it's a map that he put
4	together for one of his presentations. He is one
5	of the leaders on mercury in Manitoba.
б	MS. WHELAN ENNS: And this first map
7	is single topic?
8	MR. DAVIES: That's correct.
9	MS. WHALEN ENNS: And it does have a
10	title, single topics less likely to need a legend.
11	MR. DAVIES: I'm not sure what the
12	value of whether or not it has a legend, but it
13	was a map produced by, I believe, Dr. Jansen. One
14	moment, please. Yes, it was. It was produced for
15	a presentation that he provided at a mercury
16	conference.
17	THE CHAIRMAN: Could you pull the mic
18	in a little closer, Mr. Davies, please?
19	MR. DAVIES: Yes, sorry about that.
20	MS. WHELAN ENNS: Thank you.
21	The map on then page 20 does not have
22	a title, does not have a legend, and it has about
23	eight, maybe ten colours on it?
24	MR. DAVIES: The title, probably it
25	got clipped off. This is one of the maps from the

1	Page 1291
1	coordinated aquatic monitoring program, and I
2	believe that map is actually on the public
3	website.
4	MS. WHALEN ENNS: On 22 we have a
5	legend but not a title; on page 23, the same; on
б	page 24, the same; on page 25, the same approach.
7	So we have, Mr. Speaker, I'm basically
8	asking questions because it's fairly unusual to
9	see the set of maps in this kind of proceeding
10	without titles. And the second half of the
11	presentation, they all have. So we have got
12	some I don't know the reasoning, or whether
13	there is reasoning for it.
14	MR. DAVIES: These maps were prepared
15	specifically, and updated to 2012 specifically for
16	this presentation. So if there's a title that's
17	missing, we apologize for that.
18	THE CHAIRMAN: As I recall from the
19	presentation earlier, they were clearly identified
20	as areas where different studies had been
21	conducted.
22	MS. WHALEN ENNS: Yes.
23	THE CHAIRMAN: And I think the four or
24	five of them are just different parts of Northern
25	Manitoba.

	Page 1292
1	MS. WHALEN ENNS: Fair enough. Thank
2	you.
3	And thank you for the date on this
4	one. When a legend is missing, often the date is
5	missing, and the maps have a long life and are
б	likely to be referred to.
7	This is a reference then to slide 38,
8	though there have been I believe page 38 would
9	be a better way of saying that. I am sorry, but
10	we've got both page numbers and slide numbers, so
11	let me see.
12	MR. DAVIES: My presentation only goes
13	up to slide 32, so I imagine you must be on
14	Dr. Schneider-Vieira's; is that correct?
15	MS. WHALEN ENNS: Yes, I think so.
16	There's a bit of a risk of having put
17	down the slide number versus the page number. My
18	question has to do with the references to Manitoba
19	and Canada guidelines.
20	MS. SCHNEIDER-VIEIRA: Yes, I believe
21	you are referring to in the water quality slide,
22	is that correct?
23	MS. WHALEN ENNS: And what's the other
24	number on it?
25	MR. DAVIES: I'm sorry, but both

_	Page 1293
1	Dr. Schneider and myself are somewhat confused.
2	Which slide are you on? Are you referring to the
3	mercury slide or the water quality slide?
4	MS. WHELAN ENNS: Water quality slide.
5	MR. DAVIES: Which number?
6	MS. WHELAN ENNS: Well, I have 38 on
7	it, which might be page number versus the slide
8	number.
9	THE CHAIRMAN: Either way, it's a
10	wrong number.
11	MS. WHALEN ENNS: Yes, thank you. My
12	apologies.
13	So if I may, I'll pose the question,
14	because this is a sequence of slide and references
15	to water quality guidelines. And the question has
16	had to do with the Manitoba guidelines. Are they,
17	in fact, a regulatory guideline versus a
18	voluntary?
19	MS. SCHNEIDER-VIEIRA: They are the
20	Manitoba water quality guidelines, standards,
21	objectives, and guidelines put out by Manitoba
22	Conservation and Water Stewardship. The standards
23	portion dictates what type of, basically, levels
24	of substances and effluents.
25	MS. WHALEN ENNS: Okay. The question

1	was whather they are requiletory?	Page 1294
1	was whether they are regulatory?	
2	MS. SCHNEIDER-VIEIRA: They are	
3	regulatory guidelines, but they don't set absolute	
4	limits of what a substance can be in the	
5	environment. Because, as we noted in our material	
6	in the EIS, there are several substances that are	
7	actually above the guidelines currently in the	
8	northern environment.	
9	MS. WHELAN ENNS: We would agree that	
10	in 2011, they were placed as a regulation under	
11	the Water Protection Act in Manitoba?	
12	MS. SCHNEIDER-VIEIRA: Yes, they were.	
13	MS. WHELAN ENNS: Thank you.	
14	MR. DAVIES: Actually, I would just	
15	like to add. When we say that some of them are	
16	above guidelines, we are referring to things like	
17	aluminum, which is one of the most common elements	
18	in the world actually, and aluminum is above the	
19	guidelines in both impacted and non impacted	
20	water. So it's very common.	
21	MS. WHALEN ENNS: Thank you.	
22	The distinction between what's a	
23	required or regulatory and what's a set of goals	
24	is the reason for the question.	
25	MS. SCHNEIDER-VIEIRA: While we have a	

		Page 1295
1	brief pause, I just wanted to note that you had	
2	asked earlier about the interprovincial agreement.	
3	So I just want to note that, yes, you are correct	
4	that it does define what proportions of water can	
5	be kept by the different provinces and that	
6	agreement is factored into the flow files that	
7	were used by the physical environment team.	
8	MS. WHALEN ENNS: Thank you very much.	
9	It's a matter of water kept, and also	
10	water that has to be accepted in Manitoba at the	
11	pipe, in terms of the proportions in the	
12	agreement, hence the question.	
13	Having one booboo with page numbers,	
14	I'm going to try again, and this has to do with	
15	data collection. And I'm on page 42, slide number	
16	10. And I'll have to do that because I didn't	
17	write them both down.	
18	There's some references in this, it	
19	also goes to what was in the previous slide, so	
20	there's references for slides, but there's a	
21	reference here to 2001 to 2004 in terms of the	
22	basic work, and on components, okay. And I would	
23	like to ask whether there's any data that's ten	
24	years old now, or whether our sense is clear that	
25	there's been ongoing collection of data in all the	

		Page 1296
1	areas that are there from the basic work?	
2	MS. SCHNEIDER-VIEIRA: I'm going to	
3	answer it component by component. For the water	
4	quality data, as was mentioned, we redid a set of	
5	sampling in 2009 in the Keeyask area. Also there	
6	is ongoing water, collection of water quality data	
7	in Split Lake, both by the province and as part of	
8	the CAMP program. The CAMP program also regularly	
9	samples water quality in Stephens Lake.	
10	In terms of the benthic invertebrates,	
11	we sampled during that period, and we will just	
12	prior to construction next year repeat the	
13	sampling within the reservoir. As with water	
14	quality data, as part of the CAMP data we do	
15	regularly collect benthic invertebrate data in	
16	Split Lake so we know whether there are changes	
17	that are happening in the system as a whole.	
18	With respect to fish, there has been	
19	ongoing monitoring of the various groups of fish.	
20	In particular, as I have discussed, lake sturgeon	
21	have been sampled throughout quite extensively.	
22	And as our understanding of sturgeon has	
23	developed, we have adaptive programs. For	
24	example, the recruitment monitoring began	
25	intensively in 2008, after we were able to	

1297

		_
1	successfully sample or collect young-of-the-year	Page
2	sturgeon.	
3	MS. WHELAN ENNS: Thank you very much.	
4	Is it an accurate assumption then that	
5	the collection of data and monitoring continues	
6	now, will continue through construction and	
7	through operation in these components?	
8	MS. SCHNEIDER-VIEIRA: Yes, that would	
9	be correct. The duration of the programs, as well	
10	as the frequency, will vary amongst the	
11	components.	
12	MS. WHALEN ENNS: Thank you.	
13	I am on page 47, slide 15. And this	
14	is a question in terms of effluent. The EIS is	
15	fairly thorough about the sewage treatment plant	
16	that will be put in place once there is a	
17	generation station. So it's not absolutely clear	
18	to us then from IRs and information to date what	
19	the stages of effluent treatment are through the	
20	stages of construction and operation. What's the	
21	interim sewage treatment arrangement, and will	
22	Keeyask Lake be used for effluent?	
23	MS. SCHNEIDER-VIEIRA: Let me just	
24	consult with someone in the back row, please?	
25	THE CHAIRMAN: Ms. Whelan Enns, to my	

	Page 1298
1	knowledge, it's quite clear in the EIS what the
2	sewage treatment is going to be during the CAMP
3	stage.
4	MS. WHALEN ENNS: Yes, I wasn't just
5	asking about the CAMP stage, I was asking about
6	the construction period.
7	THE CHAIRMAN: Well, the CAMP stage, I
8	meant the construction period.
9	MS. WHALEN ENNS: Well, if you want us
10	to pass, we can.
11	MR. DAVIES: We have an answer if
12	you'd like.
13	THE CHAIRMAN: They have an answer so
14	we may as well hear it, but please don't ask
15	questions that you clearly know the answer to, or
16	should know the answer to if they are in the
17	materials.
18	MS. SCHNEIDER-VIEIRA: It's just been
19	noted to me that the sewage treatment system that
20	will be used for the construction camp will
21	discharge to the Nelson River main stem, and in
22	fact it already has a Manitoba Environment Act
23	licence that's been issued under KIP.
24	MS. WHELAN ENNS: Thank you. I'd like
25	to ask some questions about Stephens Lake, your

		Page 1299
1	maps are quite clear and helpful in terms of	
2	forming these questions. There is an indication	
3	that Stephens Lake, in your presentation today and	
4	in the EIS, became a reservoir as of 1970,	
5	correct?	
6	MS. SCHNEIDER-VIEIRA: There about,	
7	early 1970s.	
8	MS. WHALEN ENNS: So do you have then	
9	baseline aquatic information for the Stephens Lake	
10	location before it became reservoir, and have you	
11	been using that then in comparison in terms of	
12	using Stephens Lake as a proxy for Keeyask lake?	
13	MS. SCHNEIDER-VIEIRA: We have	
14	information, water quality data was collected	
15	early in the construction period, and through	
16	operation. To the best of my knowledge, we don't	
17	have sampling for the fish community just prior to	
18	impoundment.	
19	You may recall that I showed you the	
20	mercury slide that had the first sampling in the	
21	'80s, that was part of the MIMP program that	
22	Mr. Davies described, and that is also when fish	
23	community information was obtained.	
24	You may recall that I mentioned in my	
25	discussion about lake sturgeon, I said that our	

-		Page 1300
1	historic information on lake sturgeon in what was	
2	prior to Stephens Lake becoming a reservoir was	
3	from the Fox Lake Cree Nation.	
4	MS. WHALEN ENNS: Thank you.	
5	You used comments and references in	
6	terms of following impoundment, and using Stephens	
7	Lake as a valuable guide, as a proxy. I'm trying	
8	to figure out the best way to ask this.	
9	It seems that you are using a location	
10	that was not a lake before hydro development as a	
11	proxy for a lake that is going to become a	
12	reservoir. So the first site was not a lake and	
13	became a reservoir, an extensive one, that is now	
14	called Stephens Lake, and Keeyask is a lake.	
15	MS. SCHNEIDER-VIEIRA: There are a	
16	couple of points on that. First of all, present	
17	day Gull Lake is, as I mentioned, it is actually a	
18	widening of the river channel. There is	
19	considerable flow through it, so it is very much a	
20	river like lake, if you will. In the area that is	
21	present day Stephens Lake, there was the Nelson	
22	River along the southern portion, which was	
23	separated by a river channel. It also included	
24	Moose Nose Lake to the north. You will see that	
25	on some of the maps as being an area that was pale	

1		Page 1301
1	blue because it was water prior to development of	
2	Stephens Lake, of the construction of the Kettle	
3	Generating Station.	
4	MS. WHALEN ENNS: Thank you, that's a	
5	help.	
б	This is a reference to 61, and I'm	
7	going to make sure this is fish species and	
8	population trends. I'd like to ask whether any of	
9	the fish species that you assessed and that you	
10	are reporting on in the EIS, and to us today,	
11	whether you in fact did any analysis or modelled	
12	any of these results in relation to risk from	
13	climate change?	
14	MS. SCHNEIDER-VIEIRA: In the aquatic	
15	environment supporting volume, and summarized in	
16	the response to EIS guidelines, there is a section	
17	that discusses how are the changes as a result, or	
18	the effects that we assessed as a result of	
19	Keeyask, how are they vulnerable to the effects of	
20	climate change. Would our conclusions change?	
21	And there we provided some very general	
22	information on, for example, as a result of	
23	climate change you would expect some species which	
24	favour more warmer waters to become more abundant,	
25	could even include something like sturgeon, as	

		Page 1302
1	well as species that are typically cool water,	
2	like lake whitefish would become less abundant.	
3	MS. WHELAN ENNS: Thank you very much.	
4	I would take that as a no to my	
5	question in terms of whether there was	
6	specifically modeling based on climate change	
7	scenarios for specific fish species.	
8	MS. SCHNEIDER-VIEIRA: We didn't do	
9	any specific sensitivity analysis with respect to	
10	climate change.	
11	MS. WHALEN ENNS: Thank you.	
12	Would you tell us, and this is a	
13	reference to 62 following on 61 this was fairly	
14	important in your presentation, and it's new	
15	information in relation to the EIS contents.	
16	Would you tell us what stages or steps you went	
17	through to arrive at this decision that a fish	
18	passage system at the generation station was not	
19	required? I heard in your presentation that you	
20	said this twice. You used the term not required,	
21	and then you also described it as not being viable	
22	or doable. And again, I'm not trying to quote	
23	you, I just heard it two different ways.	
24	MS. SCHNEIDER-VIEIRA: The issue of	
25	fish passage has been discussed even, by the	

		Page 1303
1	partnership, even prior to when they were a	
2	partnership. The discussions began back in the	
3	early 2000s. And at that point there was a review	
4	done of all the different kinds of fish passage,	
5	and the primary question was, is there some method	
6	out there that we know can reliably provide	
7	upstream fish passage to lake sturgeon at a	
8	station the height of Keeyask? And the answer was	
9	no.	
10	Then when we began working, sort of	
11	more detail after the partnership was formed in	
12	2008, the aquatic working group began to basically	
13	revisit this issue, because it is a very important	
14	issue, are you going to provide fish passage, what	
15	would be the reasons? And there was further	
16	analysis then done of the different options from a	
17	biological perspective and, you know, what could	
18	possibly work for lake sturgeon? It was a very	
19	extensive process. There were a couple of	
20	workshops even in Northern Manitoba and Thompson	
21	with all representatives from many, many community	
22	members, as well as external experts. And the	
23	output of that was that there were potential ways	
24	that you could provide passage, but given the	
25	total mitigation package that we had developed,	

		Page 1304
1	and that there really was not a clear benefit of	
2	providing fish passage, it was decided to	
3	basically park it at that point.	
4	After that in I believe 2010, DFO did	
5	advise they would be looking for fish passage for	
б	this project. And that in some ways relates to	
7	their policy. They want to see fish passage where	
8	fish can move in the existing environment. And so	
9	then, you know, that resulted in a variety of	
10	other people becoming involved and a variety of	
11	methods being identified, as had been previously,	
12	and they were taken a little bit further in terms	
13	of the design. And after further discussions	
14	between the partnership, DFO, and Manitoba	
15	Conservation and Water Stewardship, it was decided	
16	that since it wasn't clear whether fish passage	
17	would provide a benefit, that the best approach	
18	would be the one that's been taken now. And that	
19	one is the one that DFO has set out in its	
20	correspondence which was provided in response to	
21	one of the CEC IRs.	
22	MS. WHELAN ENNS: Thank you very much.	
23	I believe that the slide on page 50,	
24	slide number 18, and I might be out by one, is the	
25	first instance where you have the red line around	

		Page 1305
1	your study area. Again, if I have missed one, the	
2	question is about the study area. And the	
3	information is clear, and in the volumes and in	
4	your presentation. But would you tell us what the	
5	relationship is, the aquatic study area to the RSA	
б	and the LSA, and how the decision is made to have	
7	an aquatic study area that's different from either	
8	of those?	
9	MS. SCHNEIDER-VIEIRA: Are you	
10	referring to the RSA and LSA identified in the	
11	terrestrial environment?	
12	MS. WHELAN ENNS: There's an RSA and	
13	LSA identified for the entire assessment?	
14	MS. SCHNEIDER-VIEIRA: I'm going to	
15	take you back to a different slide that	
16	illustrated the study area for the aquatics.	
17	If you go back to slide number 8,	
18	please? You will see it's labelled study area?	
19	And this was the study area	
20	MS. WHELAN ENNS: Excuse me, slide	
21	number 8, page 8 in the package I've got.	
22	THE CHAIRMAN: Page 40.	
23	MS. WHALEN ENNS: Thank you.	
24	MS. SCHNEIDER-VIEIRA: It's labelled	
25	Split to Stephens Lake, and this basically was our	

		Page 1306
1	regional study area, it extended from Split Lake	
2	down through Stephens Lake, so between the Kelsey	
3	and Kettle Generating Stations. And this was the	
4	regional study area for all of the aquatic	
5	components except for water quality. Because the	
6	effects for water quality could extend further	
7	downstream, the water qualities study area	
8	extended down to the Nelson estuary.	
9	MS. WHELAN ENNS: Thank you.	
10	There are several references in the	
11	EIS to the lack of water quality and other kind of	
12	aquatic studies from between Split Lake and where	
13	Stephens Lake is, and that was in your	
14	presentation this morning. Would you tell us a	
15	bit more thoroughly how this has been overcome?	
16	We have the information clear in the presentation	
17	in terms of the monitoring programs over time,	
18	going back to the '70s and coming forward. But we	
19	also have this reality of a whole lot less	
20	monitoring and data from this stretch of the	
21	river.	
22	MS. SCHNEIDER-VIEIRA: This stretch of	
23	the river was studied extensively as part of the	
24	EIS program which began in 2001. And so we were	
25	able to obtain what we believe is adequate amounts	

		Page 1307
1	of information to describe that existing	U
2	environment.	
3	The really important part of the	
4	earlier data from other areas, it was twofold.	
5	One is it helped us understand the effects of	
6	hydroelectric development elsewhere, which	
7	improved our ability to make predictions. The	
8	other thing it did is allowed us to basically do	
9	some analyses, for example, on the water quality	
10	data from Split Lake to determine if there are	
11	marked long-term trends and changes to water	
12	quality, because those would also affect our study	
13	area, our local, our specific area that will be	
14	affected by Keeyask.	
15	MS. WHELAN ENNS: Were there any	
16	surprises, back-casting is not the best way to ask	
17	this, but were there any surprises when you	
18	started to study this stretch of the river in	
19	2001, based on what you knew from the other	
20	studies?	
21	MS. SCHNEIDER-VIEIRA: I would have to	
22	look to other members of my team. Let me just	
23	consult briefly, please?	
24	MS. WHELAN ENNS: Thank you.	
25	MS. SCHNEIDER-VIEIRA: My back row	

1	assures me that there were no surprises. It was	Page 1308
2	noted that we knew there was a sturgeon population	
3	there, because Don MacDonald had done the work, or	
4	the Nelson River Sturgeon Board had done the work	
5	in Gull Lake in 1995.	
б	MS. WHELAN ENNS: Thank you.	
7	We know that the habitat suitability	
8	index for sturgeon is part of your work, and that	
9	there is a requirement in the CEA guidelines to	
10	use that one. Are there any other habitat	
11	suitability indices involved in the aquatic	
12	species work, in your assessment?	
13	MS. SCHNEIDER-VIEIRA: We didn't do	
14	HSI analyses for the other species. The fish	
15	habitat analyses that we did for walleye, pike,	
16	and lake whitefish was based on an analysis of	
17	different habitat types, like deep, soft bottom,	
18	low velocity. And we used GIS mapping to map the	
19	areas both in the existing and post-project	
20	environments by those categories. And then we	
21	used actual fish data, actual gill netting catches	
22	to define what the fish use would be of those	
23	different habitats.	
24	MS. WHELAN ENNS: Has Manitoba Hydro	
25	given any consideration to importing, as in	

		Page 1309
1	importing and adapting for Northern Manitoba, or	
2	undertaking the work for there to be habitat	
3	suitability indices for the species in this study	
4	area?	
5	MS. SCHNEIDER-VIEIRA: Do you mean for	
6	species beside lake sturgeon?	
7	We did briefly discuss with the	
8	Department of Fisheries and Oceans whether they	
9	would like us to do some HSI analyses for these	
10	other species, and that didn't seem to be an area	
11	of particular interest for them.	
12	MS. WHALEN ENNS: All right. Thank	
13	you very much.	
14	Thank you also for the thorough	
15	information both in the EIS and in your	
16	presentation about your water sampling programs.	
17	And this includes the various programs of	
18	monitoring.	
19	Would you tell us whether Manitoba	
20	Hydro is conducting water sampling for the	
21	Manitoba Government? Another way to ask that	
22	question would be whether or not you, in fact,	
23	provide your water sampling data to Manitoba Water	
24	Stewardship?	
25	MR. DAVIES: Under the CAMP program,	

		Page 1310
1	both Manitoba Hydro and Manitoba collect water	Ū
2	quality samples and that information is shared.	
3	MS. WHALEN ENNS: Thank you.	
4	On page 51, slide 19, there is a	
5	reference to 10 to 15 years in the bold,	
6	approximately the middle of the page.	
7	Could we confirm, please, whether this	
8	10 to 15 year period is from the beginning of	
9	construction, or it's a reference to the	
10	beginning, from the beginning of operation?	
11	MS. SCHNEIDER-VIEIRA: As indicated in	
12	the bullet, it says:	
13	"During operation effects to water	
14	quality in the flooded area would last	
15	from 10 to 15 years."	
16	And what that is, basically it's	
17	timeline identified from the physical environment	
18	assessment for much of the peak breakdown and	
19	other related processes to occur. Most of it will	
20	actually occur in the first few years and then it	
21	will tail off over the following, for that first	
22	15 year period.	
23	MS. WHELAN ENNS: Is it accurate to	
24	say then that this is as much as a 20 to 23, 24	
25	year period if you include the construction	

Page 1311 period? 1 2 MS. SCHNEIDER-VIEIRA: During the 3 construction period, effects to water quality are going to be very limited. As was indicated in the 4 presentation, there will be a time, it will be 5 primarily close to the construction site. And б then the duration of elevated TSS extending 7 further downstream is one to three months in each 8 of two years. So it is not for the six or eight 9 10 year construction period. MS. WHALEN ENNS: Thank you. 11 12 In the EIS, too many numbers, but it's volume six obviously for the -- is that first of 13 the aquatic volumes -- 6.4.3.1.2. is about 14 residual effects and there's some reference here 15 to near shore flooded areas having -- expected to 16 have adverse effects in the medium term, and 17 moderate to large effects in small geographic 18 19 extents, and also then in the reservoir and several kilometres downstream into Stephens Lake 20 21 residual effects that are expected to be adverse. 22 Has your analysis changed since this 23 was put in the EIS? Is this still true? 24 MS. SCHNEIDER-VIEIRA: Could you 25 please -- you are quoting from the response to EIS

Page 1312 guidelines, I believe? 1 2 MS. WHELAN ENNS: I'm double-checking 3 the volume, okay. Yes, we're in the response to 4 EIS guidelines. 5 MS. SCHNEIDER-VIEIRA: And could you provide me with the page number, please? 6 MS. WHALEN ENNS: 6.4.3.1.2. 7 MS. SCHNEIDER-VIEIRA: That's the 8 section number, would you be able to give me the 9 10 page number? MS. WHELAN ENNS: Sorry, page 248 and 11 249. 12 13 MS. SCHNEIDER-VIEIRA: I'll have to search electronically. I'm sorry, my page numbers 14 and yours don't match. Mine start with a 6 dash 15 16 something. MS. WHALEN ENNS: Yes, I assumed that. 17 Let's try again, 6-248 and 6-249. 18 19 MS. SCHNEIDER-VIEIRA: Okay. Now 20 we're in the same spot. Could I ask you to repeat 21 your question, please? 22 MS. WHALEN ENNS: Sure. I was in a 23 quote that starts with: 24 "Using the criteria established to 25 determine significance of projects

-		Page 1313
1	effects for regulatory purposes"	
2	And then there's a reference described in section	
3	5.5. And the rest of that fairly long sentence is	
4	what I was reading to you about expected adverse	
5	effects medium term to moderate over a small	
б	geographic extent. And then you have a sentence	
7	that, in fact, talks about how these effects will	
8	continue for several kilometres downstream into	
9	Stephens Lake and are expected to be adverse,	
10	long-term moderate over medium.	
11	MS. SCHNEIDER-VIEIRA: Okay. This is	
12	useful that we got to this section. You may	
13	recall from my presentation that I was describing	
14	two kinds of effects to water quality. One is	
15	that effect that lasts for 10 to 15 years in the	
16	flooded area of the reservoir. And that's the	
17	first part where we say adverse medium term,	
18	that's the 10 to 15 years, and moderate to large	
19	magnitude. And that's because these are	
20	substantial sized effects in some of the parts of	
21	the flooded area.	
22	Then the next sentence refers to the	
23	main stem of the reservoir, so that's the main	
24	river flowing through the reservoir, and extending	
25	into the southern portion of Stephens Lake. And	

		Page 1314
1	that is the area where we're going to see the	
2	decrease in total suspended solids, basically	
3	because the water is being slowed down in the	
4	reservoir, and some of the suspended sediments are	
5	settling out. And that is the long-term permanent	
6	effect. Yes, in answer to your question, both	
7	those conclusions still hold.	
8	MS. WHELAN ENNS: Thank you.	
9	I am in the aquatic environment	
10	supporting volume now. I am going to assume	
11	volume one, spatial scope.	
12	MS. SCHNEIDER-VIEIRA: Okay.	
13	MS. WHELAN ENNS: The section	
14	1.2.2.5., page number appears to be 1-9.	
15	So for those of us who aren't looking	
16	at it, the sentence says that Stephens Lake, where	
17	effects will occur because fish no longer will	
18	have access to Gull Rapids as habitat, and the	
19	main stream section will be affected by inputs	
20	from the construction and operation of the GS.	
21	MR. DAVIES: You'll have to excuse us.	
22	It takes a little while to find the pages, it's	
23	very thick documents.	
24	MS. WHELAN ENNS: They are.	
25	MS. SCHNEIDER-VIEIRA: Okay. Just for	

		Page 1315
1	those of you who aren't looking, this is the	0
2	introductory section to the aquatic environment	
3	supporting volume, and it describes the rationale	
4	for the spatial scoping of the study. And so what	
5	was just quoted is a rationale for including	
6	Stephens Lake within the study area. So that is	
7	because fish would be using that part of the or	
8	would be using Gull Rapids, and so fish	
9	populations in Stephens Lake may be affected, as	
10	well as the fact that there might be some	
11	downstream water quality effects due to changes	
12	happening upstream.	
13	MS. WHALEN ENNS: And are these then	
14	also examples of effects in Stephens Lake that are	
15	short-term, or medium, and/or will be non	
16	scientific conversation here dispersed because	
17	it's in the mainstream of the river?	
18	MS. SCHNEIDER-VIEIRA: I think that if	
19	we wanted to discuss effects, just for clarity,	
20	this was the rationale for the spatial scoping.	
21	And so here we're describing potential effects	
22	that may occur. So I think if we want to discuss	
23	effects to Stephens Lake itself, we shouldn't be	
24	doing it in reference to this specific section.	
25	So if you can let me know what, you know, what	

		Page 1316
1	component of the environment you want to talk	
2	about in terms of effects to Stephens Lake, we can	
3	go to that part.	
4	MS. WHELAN ENNS: Thank you for the	
5	suggestion.	
б	The questions have to do about concern	
7	in terms of effects in Stephens Lake, and we're	
8	fine on that set of questions. Mr. Chair, I have	
9	a couple of things on the screen in front of me	
10	left in terms of remaining questions, and then	
11	we'll be done. I wanted to let you know I'm	
12	moving to the laptop.	
13	The first one we have covered.	
14	The next chart I have in front of me	
15	is actually for the terrestrial volume, so we're	
16	done, Mr. Chair.	
17	THE CHAIRMAN: Thank you,	
18	Ms. Whelan Enns.	
19	Peguis First Nation, Ms. Land?	
20	MS. LAND: Thank you, Commissioners.	
21	Good afternoon members of the panel. Thank you	
22	for your time and your evidence this morning. I	
23	have a few questions for you.	
24	The first question I have is a	
25	question that my client was asking me with respect	

_		Page 1317
1	to page 20, slide 20, which was a map showing the	
2	coordinated aquatic monitoring program. And my	
3	client's question was, looking at this information	
4	about where the monitoring is occurring in terms	
5	of the coordinated aquatic monitoring program that	
6	feeds into the data that you're tracking, is	
7	whether the south basin of Lake Winnipeg is	
8	identified on this map, and whether it will indeed	
9	be part of the monitoring program?	
10	MR. DAVIES: If you would like, I	
11	could give you a quick review of the spots that	
12	are being sampled.	
13	MS. LAND: That would be helpful.	
14	MR. DAVIES: There is eight regions in	
15	total: The upper Churchill River, the Churchill	
16	River Diversion route, the lower Churchill River,	
17	Winnipeg River, Saskatchewan River, upper Nelson	
18	River, and lower Nelson River. And I'll read	
19	these rather quickly because there's actually	
20	quite a few of them. Southern and Indian Lake,	
21	area 4, which is a very large area on the top.	
22	Granville Lake, Southern Indian Lake, area 1,	
23	which is on the south part of the lake. Southern	
24	Indian Lake, area 6, which is on the southwest	
25	part of the lake. Opawatchin (ph) Lake,	

		Page 1318
1	Threepoint Lake, Leftrook Lake, Notigi Lake, Rat	
2	Lake, the west central Mynarski Lake, Apussigamasi	
3	Lake, Footprint Lake, Northern Indian Lake,	
4	Churchill River at the Little Churchill River,	
5	Gower Lake, Partridge Breast Lake, Billard Lake,	
6	Fiddler Lake, Churchill River at Churchill River,	
7	it's actually Little Churchill River, upstream of	
8	Pointe Du Bois, Lac Du Bonnet, Manigotagan Lake,	
9	Eagle Nest Lake, Pine Falls reservoir, Cedar Lake,	
10	Cormorant Lake, Moose Lake, Cedar Lake west basin,	
11	the Saskatchewan River, The Pas to Cedar Lake,	
12	Cross Lake west basin, Setting, Playgreen Lake,	
13	Little Playgreen Lake, Walker Lake, Sipiwesk Lake,	
14	Nelson River downstream of Sipiwesk Lake to	
15	Kelsey, Split Lake, Assean Lake, Nelson River main	
16	stem, Hayes River, Stephens Lake north arm,	
17	Stephens Lake south arm, Limestone Forebay,	
18	Burntwood River First Rapids to Split Lake, Lake	
19	Winnipeg and Lake Winnipegosis. And Lake	
20	Winnipegosis is being sampled actually as the off	
21	system lake.	
22	MS. LAND: Sorry, what was the last	
23	thing you said?	
24	MR. DAVIES: As you noted, there were	
25	lakes that were off system that were also being	

		Page 1319
1	sampled for comparison reasons.	
2	MS. LAND: Okay. So I'd like to ask	
3	you some questions about algae issues, believe it	
4	or not. So I'm going to start by taking you to	
5	page 54 of the handout.	
6	MS. SCHNEIDER-VIEIRA: Do you have the	
7	slide number, please?	
8	MS. LAND: Which was slide 22 of	
9	the I can't remember which of your	
10	presentations it was. It's not listed at the top.	
11	It's the aquatic environment slide.	
12	So the slide is on algae, aquatic	
13	plants and invertebrates. So I was comparing this	
14	information to the data that I saw in the	
15	supporting volume on aquatic environments. And my	
16	understanding in the supporting volume's evidence	
17	is that western science showed that there are more	
18	common occurrences of algae in the Burntwood	
19	River, Split Lake, Clark Lake and Gull Lake post	
20	LWR and CRD.	
21	Is that your recollection of that	
22	information?	
23	MS. SCHNEIDER-VIEIRA: You know, it's	
24	certainly true for the First Nation information.	
25	I would have to double check on the information,	

	Page 1320)
1	in terms of the technical information. I suspect	
2	we can't say for sure just because the sampling of	
3	chlorophyll and phytoplankton was not done prior,	
4	extensively prior to CRD and LWR.	
5	MS. LAND: Okay. I can take you to	
6	the specific page, it is section 4.2.3.1 of the	
7	volume and it's page 4-6.	
8	MS. SCHNEIDER-VIEIRA: Are you in the	
9	aquatics environment supporting volume?	
10	MS. LAND: Yes, in the aquatic	
11	environment volume. And it said that western	
12	science assessment showed that there were more	
13	common occurrences of algae in Burntwood River,	
14	Split Lake, Clark Lake and Gull Lake post CRD and	
15	LWR. Is that correct?	
16	MS. SCHNEIDER-VIEIRA: I'm just	
17	looking here.	
18	MS. LAND: Sure.	
19	MS. SCHNEIDER-VIEIRA: Sorry, you're	
20	on page 4-6?	
21	MS. LAND: Yes.	
22	MS. SCHNEIDER-VIEIRA: I'm still	
23	having difficulty finding your exact quote here.	
24	MS. LAND: Okay.	
25	MS. SCHNEIDER-VIEIRA: We have	

-	Page 1321
1	overview and regional context correct, and the
2	environmental setting has been described based on
3	available background information. Is that the
4	section you are in?
5	MS. LAND: Yeah. So it's the section
6	Split and Clark lakes in the Nelson River system,
7	and
8	MS. SCHNEIDER-VIEIRA: I see, okay,
9	I'm with you now.
10	MS. LAND: So 4-8, the first full
11	paragraph, mean phytoplankton biomasses, Split
12	Lake in 1987 to 1988 was 25 percent to 50 percent
13	higher than reported in 1972 to '73.
14	MS. SCHNEIDER-VIEIRA: Yes, that is
15	correct, but phytoplankton biomass is highly
16	variable, so basically it's not sufficient data to
17	say yes, absolutely, it's higher or it's lower as
18	a result of CRD or LWR.
19	MS. LAND: But over time it is
20	trending higher.
21	MS. SCHNEIDER-VIEIRA: Pardon me?
22	MS. LAND: Over time your science, the
23	science basis is showing that for this particular
24	purpose it's trending higher. It's comparing what
25	was happening in 1987 to 1988 and saying you have

	Page 1322
1	25 to 50 percent higher phytoplankton biomass in
2	Split Lake.
3	MS. SCHNEIDER-VIEIRA: Yes. And those
4	are two years pre data and two years post data.
5	And when you look at longer term records of
6	phytoplankton, you'll see it's quite variable
7	amongst years. So, for example, what was
8	happening in '87, '88, could have been related to
9	those specific growing conditions. Phytoplankton
10	is notorious for having blooms that occur. Some
11	years have blooms, some years don't, as those of
12	us who have been observing Lake Winnipeg have
13	observed. So to come up with a definite
14	conclusion of saying, yes, the amount of algae
15	after hydroelectric development is higher and that
16	it's due to the hydroelectric development, you
17	would need a longer term data set.
18	MS. LAND: Right. I guess the
19	question I'm a getting at is, I'm trying to
20	understand which algae you turned your mind to.
21	So why don't I go right to that particular issue
22	then. Are you familiar with the report called
23	restoring the health of Lake Winnipeg, which was a
24	report of the Lake Winnipeg implementation
25	committee?

1	Page 1323 MS. SCHNEIDER-VIEIRA: I have heard of
2	the report, and I believe there's other people on
3	my panel who are familiar with it.
4	MS. LAND: Okay. And I'd like to take
5	you to a quote from that report at page 29, and
6	I'll read it into the record for the purpose of
7	the panel.
8	THE CHAIRMAN: Excuse me, is that to
9	do with the Branson report?
10	MS. LAND: Yes.
11	THE CHAIRMAN: Thank you.
12	MS. LAND: So this is actually the
13	technical annex to the report. And on page 29 it
14	says:
15	"Algal toxins are of a significant
16	concern around Lake Winnipeg, as well
17	as downstream in the major Nelson
18	River to communities using the river
19	and the lake as a source of drinking
20	and domestic water. The outflow from
21	the north basin, subject to the
22	largest blooms of blue-green algae, is
23	at risk of containing algal toxins.
24	Reservoirs downstream on the Nelson
25	are expected to contain toxic algae

		Page 1324
1	and toxins due to the presence of	0
2	blooms. A very large bloom of	
3	microcystis occurred at Cross Lake on	
4	the Nelson in the late 1980s following	
5	the establishment of the reservoir at	
6	that community. Monitoring for these	
7	toxins is not yet taking place at	
8	these communities."	
9	So this report, among other things,	
10	identified a concern about the development of	
11	blue-green algae blooms on Lake Winnipeg,	
12	including the toxicity of that and the impacts	
13	downstream.	
14	My question for you is, when I was	
15	looking at the information about how you	
16	cumulatively assessed the impacts of the project,	
17	and what the inputs were, whether there was	
18	anything about the risks of the migration of this	
19	toxic algae from the Lake Winnipeg area into the	
20	system? Elsewhere in this report it identifies	
21	that at particular risk are reservoirs downstream,	
22	which are potential catchment areas for the	
23	migration of this microcystis.	
24	So my question is, is there monitoring	
25	plans for the reservoir in the study area to	

-		Page 1325
1	monitor for the algae, toxic algae bloom	
2	microcystis coming from the Lake Winnipeg area?	
3	MS. SCHNEIDER-VIEIRA: There is, as	
4	you already heard about, the CAMP program, the	
5	Coordinated Aquatic Monitoring Program, and that	
6	is much more of a regional monitoring program.	
7	And under that program, when microcystis is	
8	measured, when the chlorophyll A biomass is	
9	greater than ten micrograms per litre. So that	
10	regional program is indeed sampling down the	
11	river, depending on what algal biomass is	
12	measured.	
13	MS. LAND: Okay. I didn't see	
14	evidence of that in the supporting volumes, so	
15	perhaps I missed that.	
16	So maybe you could give in terms of	
17	specifically monitoring for microcystis in the	
18	reservoir area, maybe you could give me an	
19	undertaking to provide me with information about	
20	where specifically that can be found?	
21	MS. SCHNEIDER-VIEIRA: The monitoring	
22	for microcystin is happening underneath the CAMP	
23	program, and that wasn't planned for the Keeyask	
24	program. Basically, the CAMP monitoring occurs	
25	over a much larger area. If, in its review of the	

		Page 1326
1	aquatics effects monitoring plan, the Provincial	
2	Government decides that they want to have	
3	microcystin monitoring in the reservoir, I'm sure	
4	that they would add that.	
5	I should note, though, that based on	
6	the analysis that we have done on the predicted	
7	water turbidities, and also conditions in the	
8	reservoir, we're not expecting to see large blue-	
9	green algal blooms. And are these blue green	
10	algae that can create the toxin that we're	
11	concerned with here.	
12	MS. LAND: So just to clarify,	
13	ultimately your answer is that, no, there is not	
14	specific monitoring for this in the future	
15	monitoring plan right now?	
16	MS. SCHNEIDER-VIEIRA: There isn't,	
17	for the Keeyask Generation project there is not	
18	specific monitoring for this, because it has not	
19	been identified as a concern in terms of the	
20	predicted affects to algae. We expect that when	
21	the Province reviews it, they may add it. They	
22	have in other monitoring plans. However, it is	
23	monitored as part of the coordinated aquatic	
24	monitoring program which has been conducted both	
25	upstream and downstream.	

		Page 1327
1	MR. DAVIES: Just to remind you, the	
2	list I read rather quickly in regard to CAMP,	
3	Split Lake, Assean Lake, Assean Lake is very close	
4	to Split Lake, Stephens Lake north arm and	
5	Stephens Lake south are all monitored under the	
6	coordinated aquatic monitoring program and	
7	microcystin is included under that program.	
8	MS. LAND: When was that can you	
9	remind me when that program was set up? Was that	
10	fairly recently?	
11	MR. DAVIES: The MOU was started in	
12	2006 and the program was implemented in 2008.	
13	MS. LAND: Can I take you to slide 45,	
14	sir page 45 of your presentation? So page 45	
15	is slide number 13 of the presentation on aquatic	
16	and terrestrial environment. It's the slide on	
17	water quality, historic conditions.	
18	MS. SCHNEIDER-VIEIRA: All right. I	
19	have it.	
20	MS. LAND: So I noted when you were	
21	going over the information in this slide, you	
22	spoke orally of the technical conclusions that	
23	there was not data showing the effects of CRD, LWR	
24	and Kettle on historic water quality conditions.	
25	You didn't mention, I skipped over it when you	
1		

		Page 1328
1	were speaking orally about this slide, the	
2	information that was bulleted there about First	
3	Nations reporting that water is murky and of poor	
4	quality post hydro development. So this would be	
5	an example of a difference in view between what	
6	your technical reviews, science reviews showed	
7	about the historic conditions with respect to	
8	water quality versus the knowledge that was coming	
9	forward from the Cree Partners' knowledge base.	
10	Would that be fair to say?	
11	MS. SCHNEIDER-VIEIRA: I would say it	
12	is true in part. In terms of the technical	
13	analysis, the ability to the point that I was	
14	trying to make is that because the data first	
15	of all, there is no data pre Kelsey so we can't do	
16	a technical analysis on the effects of Kelsey on	
17	water quality. Prior to the CRD and LWR, there	
18	were only two years of sampling conducted. So	
19	that is quite a limited database for assessing	
20	changes to water quality.	
21	As we were just discussing with algae,	
22	and as I noted also with turbidity, it varies	
23	quite a lot both within a year and between years.	
24	And so if you want to detect small changes, you	
25	need a much longer database. However, it is	
l i i i i i i i i i i i i i i i i i i i		

		Page 1329
1	sufficient to detect very large magnitude changes.	-
2	But you were correct also in that the First	
3	Nations generally report greater effects to water	
4	quality than are apparent from the technical	
5	analyses.	
6	MS. LAND: And again on page 55 of the	
7	handout, which is slide 23, again you point out	
8	where there's a difference between, in terms of	
9	the information about fish health and data,	
10	differences between what the First Nations were	
11	saying, which was that Kettle and other	
12	developments caused changes in species and	
13	abundance, and that the fish are in poor	
14	condition, which was different than what the	
15	technical studies were showing, which was it was	
16	difficult to make comparisons, and that you were	
17	concluding that the composition and abundance	
18	historically have remained similar.	
19	So would it be fair to say that this	
20	and other examples in your presentation point to	
21	numerous situations where there were differences	
22	in the western science and the KCN traditional	
23	knowledge base about the evidence of historic	
24	impacts on water quality and on fish as a result	
25	of the existing Hydro projects?	

25

		Dama 4000
1	MS. SCHNEIDER-VIEIRA: Yeah, I would	Page 1330
2	say that there are certainly differences. I think	
3	the thing is, what's important to note is also the	
4	degree of difference. So where we would say,	
5	well, maybe there was a shift, we're not sure, and	
6	the First Nations would have said, oh, yes,	
7	definitely that's what we saw. So they are not	
8	I was going to say it's not there's overlap	
9	amongst them, but there's differences in the	
10	degree of certainty with respect to the change.	
11	MR. DAVIES: There is also some things	
12	that we can't explain to you, that due to science	
13	we have fish that are in poor condition, not good	
14	to eat, we have had fish tested at a number of	
15	locations by the Department of Fisheries and	
16	Oceans in terms of quality, and they pass all of	
17	the tests in terms of quality, both in terms of	
18	contents of metals, but also in terms of taste,	
19	smell and texture. Yet it's universal among the	
20	First Nations that they feel that the quality of	
21	the fish has deteriorated. It's not just one	
22	First Nation, it's all of the First Nations that	
23	have been affected.	
24	MS. LAND: Right. Isn't it also the	
. -		

case that, in fact, that there are advisories from

		Page 1331
1	the Manitoba Government about safe levels of	
2	consumptions of various fishes, of fish in the	
3	water areas that the Partner First Nations are	
4	using?	
5	MR. DAVIES: There are consumption	
6	advisories where areas of mercury had been	
7	elevated. I guess there's a few things to	
8	remember. Mercury has decreased in almost all of	
9	the locations to background levels. There are	
10	some notifications on the amount of fish that	
11	should be eaten, particularly by women of child	
12	bearing age.	
13	The other thing was that the report	
14	that the fish are not good to eat isn't related to	
15	mercury levels, it's related to taste and texture.	
16	The people feel that they are softer and don't	
17	have the same taste. And more recently there has	
18	been a change in fish condition in regards to the	
19	consumption of smelt. The smelt has an enzyme	
20	that are actually burning the bellies of the	
21	walleye, it is called belly burn, and changing the	
22	colour and composition of the fish.	
23	MS. LAND: So in those situations	
24	where you have some differences between the	
25	western science technical data and the viewpoint	

		Page 1332
1	of First Nations about the historical and ongoing	
2	quality of water and quality of fish, is it fair	
3	to say that the response then is that you are	
4	proposing to monitor for harm and take future	
5	adaptive measurements, if necessary, as opposed to	
6	any immediate mitigation measures?	
7	MS. SCHNEIDER-VIEIRA: I think there's	
8	almost two parts to that answer. First of all, as	
9	I'm sure you have reviewed, the First Nations have	
10	done their own community reports and there they	
11	describe what they feel the project will do, and	
12	what they have done as communities to address the	
13	effects of the project. And for example, for some	
14	of the communities they have elected to find other	
15	places to eat fish, to get fish.	
16	In terms of the effects of the Keeyask	
17	project, yes, where there is disagreement we have	
18	agreed to monitor. Sometimes also where there's	
19	disagreement, we have adopted additional measures	
20	so that there is I was going to say there is	
21	greater certainty. So for the first instance, for	
22	example, based on the hydraulic modeling done by	
23	the engineers, they feel quite confident that	
24	there will not be effects to open water levels in	
25	Split Lake. And I think you have already heard	

		Page 1333
1	that. And so by linkage then, we would say there	0
2	is not going to be any effects to water quality or	
3	whatever in Split Lake. However, the First	
4	Nations are not comfortable with that conclusion.	
5	So our monitoring program does make provision, for	
6	example, to continue to sample water quality in	
7	Split Lake, even if we think that there are not	
8	going to be any changes there. So that's the	
9	first example.	
10	And then the second one is where the	
11	First Nations are not comfortable with some of the	
12	mitigation measures, we have basically found	
13	additional ones. For lake sturgeon, we are quite	
14	confident that the spawning structure will work as	
15	it has elsewhere. The First Nations are	
16	concerned, as they should be, and so we have sort	
17	of a back-up plan of having a spawning program to	
18	support the populations in Stephens Lake until	
19	such time as we can get the spawning structure to	
20	work.	
21	MS. LAND: Would you consider that	
22	approach that you're taking then to be an example	
23	of adaptive management, where you are monitoring	
24	for effects and then responding to them as you	
25	learn about the effects over time? Because if I	

		Page 1334
1	understand correctly what you're saying, you're	0
2	saying you are going to you have a difference	
3	of opinion about whether there will be effects or	
4	not on water quality and on fish. The Cree First	
5	Nations say they think there's going to be, based	
6	on their experience, the technical science is	
7	saying no, probably not. So the response is no	
8	immediate mitigation, we're going to monitor to	
9	see what happens and then respond later, when and	
10	if necessary. Is that correct?	
11	MR. DAVIES: I think what we're saying	
12	is that whenever there's uncertainty, and	
13	uncertainty is created between difference of	
14	opinion between ATK and science, that we are going	
15	to monitor. And if there is an effect, we'll	
16	determine what that effect is and apply the	
17	appropriate mitigation for it.	
18	MS. LAND: How does that fit in with	
19	the concept of the precautionary principle, or the	
20	concept that if you have good adaptive management	
21	that you are not just monitoring to learn, but you	
22	are making sure that you have processes planned	
23	and in place up front to mitigate?	
24	MS. SCHNEIDER-VIEIRA: Okay. I think	
25	the easiest way is to provide an actual example.	
1		

		Page 1335
1	And we're going to deal with one of the areas	
2	where we have the greatest uncertainty, which is	
3	with respect to the young-of-the-year sturgeon	
4	habitat in the reservoir. As I said, overall,	
5	there is a higher degree of uncertainty for this	
6	life stage than for others for lake sturgeon,	
7	because it's just not a life stage that is well	
8	understood. It is not a fish, even when you speak	
9	with the First Nations, they don't often see	
10	sturgeon, or very rarely see sturgeon that is that	
11	small, because they are living in the bottom of	
12	the river. So what we have done then is we have	
13	done an analysis, we have come up with some	
14	predictions, because we don't want to just	
15	willy-nilly go out and start putting sand in the	
16	river, which is quite an undertaking in itself.	
17	We have identified ways to monitor, to see whether	
18	or not the sturgeon are recruited to the area	
19	where we think they may. In addition, the	
20	engineering team has done some very detailed	
21	analysis, which is actually described in one of	
22	the IRs for DFO, where they have actually gone so	
23	far as to identify sources of sand. They have	
24	identified barges. They have identified ways of	
25	putting the sand on the bottom of the river if you	

1	need it. So it isn't just, yeah, we'll come up	Page 1336
2	with a solution if we need to. It is actually	
3	something that has been developed.	
4	Then the final part of that then is we	
5	have a back-up safety plan, which is because we	
6	know this will take a number of years, we are also	
7	stocking young sturgeon into the river. And we	
8	know from other areas within northern Manitoba, as	
9	Shelley described from the upper Nelson River,	
10	that when you stock young sturgeon, we have very	
11	good information that those do survive. So it's	
12	almost a three part plan. For that reason we feel	
13	that it is a good example of the precautionary	
14	principle.	
15	MS. LAND: Okay. Let's use that	
16	example and tease that out a bit.	
17	So in terms of the young-of-the-year	
18	sturgeon, if I understood your evidence correctly,	
19	when you were going through the information that	
20	you had about the sampling, the only area and	
21	you talked about how difficult it was to not	
22	just for you but for other people who had done the	
23	testing on young-of-the-year sturgeon to actually	
24	find them. And you mentioned that the only	
25	location where indeed you succeeded in finding	

1	Page 1337
1	them was in the upper reach of Gull Lake. Is that
2	correct?
3	MS. SCHNEIDER-VIEIRA: Yes. And I
4	believe, and my back row will tell me, I believe
5	there is also some very young sturgeon that we
6	found in a couple places in Stephens Lake. They
7	have also actually been found quite extensively in
8	the Winnipeg River through some of the research
9	that has been done there.
10	MS. LAND: But in terms of the project
11	area itself, my understanding is when you walked
12	through and you showed where the sampling had
13	occurred, and where you had actually found the
14	young-of-the-year, that the only location you had
15	found them was in the upper reach of Gull Lake?
16	MS. SCHNEIDER-VIEIRA: Yeah. And they
17	are also, you may recall I showed you some in that
18	patch downstream in Stephens. Remember I pointed
19	out the habitat, there's a little blob in Stephens
20	Lake downstream of Gull, also there.
21	MS. LAND: Okay. So my understanding,
22	though, is based I can't remember if it was
23	based on the sample size that you were using, but
24	my understanding was that you were saying that the
25	area where you expected that they were most

Page 1338 predominant, based on what you understood from 1 that sampling, was in that area of upper Gull 2 3 Lake; is that correct? 4 MS. SCHNEIDER-VIEIRA: Yes, that is 5 correct. MS. LAND: And that's an area that you б anticipate will be destroyed by the project? 7 MS. SCHNEIDER-VIEIRA: Yes, we 8 anticipate that it will no longer be suitable for 9 10 young-of-the-year. MS. LAND: And so you're proposing to 11 12 create new habitat based on the experience that Hydro Quebec has used in Quebec? 13 14 MS. SCHNEIDER-VIEIRA: No, Hydro Quebec has created spawning habitat. I indicated 15 that this is the first -- would be the first 16 attempt to create young-of-the-year habitat. 17 MS. LAND: Right. So Manitoba Hydro, 18 19 in its previous projects, has never successfully 20 created young-of-the-year habitat before for lake 21 sturgeon? 22 MS. SCHNEIDER-VIEIRA: Yeah. In fact, 23 to be fair, 2008 was the first time that we actually found young-of-the-year sturgeon, and 24 it's the first time anyone has found 25

		Page 1339
1	young-of-the-year sturgeon in a large river	
2	system.	
3	MS. LAND: Okay. Similarly in terms	
4	of just because you mentioned spawning habitat,	
5	when you were mentioning the sample sizes of	
б	mature fish that were using spawning areas, the	
7	largest proportion of fish using spawning areas	
8	was in the Gull Rapids. Is that correct?	
9	MS. SCHNEIDER-VIEIRA: No, there are	
10	very, very few fish in Stephens Lake. And we have	
11	not actually found spawning sturgeon in Stephens	
12	Lake, like fish that were actually in spawning	
13	condition since the early 2000s. In the Keeyask	
14	area where we find spawning sturgeon are in the	
15	vicinity of Birthday Rapids.	
16	MS. LAND: Okay. So, actually what I	
17	was looking at was, we are on page 93, slide 61,	
18	was where the estimated number of mature sturgeon	
19	are. So the largest number appeared to be this	
20	was a slide on population trends. The estimated	
21	number of mature sturgeon, Birthday to Gull	
22	Rapids, 643, which is a larger number than in the	
23	upper Split Lake area, and then the two few	
24	captured in Stephens Lake. So the largest number	
25	of mature sturgeon that you were finding was in	

		Page 1340
1	that stretch from Birthday to Gull Rapids?	
2	MS. SCHNEIDER-VIEIRA: That's true,	
3	and those are the fish that are spawning at	
4	Birthday Rapids or Long Rapids.	
5	MS. LAND: Okay. And they are	
б	actually currently spawning at Gull Rapids, is	
7	that not the case?	
8	MS. SCHNEIDER-VIEIRA: No, the	
9	Stephens Lake fish are moving up to Gull Rapids,	
10	the fish in Gull Lake are moving further upstream	
11	to Birthday and Long.	
12	MS. LAND: So Gull Rapids, they are	
13	not being used at all for spawning?	
14	MS. SCHNEIDER-VIEIRA: They are not	
15	being used by fish from Gull Lake. They are	
16	enormous rapids, there might be a sturgeon from	
17	Stephens Lake that had slipped into the rapids to	
18	spawn that we didn't find. And I believe	
19	historically they also we did in the early	
20	2000s find some fish that were maturing to spawn	
21	downstream of the rapids. That's subject to	
22	check.	
23	MS. LAND: Right. And so just to pick	
24	up on what you were saying before, in terms of	
25	experience and actually creating habitat, has	

341

		Page 13
1	Manitoba Hydro ever successfully created new	r ugo n
2	spawning habitat for lake sturgeon in the Manitoba	
3	Hydro hydraulic system before?	
4	MS. SCHNEIDER-VIEIRA: Manitoba Hydro	
5	has tested the creation of spawning habitat.	
6	Downstream of the Pointe Du Bois Generating	
7	Station, there are a large number of sturgeon	
8	downstream of Pointe Du Bois. So at least there	
9	are sturgeon that could respond to the habitat	
10	that you put into that area.	
11	The results of that work was in one of	
12	the IRs, which I'm hoping that somebody is going	
13	to give me the number for, and then we can go to	
14	that and look. The results of that work were	
15	mixed. The Pointe Du Bois station is very old,	
16	and so some of the spawning shoals were basically	
17	created in front of generating units that then	
18	were turned off for the subsequent year, so we	
19	couldn't get good data. There are some of the	
20	shoals where we did find evidence of sturgeon	
21	spawning.	
22	MS. LAND: Is it fair to say that	
23	generally the approach then is, there's a	
24	recognition that there would be there's a	
25	significant amount of spawning habitat that will	

Page 1342

1	be destroyed in the study area, that you are
2	anticipating then replacing with the creation of
3	new habitat?
4	MS. SCHNEIDER-VIEIRA: Yeah. Now,
5	just to follow up on my last comment. The IR
6	that's in question is DFO 0045, if you're
7	interested. That was basically, I believe it was
8	in the round two TAC, and that describes the
9	results of that work. And then in terms of the
10	spawning habitat at Gull Rapids, whatever existing
11	habitats that's there will be lost. And yes, we
12	are anticipating replacing it through the creation
13	of the spawning structure, or replacing the
14	function, I should say. We're not looking at
15	replacing whatever total area there may be. What
16	we have done is an analysis that says we believe
17	that something like 3 hectares will be sufficient
18	to support a good sturgeon population in Stephens
19	Lake.
20	MS. LAND: And elsewhere where you
21	talked about the mitigation measure for using

21 talked about the mitigation measure for using 22 stocking in order to deal with the loss of fish 23 population due to the operation of the turbines 24 and so on, you said that the proposed mitigation 25 measure was to stock. And I'm going to actually

		Dog
1	take you to that slide, it's page 98 of the	Pag
2	handout, which is slide number 66, which is the	
3	slide on recovery and mitigation methods used	
4	elsewhere.	
5	And you were talking about stocking	
6	and translocation, and you said this is effective	
7	where habitat is available.	
8	So would you agree that the stocking	
9	success is going to depend in part on whether you	
10	have successfully created new habitat for the lake	
11	sturgeon to replace the habitat that's been	
12	destroyed by the construction and operation of the	
13	project?	
14	MS. SCHNEIDER-VIEIRA: If the	
15	objective of the overall mitigation program and	
16	the stocking program specifically is to create a	
17	long term self-sustaining population, and that	
18	means it's a population that doesn't require	
19	stocking forever to maintain it. And in order to	
20	have that, you do need habitat to support all life	
21	history stages, including spawning habitat.	
22	So you are correct that we need to	
23	have spawning habitat in Stephens Lake if we want	
24	to have a self-sustaining population there.	
25	MS. LAND: So if the habitat creation	

Page 1343

	Page 1344
1	programs are not successful, that would ultimately
2	also affect the success of your proposed
3	mitigation measure of stocking?
4	MS. SCHNEIDER-VIEIRA: No. If the
5	habitat creation is not successful, you could
6	continue to stock in perpetuity and have sturgeon
7	there. It's simply that it would not be a
8	self-sustaining population. It would require
9	stocking to maintain it.
10	MS. LAND: You mentioned elsewhere
11	that you come to the conclusion that no fish
12	passage is required for walleye, lake whitefish
13	and northern pike. Is that correct?
14	MS. SCHNEIDER-VIEIRA: Yes, it is the
15	conclusion of the partnership that fish passage,
16	upstream fish passage for this species is not
17	required to maintain the populations. However, I
18	should note, though, my discussion about DFO and
19	their requirements for fish passage focused on
20	lake sturgeon. They would also be looking at
21	these other species.
22	MS. LAND: Did the Cree Partners in
23	the project agree with your conclusion that no
24	fish passage is required for these species?
25	MS. SCHNEIDER-VIEIRA: As I mentioned,

		Page 1345
1	we had two workshops, as well as many, many	C
2	meetings of the aquatic working group on this	
3	topic. And there was, I was going to say there	
4	was no clear consensus. Many of the Cree people	
5	were very interested in maintaining connections	
6	amongst the natural areas. But when we got to the	
7	point of saying, are you willing to do a measure	
8	which might cost which would cost tens of	
9	millions of dollars, is that the smartest way to	
10	attempt to mitigate the effects of the project?	
11	And then when they looked to us and said, well,	
12	will it increase the number of fish, and we said,	
13	well, we don't have any evidence that it will	
14	increase the number of fish, it just didn't seem,	
15	I believe for the group as a whole, as a way to	
16	go. However, I know that you'll still find	
17	individuals who are very interested in fish	
18	passage.	
19	MS. LAND: But in the end, you have	
20	ultimately concluded that there's no clear benefit	
21	for fish passage either for lake sturgeon or for	
22	the other fish species, is that correct?	
23	MS. SCHNEIDER-VIEIRA: Yes, that's	
24	correct.	
25	MS. LAND: And so your response is to	

1	ivet continue to monitor investigate further to	Page 1346
	just continue to monitor, investigate further to	
2	see if there's a better approach or alternative to	
3	fish passage? Is that my understanding, your	
4	response is to monitor to see what you might be	
5	able to do in the future?	
6	MS. SCHNEIDER-VIEIRA: The Department	
7	of Fisheries and Oceans, or Fisheries and Oceans	
8	in Canada, as they are known now, are very	
9	interested in fish passage. And they have	
10	concluded, different from the conclusion of the	
11	partnership, that they don't see definite evidence	
12	that you either need or do not need fish passage.	
13	And so they have agreed to the approach of	
14	monitoring post-project to see first of all, if	
15	the partnership's conclusions are correct, and	
16	also of doing monitoring that would support the	
17	development of an effective fish passage system,	
18	because the other part of the fish passage	
19	discussion is that, even if we decided to do that,	
20	yes, you need upstream fish passage, we don't have	
21	information on how the fish will respond to the	
22	environment to design a fish passage system that	
23	would necessarily be effective.	
24	MS. LAND: So it's essentially, we'll	
25	wait and see what happens, what makes sense then	

		Page 1347
1	to deal with the issue of fish passage? There's	
2	no concrete proposal in place as an alternative to	
3	fish passage?	
4	MS. SCHNEIDER-VIEIRA: The concrete	
5	proposal that is in place as an alternative to	
б	fish passage is the mitigation package that has	
7	been developed for the project. And that is	
8	basically looking at providing all habitat to	
9	support all life history stages upstream and	
10	downstream.	
11	The typical place where you need fish	
12	passage is where fish need to move up past an area	
13	to access critical habitat, such as spawning	
14	habitat. In this case, we were providing spawning	
15	habitat, rearing habitat, overwintering habitat,	
16	feeding habitat. All those habitats will exist	
17	both upstream and downstream of the station.	
18	MS. LAND: Those are all my questions.	
19	THE CHAIRMAN: Thank you, Ms. Land.	
20	Perhaps we should take a break and	
21	come back in 15 minutes, Mr. Williams, and you can	
22	start then. So come back at ten after 3:00,	
23	please?	
24	(Proceedings recessed at 2:54 p.m. and	
25	reconvened at 3:10 p.m.)	

		Page 1348
1	THE CHAIRMAN: Can we reconvene,	-
2	please.	
3	Mr. Williams, over to you.	
4	MR. WILLIAMS: Yes, good afternoon	
5	members of the panel and good afternoon members of	
б	the Hydro panel and the extensive back row as	
7	well.	
8	Mr. Chair, to you, there should be two	
9	exhibits that we propose to present today with	
10	what I understand to be the kind consent of my	
11	learned friend, Mr. Bedford. One is an article,	
12	Home Range Size and Seasonal Movement of Juvenile	
13	Lake Sturgeon in a Large River in the Hudson Bay	
14	Drainage Basin. And if that's not a show stopper	
15	of an article, I don't know what is.	
16	And the other one is only an excerpt	
17	from a document entitled Recovery Potential	
18	Assessment of Lake Sturgeon Nelson River	
19	Populations which is by the Canadian Science	
20	Advisory Secretariat. I won't be referring to	
21	them right away but at some point in time, I'll	
22	bring it to the panel's attention.	
23	Now most of my questions this	
24	afternoon are going to be on lake sturgeon. And	
25	mostly, they will be directed to	

		Page 1349
1	Dr. Schneider-Vieira who has kindly given me	
2	permission to call her Dr. Schneider for the rest	
3	of the afternoon.	
4	Ms. Matkowski, if you feel the	
5	interest or wish you chip in, you are of course	
6	more than welcome.	
7	I actually do know my slide number	
8	today as compared to last week. In a few moments,	
9	we will be coming to slide 54, which is page 96.	
10	We're not quite there yet though, Dr. Schneider.	
11	MS. SCHNEIDER-VIEIRA: I'm prepping.	
12	MR. WILLIAMS: But in the course of	
13	your extensive work on lake sturgeon, you have had	
14	opportunity to review a number of the federal	
15	documents including the recovery potential	
16	assessment of lake sturgeon from 2010. Agreed?	
17	MS. SCHNEIDER-VIEIRA: I have reviewed	
18	it but Shelley Matkowski will be taking the	
19	questions on the RPA.	
20	MR. WILLIAMS: Super. And either to	
21	you or Ms. Matkowski, you would also be familiar	
22	with some of the work that the Province of Ontario	
23	is doing in terms of the lake sturgeon issue such	
24	as their review of lake sturgeon stocking in North	
25	America from 2009? Would that have been something	

Page 1350 the Hydro panel would have reviewed in preparing 1 2 their work for the EIS? 3 MS. SCHNEIDER-VIEIRA: Yes, I believe 4 we have. MR. WILLIAMS: And you also, although 5 you may not have it memorized, your panel would be 6 familiar with also the 2011 study from Ontario 7 titled A Review of Lake Sturgeon Habitat 8 Requirements and Strategies to Protect and Enhance 9 Sturgeon Habitat? Would that be a document the 10 Hydro panel is familiar with? 11 12 MS. SCHNEIDER-VIEIRA: Yes. MR. WILLIAMS: Now, Dr. Schneider, 13 14 turning to slide 64. The corporation sets out what it considers the various life history stages 15 16 of sturgeon on that page. Agreed? 17 MS. SCHNEIDER-VIEIRA: Yes, that's 18 true. 19 MR. WILLIAMS: And just for the 20 purposes of definition, just so we're on the same 21 page, are we in agreement that Young of the Year 22 or YOY, are juveniles in the first year of their 23 lives? 24 MS. SCHNEIDER-VIEIRA: Yes. 25 MR. WILLIAMS: And below Young of the

	Page 1351
1	Year, we see another term called juvenile. And am
2	I correct in suggesting to you that the term
3	juvenile is generally used to describe a young
4	sturgeon that has not reached sexual maturity?
5	MS. SCHNEIDER-VIEIRA: Yes, that's
6	true. And sorry, they change a lot in what they
7	are doing. So we always say juvenile/sub adult.
8	A two year old sturgeon and an 18 year old
9	sturgeon are somewhat different.
10	MR. WILLIAMS: And we're just going to
11	come to that. Would I be correct in suggesting to
12	you that sub adults are juveniles that have moved
13	away from home in that they have abandoned their
14	juvenile nursery habitat? That's generally the
15	definition that we use for sub adults?
16	MS. SCHNEIDER-VIEIRA: Not really. We
17	found some older sturgeon that are still living, I
18	was going to say still living at home if you will.
19	In Gull Lake, there are certain aggregations where
20	we wondered whether in the years that they were
21	young sturgeon, whether they had actually settled
22	there.
23	MR. WILLIAMS: So there is a bit of
24	confusion with the term. Sub adults would still
25	be sexually immature. Is that your understanding?

352

1	MS. SCHNEIDER-VIEIRA: Yes, that is	Page 13
2	true.	
3	MR. WILLIAMS: You use it as a	
4	shorthand way to differentiate between the wild	
5	two year old and the still sexually immature but	
б	older 18 year old?	
7	MS. SCHNEIDER-VIEIRA: Well, actually	
8	in the EIS, we went with Young of the Year and we	
9	lumped everything up from two to 18 in one	
10	category with text describing that. Yes, it does	
11	cover a range.	
12	MR. WILLIAMS: And when we look at the	
13	development of effective management and	
14	conservation strategies for lake sturgeons, we can	
15	agree that effective strategies rely upon an	
16	understanding of the processes that influence each	
17	life history stage for lake sturgeon. Agreed?	
18	MS. SCHNEIDER-VIEIRA: Yes, that's	
19	true. And when we look at the data and the	
20	scientific research into lake sturgeon, can we	
21	agree that lake sturgeon are not homogenous in	
22	that there are differences in behaviour, habitat	
23	use and movement between distinct genetic groups?	
24	My specialist says yes, so I will say yes.	
25	MR. WILLIAMS: And that's one of the	

		Page 1353
1	reasons of course we want to study lake sturgeon	
2	across a variety of environments and across a	
3	variety of latitudes because their behaviour may	
4	be somewhat different depending upon their	
5	environment, their genetic disposition and the	
6	latitude in which they live. Agreed?	
7	MS. SCHNEIDER-VIEIRA: Well, I would	
8	say that for academics and research, and myself as	
9	a biologist, those are very interesting questions.	
10	The Keeyask project, what's important is that we	
11	understand what is happening with the sturgeon in	
12	the Keeyask area. Obviously those are the ones	
13	that we're impacting, and we draw information from	
14	many other systems. And it is true, it is	
15	important for us to understand why you know, if	
16	those other systems might be in some way different	
17	from the Keeyask system.	
18	MR. WILLIAMS: So I believe we are in	
19	agreement in that when we look at information from	
20	other systems, we should examine that information	
21	with care in order to be aware of the similarities	
22	but also the differences. Agreed?	
23	MS. SCHNEIDER-VIEIRA: Yes, we would	
24	agree with that.	
25	MR. WILLIAMS: And of course when we	

		Page 1354
1	look at your cornerstone stocking program, it	
2	would be fair to say that you have drawn from a	
3	variety of sources including research from the	
4	United States. Agreed?	
5	MS. SCHNEIDER-VIEIRA: Yeah, we have	
6	drawn from sources in Manitoba. We have drawn	
7	from sources, as I say Winnipeg River, upper	
8	Nelson River, Assiniboine River, we have drawn	
9	from sources like in the Rainy River, the upper	
10	parts of the Red River drainage in Minnesota. And	
11	we have also drawn from research in the United	
12	States, in particular work that's been done along	
13	the Great Lakes.	
14	MR. WILLIAMS: As well as on the St.	
15	Louis River, agreed?	
16	MS. SCHNEIDER-VIEIRA: Yeah.	
17	MR. WILLIAMS: And likewise, when you	
18	look at information relating to hatcheries, you	
19	rely upon a number of American sources including	
20	the Wild Rose Hatchery in Wisconsin. Agreed?	
21	MS. MATKOWSKI: Agreed.	
22	MR. WILLIAMS: And, Dr. Schneider,	
23	just to underscore the importance of looking at	
24	context, we can agree that lake sturgeon growth	
25	has been found to differ considerably across their	

	F	Page 1355
1	range, a fact which has been attributed to	
2	latitudinal variation. Agreed?	
3	MS. SCHNEIDER-VIEIRA: Well, it is	
4	true that different areas have different amounts	
5	of sturgeon growth. However, it's a complex	
6	situation. For example, we have found that some	
7	of the sturgeon growing in the Keeyask area	
8	actually are growing quite quickly.	
9	MR. WILLIAMS: You would not disagree	
10	with me if I suggested that generally, the	
11	scientific literature suggests that the growth of	
12	lake sturgeon decreases with decreasing mean air	
13	temperatures and increasing latitude. Agreed?	
14	MS. SCHNEIDER-VIEIRA: I believe that	
15	is the case in the scientific literature. However	
16	we see that very young sturgeon in Keeyask are	
17	growing faster than the ones at point, in terms of	
18	the length of age relationship.	
19	MR. WILLIAMS: And certainly your work	
20	on the Winnipeg River system has suggested to you	
21	that sturgeon from the Winnipeg River are growing	
22	more slowly than more southern sturgeon. Agreed?	
23	MS. SCHNEIDER-VIEIRA: Let me just	
24	consult with those who have actually done work on	
25	the Winnipeg.	

1	MR. WILLIAMS: Henderson would be one	Page 1356
2		
	of the sources for that if you're looking.	
3	MS. SCHNEIDER-VIEIRA: Apparently the	
4	growth of young sturgeon is a little bit more	
5	complex than just related to temperature.	
6	Certainly in research work that's been done in the	
7	Winnipeg River with one reservoir, there has been	
8	a large range in growth rates of young sturgeon,	
9	different places within the same reservoir.	
10	MR. WILLIAMS: Okay. It would be	
11	fair, and we would be in agreement, that very	
12	little is known about the early life history of	
13	lake sturgeon, especially in large impounded	
14	systems, like the Nelson or Winnipeg River,	
15	agreed?	
16	MS. SCHNEIDER-VIEIRA: As I mentioned	
17	in my presentation, work on Young of the Year	
18	sturgeon is the area of active research on lake	
19	sturgeon at present. And certainly here in	
20	Manitoba since 2006, due to research work done on	
21	the Winnipeg River as well as on the Nelson River,	
22	the amount of information the amount that we	
23	know about this life stage has increased	
24	tremendously. It is true that there's always more	
25	to learn.	

1		Page 1357
1	MR. WILLIAMS: Let me go further than	
2	that though, Dr. Schneider. The reason there's	
3	been this blossoming of research is because within	
4	the scientific literature, we know very little	
5	about the early life history of lake sturgeons	
6	especially in large impounded systems like the	
7	Nelson and Winnipeg River.	
8	MS. SCHNEIDER-VIEIRA: That has	
9	certainly been an area of very active research as	
10	you said. Dr. Barth here behind me actually did	
11	his Ph.D. on life stages as you are likely aware.	
12	And it is the one where we have been focusing on	
13	doing or Manitoba Hydro has funded a tremendous	
14	amount of work to work at filling the information	
15	gaps on that life stage.	
16	MR. WILLIAMS: And in fact, within the	
17	scientific literature, words were used such as	
18	knowledge gaps in terms of knowledge relating to	
19	the early life history of lake sturgeon in large	
20	impounded systems, agreed?	
21	MS. SCHNEIDER-VIEIRA: Yes, that's	
22	true. And that work is addressing those gaps.	
23	MR. WILLIAMS: And it would be fair to	
24	say that data on the habitat preference growth and	
25	survival of Young of the Year lake sturgeon in	

		Page 1358
1	large rivers is virtually non-existent in the	
2	scientific literature. Agreed?	
3	MS. SCHNEIDER-VIEIRA: We're going to	
4	continue to split hairs here. We know where they	
5	were spawned. The stage from where they drift	
6	from that spawning location to where they settle	
7	is not well understood. We don't know where they	
8	are. That is a poorly understood life history	
9	stage. Once they have settled and we can find	
10	them and we can sort of record their growths over	
11	the winter and look further again the subsequent	
12	year, there is more information available on that.	
13	So it's sort of a fine line.	
14	MR. WILLIAMS: And as I understand the	
15	fine line you have drawn, there is a particular	
16	shortage of information or a knowledge gap in	
17	terms of larval drift. Agreed?	
18	MS. SCHNEIDER-VIEIRA: Larval drift	
19	and where they initially settle, yes.	
20	MR. WILLIAMS: And then accepting your	
21	point about spawning but moving now to your part 3	
22	of your answer regarding habitat of Young of the	
23	Year, would it be fair to say that there have been	
24	a very limited number of studies in terms of the	
25	seasonal movement patterns, spatial requirements	

		Page 1359
1	and home range size of the juvenile life history	
2	stage of lake sturgeon in large riverine	
3	environments?	
4	MS. SCHNEIDER-VIEIRA: There was one	
5	study that was in part of your exhibit which is	
б	the work done in Winnipeg River. We also have	
7	some understanding of where we can find Young of	
8	the Year as well as year old sturgeon in the	
9	Nelson from the work that we have done. But	
10	certainly there aren't enough young sturgeon there	
11	to do the kinds of extensive work that's been done	
12	in the Winnipeg system, that's true.	
13	MR. WILLIAMS: Thank you for that.	
14	And of course just turning to the home range size	
15	and seasonal movements of juvenile lake sturgeon,	
16	an article, I have to tell Dr. Barth, has kept me	
17	riveted for many hours. Dr. Schneider, I take it	
18	you have been similarly enthralled?	
19	MS. SCHNEIDER-VIEIRA: Absolutely.	
20	MR. WILLIAMS: Yes. Who wouldn't be.	
21	At page 1630 of Dr. Barth et al's	
22	article. And just towards, Dr. Schneider,	
23	hopefully there's a marked line toward the bottom	
24	of the left-hand side of that column. And you	
25	will see Dr. Barth agreeing with you and I that	

		Page 1360
1	there is still more work to be done in terms of	
2	our understanding of the seasonal movement	
3	patterns, spatial requirements and home range size	
4	of the juvenile life history stage of lake	
5	sturgeon. Agreed?	
6	MS. SCHNEIDER-VIEIRA: Yes.	
7	MR. WILLIAMS: And we won't spend a	
8	lot of time on this study but if I can take you to	
9	page 1640. And, Dr. Schneider, I'm directing you	
10	towards page 1640, the left-hand column, hopefully	
11	the second last pen mark on the left-hand side.	
12	One of the important insights was that in large	
13	rivers, lake sturgeon exhibit high year-round site	
14	fidelity and rarely move through rapids. Agreed?	
15	MS. SCHNEIDER-VIEIRA: Yes.	
16	MR. WILLIAMS: And so if you will	
17	recall, this was in an area where there was	
18	roughly a 49 kilometre stretch of habitat that was	
19	being examined. Agreed?	
20	MS. SCHNEIDER-VIEIRA: Yes.	
21	MR. WILLIAMS: And so despite the	
22	potential for movement over that 49 kilometres of	
23	naturally connected riverine habitat, the results	
24	from this study indicated that juvenile lake	
25	sturgeon exhibited strong site fidelity. Agreed?	

		Page 1361
1	MS. SCHNEIDER-VIEIRA: Yes. And I	r ago roor
2	believe there is also a caveat in that this is an	
3	area where there was discontinuous deep water	
4	habitat. So basically it's almost like a bowl.	
5	So the sturgeon did not move up into the shallower	
б	areas. So they were left, if you will, in the	
7	bottom of this bowl.	
8	MR. WILLIAMS: Although it's not	
9	unusual to find lake sturgeon, juvenile lake	
10	sturgeon in those deeper waters. Agreed, Dr.	
11	Schneider?	
12	MS. SCHNEIDER-VIEIRA: Yes, that is	
13	the case. We haven't observed them moving	
14	downstream or upstream over rapids very much once	
15	they have settled to the bottom.	
16	MR. WILLIAMS: And you would also	
17	agree that we don't often see them in very shallow	
18	water even apart from rapids, agreed?	
19	MS. SCHNEIDER-VIEIRA: Yes, in this	
20	system.	
21	MR. WILLIAMS: And just staying with	
22	page 1340 for a second, excuse me, page 1640, I	
23	apologize, to the bottom left again, the last pen	
24	mark. And one of the it should be on the same	
25	page, Dr. Schneider. One of the hypotheses that	

		Page 1362
1	flows out of Dr. Barth et al's work is the	
2	possibility that suitable areas of juvenile lake	
3	sturgeon habitat could exist but might be	
4	under-exploited in part due to their high site	
5	fidelity. Agreed?	
6	MS. SCHNEIDER-VIEIRA: Yes. The way,	
7	essentially as I described to you earlier, the	
8	sturgeon hatch and they drift down the river. And	
9	where they settle basically then is where they	
10	stay at least for some time.	
11	MR. WILLIAMS: And one of the	
12	phenomena that has been observed is even if there	
13	might be what appears to be suitable habitat in	
14	other locations, they tend not to go there.	
15	Agreed?	
16	MS. SCHNEIDER-VIEIRA: Certainly when	
17	you look further downstream. I want to emphasize	
18	the importance of the drifting from the spawning	
19	area and the settling. So yeah, if you're looking	
20	at areas further downstream, certainly they don't	
21	seem to be then picking up and swimming further	
22	downstream.	
23	One thing that we do want to note	
24	though is in the Winnipeg River where this work	
25	was done, as I said, there was some deep bowls.	

		Page 1363
1	In the Nelson River, it is interesting to see how	
2	they distribute themselves because the deep water	
3	habitat tends to be more continuous.	
4	MR. WILLIAMS: And we wouldn't have a	
5	peer-reviewed study like Dr. Barth's for the	
б	Nelson River river system though, would we?	
7	MS. SCHNEIDER-VIEIRA: No, we don't.	
8	MR. WILLIAMS: Dr. Schneider, can we	
9	agree that the life history of lake sturgeon makes	
10	a comprehensive assessment of stocking programs	
11	difficult in that assessment of stocking programs	
12	requires a minimum of 15 to 20 years, i.e. of lake	
13	sturgeon generation for comprehensive program	
14	results?	
15	MS. SCHNEIDER-VIEIRA: You are correct	
16	in that we have not, in Manitoba, documented	
17	well, I'll back up. The first and most important	
18	or the first measure that people use for the	
19	success of a stocking program is whether the fish	
20	placed in the environment survive and whether they	
21	basically stay close to or in some area where you	
22	can find them again and grow.	
23	In Manitoba, including in the upper	
24	Nelson River, it's been demonstrated that they	
25	both survive and grow.	

		Page 1364
1	As you alluded to in your 20 to 25	i ago i co i
2	year duration of the program, what we have not yet	
3	demonstrated in Manitoba is that these stock	
4	sturgeon go somewhere to spawn. You're correct in	
5	that. Successful spawning has not been documented	
6	in many sturgeon stocking programs simply because	
7	it does take them 25 years. As you may well be	
8	aware, in the St. Louis River, they have	
9	documented successful spawning.	
10	MR. WILLIAMS: And that would be	
11	Dr. Sharam's report on the St. Louis river	
12	system, agreed, subject to check?	
13	MS. SCHNEIDER-VIEIRA: Yeah, agreed,	
14	subject to check. No, sorry, Cam says no. We	
15	have received some reports I believe from it was	
16	at a conference basically that they announced	
17	this.	
18	MR. WILLIAMS: Okay. To you and to	
19	Cam, we can agree that there has been a	
20	comprehensive study on the St. Louis river system,	
21	agreed?	
22	MS. SCHNEIDER-VIEIRA: You know, I	
23	would have to check. I'm not sure.	
24	MR. WILLIAMS: Okay.	
25	MS. SCHNEIDER-VIEIRA: It was noted	

	Page 1365
1	that Ron Bruch is the individual who announced the
2	spawning in 2011 at a conference.
3	MR. WILLIAMS: Okay. Can we also
4	agree that also the work of Rhodes et al on the
5	Missouri and Mississippi Rivers would be an
6	example of another comprehensive study? Drauch
7	and Rhodes. Dr. Schneider, we can
8	MS. SCHNEIDER-VIEIRA: Sorry, I just
9	wanted to clarify. Certainly Dr. Barth is aware
10	of the work. It did not closely inform the work
11	that we did on Keeyask.
12	MR. WILLIAMS: I guess my question,
13	Dr. Schneider, apart from the work on the St.
14	Louis river system or the Missouri and Mississippi
15	system, can you point my client or my expert to
16	any other comprehensive study of lake sturgeon
17	stocking?
18	MS. SCHNEIDER-VIEIRA: In terms of the
19	initial
20	MR. WILLIAMS: I may have been
21	imprecise. By comprehensive, I mean the
22	assessment of stocking programs over lake sturgeon
23	generation.
24	MS. SCHNEIDER-VIEIRA: Not that we are
25	aware of.

		Page 1366
1	MR. WILLIAMS: Okay.	U U
2	MS. SCHNEIDER-VIEIRA: I just wanted	
3	to clarify. I understood you to mean you were	
4	looking for stocking programs that had been	
5	monitored such that spawning by stocked fish has	
6	been demonstrated. Or are you interested also in	
7	stocking programs that have demonstrated survival	
8	and growth?	
9	MR. WILLIAMS: I'm looking at those	
10	lifecycle ones through the 15 to 20 years.	
11	MS. SCHNEIDER-VIEIRA: So that go up	
12	to spawning?	
13	MR. WILLIAMS: Yes.	
14	MS. SCHNEIDER-VIEIRA: I should note	
15	again that because most stocking programs, many	
16	are now reaching the 20 year mark. But the reason	
17	that there it hasn't been much information on	
18	whether or not stocked fish spawn is just simply	
19	the duration of those programs.	
20	MR. WILLIAMS: Dr. Schneider, when we	
21	look at the survival of an aquatic species, would	
22	it be fair to say that the health of any species	
23	is associated with a general resistance to	
24	mortality and the availability of critical	
25	resources such as habitat and food?	

		Page 1367
1	MS. SCHNEIDER-VIEIRA: Yes.	
2	MR. WILLIAMS: And speaking of lake	
3	sturgeon, we can agree that it is important for	
4	them to have a large and diverse ecosystem for	
5	each of their main life history stages?	
6	MS. SCHNEIDER-VIEIRA: Lake sturgeon	
7	require a variety of habitats to fulfill all their	
8	life history requirements. As I noted in my	
9	presentation, that can require a large area or it	
10	can require a small area. And it depends on your	
11	local geography or geology.	
12	MR. WILLIAMS: Fair enough. If we	
13	look to your life history stages put up on the	
14	slide being slide 64 at page 96, and I'm sure you	
15	have it memorized, Dr. Schneider, I don't think	
16	you need to turn there. But if we focused on that	
17	adult group for just one moment, we can agree that	
18	their habitat and food requirements are fairly	
19	general?	
20	MS. SCHNEIDER-VIEIRA: Yes, that's	
21	true.	
22	MR. WILLIAMS: And they are tough.	
23	They tend not to die easily once they reach that	
24	adult stage?	
25	MS. SCHNEIDER-VIEIRA: That is true as	

1	well.	Page 1368
2	MR. WILLIAMS: If we move down the	
3	chain a bit to the juvenile category, we can agree	
4	that like adults, they are not fragile.	
5	MS. SCHNEIDER-VIEIRA: That's true.	
6	MR. WILLIAMS: Can we also agree that	
7	as compared to older sturgeon, they appear to have	
8	much more specific habitat and food requirements?	
9	MS. SCHNEIDER-VIEIRA: They do have	
10	more specific habitat requirements as they get	
11	smaller. And in fact, if you look at the habitat	
12	suitability indices that we developed for the	
13	Keeyask project, you'll see that it's illustrated	
14	quite clearly there.	
15	MR. WILLIAMS: Okay. So I think we	
16	have agreed that compared to the adults, they do	
17	have they are somewhat more constrained in	
18	terms of specific habitat and food requirements?	
19	MS. SCHNEIDER-VIEIRA: Yes.	
20	MR. WILLIAMS: Now, let's focus on	
21	Young of the Year. In comparison to the two older	
22	groups, we can agree that they are relatively more	
23	fragile and more likely to suffer mortality?	
24	MS. SCHNEIDER-VIEIRA: Yes, that's	
25	true, in terms of, for example, they would be more	

	Page 1369
1	vulnerable to predation let's say. I don't want
2	to leave the impression that yeah, let's say
3	predation.
4	MR. WILLIAMS: And as compared to the
5	other two older groups, they also appear to
6	require more specificity in terms of habitats and
7	food?
8	MS. SCHNEIDER-VIEIRA: Yes, that's
9	correct.
10	MR. WILLIAMS: And if the proper
11	habitat and food are not available, they will die?
12	MS. SCHNEIDER-VIEIRA: Certainly.
13	MR. WILLIAMS: And if we go right up
14	to the top of that life history stage in terms of,
15	I'm going to call it egg and yolk sack fry but we
16	can include larvae in there, one vulnerability
17	they do have is that they are vulnerable to
18	predation?
19	MS. SCHNEIDER-VIEIRA: Yes. Once the
20	eggs had been laid, they are vulnerable to
21	predation.
22	MR. WILLIAMS: I guess another risk is
23	whether the adult can find suitable spawning
24	habitats. Agreed?
25	MS. SCHNEIDER-VIEIRA: Yes, that's

Page 1370 1 true. 2 MR. WILLIAMS: On the other hand, at 3 that very young egg and yolk sack fry stage, 4 there's no food required at that stage, is there? 5 MS. SCHNEIDER-VIEIRA: That's correct. MR. WILLIAMS: Would it be fair to say б that that period from egg to age one is the most 7 vulnerable for lake sturgeon in terms of factors 8 affecting survival? 9 10 MS. SCHNEIDER-VIEIRA: Yes. MR. WILLIAMS: I'm not sure how much 11 12 assistance it will be, but if you would like, we can turn to slide 78, which is page 110. Dr. 13 Schneider, in terms of the mitigation strategy of 14 Manitoba Hydro and its partners or the 15 partnership, it would be fair to say that the 16 cornerstone of the mitigation strategy is 17 stocking? 18 19 MS. SCHNEIDER-VIEIRA: The stocking is 20 a very important part of the mitigation strategy. 21 But I should note, as I did during the presentation, that the intent is to have a 22 23 long-term self-sustaining population. So it's not to have essentially a put take operation where 24 they rely on stocking in perpetuity. 25

1	Page 1371 MR. WILLIAMS: Would I be correct in
2	suggesting that when Manitoba Hydro is predicting
3	increased regional abundance, you are not basing
4	that prediction upon successful natural
5	reproduction post Keeyask?
б	MS. SCHNEIDER-VIEIRA: The prediction
7	of increased regional abundance is based on an
8	increase, basically kick-starting the local
9	populations such that you increase the number of
10	sturgeon that are there at present via stocking.
11	And then those sturgeon will mature over time and
12	begin to reproduce on their own and form a
13	self-sustaining population.
14	MS. MATKOWSKI: I might add that what
15	we have seen in recent years at the stocking sites
16	in the Keeyask area is an increasing population of
17	spawners. They are young fish but they are
18	increasing. We are seeing more spawning every
19	year.
20	MR. WILLIAMS: Okay. Thank you for
21	that. When we think of stocking, would I be
22	correct in dividing it into a number of stages
23	including the hatchery stage and the introduction
24	of the fish, I'm going to call them fingerlings, I
25	hope that's right, into the river system? There's

		Page 1372
1	a couple of stages.	
2	MS. SCHNEIDER-VIEIRA: There are	
3	several stages. The first stage would be the	
4	spawn collection because we are not going to be	
5	retaining adult fish within the hatchery. We go	
6	each year to a location and collect wild spawn.	
7	That spawn, those fish will be carefully	
8	identified such that we know whether or not we	
9	have used them previously for spawn collection	
10	because the intent is over time, each year we may	
11	only get one or two females. But over the many	
12	years of the stocking program, we want to ensure	
13	that we use a wide range of females with males to	
14	maintain our genetic diversity.	
15	Then you are quite correct, they go	
16	into the hatchery. They will be raised to one of	
17	three ages, either as fry fingerlings, which are	
18	the fish, how old they are in fall, or yearlings.	
19	And then as you said they are reintroduced into	
20	the wild. Where you reintroduce them into the	
21	wild would depend both on the habitat assessments	
22	as well as the age of fish that you are	
23	reintroducing.	
24	MR. WILLIAMS: And we're going to	
25	mostly talk about the hatchery, the introduction	

		Page 1373
1	to the river system. But just in terms of spawn	
2	collection, would I be correct in suggesting that	
3	over the 10 years that you have been, 10 or more	
4	years that you had been working in the Nelson	
5	River system, there have been some challenges in	
6	identifying females who are able to produce spawn?	
7	MS. SCHNEIDER-VIEIRA: We have tested	
8	spawn collection for a number of years. I'm	
9	thinking three, but that's subject to check. And	
10	it is true that there are very few females in the	
11	areas that we are targeting, and we are not	
12	getting the very large females, which are very	
13	easy to identify, we have not seen. We have been	
14	exploring different technology in terms of	
15	examining the fish through I was going to say	
16	endoscope or some scope where you basically	
17	look to see what gender it is because they are	
18	hard to sex from the outside. So last year we did	
19	successfully collect spawn. And currently we do	
20	have some sturgeon that are being raised in the	
21	hatchery. But you are correct, it is a challenge	
22	because these are very depleted populations.	
23	MR. WILLIAMS: Now I want to turn to	
24	the hatchery, and without going into detail at	
25	this point in time, we can agree that there are	

1		Page 1374
1	times within the Manitoba hatchery where partial	
2	or complete die offs have been known to occur;	
3	agreed?	
4	MS. MATKOWSKI: You're speaking about	
5	the Grand Rapids hatchery?	
6	MR. WILLIAMS: Well, we can use Grand	
7	Rapids as an example.	
8	MS. MATKOWSKI: Yes, at the Grand	
9	Rapids hatchery, the Whiteshell hatchery,	
10	University of Manitoba, they have all had to deal	
11	with what every fish culture facility has to deal	
12	with, and that's occasional mortality of different	
13	lots of fish.	
14	MR. WILLIAMS: And that would be the	
15	same for the experimental facility in Pinawa?	
16	MS. MATKOWSKI: Yes.	
17	MR. WILLIAMS: So, I want to talk a	
18	little bit about the various risk points in the	
19	hatchery where partial or complete die off has	
20	been known to occur. And would I be correct in	
21	suggesting to you that one critical point where	
22	partial or complete die off has been known to	
23	occur is at the stage when one is weaning month	
24	old fish from live brine shrimp to frozen blood	
25	worm?	

		Page 1375
1	MS. MATKOWSKI: Yes, that's correct.	
2	MR. WILLIAMS: And certainly based	
3	upon Manitoba experience, this is where a die off	
4	tends to be most likely?	
5	MS. MATKOWSKI: Most likely.	
6	MR. WILLIAMS: And based upon Manitoba	
7	experience, this would also be where the die off	
8	tend to be more severe. Agreed?	
9	MS. MATKOWSKI: It can be more severe.	
10	It really depends on the fish husbandry practices.	
11	And at Grand Rapids hatchery, we have introduced	
12	standard operating procedures and we have	
13	increased staffing levels, and I believe that this	
14	has largely taken care of that issue. We have had	
15	20 years of practice. And I have come to the	
16	conclusion that it's simply how well you take care	
17	of these fish, and how much attention you pay when	
18	you switch them from their initial food to their	
19	second type of food. And that is an entirely	
20	manageable issue.	
21	MR. WILLIAMS: It would be fair to say	
22	that die offs happen simply changing from one	
23	natural food to another?	
24	MS. MATKOWSKI: Absolutely. It	
25	depends who's taking care of them and how much	

		Page 1376
1	care and attention they are paying.	
2	MR. WILLIAMS: Would it be fair to say	
3	that another point where partial or complete die	
4	offs could occur is when one is weaning the 10 day	
5	old yolk sack fry on to live brine shrimp?	
6	MS. MATKOWSKI: Yes.	
7	MR. WILLIAMS: Would it be fair to say	
8	that one can never breathe easy when lake sturgeon	
9	are in the hatchery?	
10	MS. MATKOWSKI: I would say now we are	
11	much more confident in rearing lake sturgeon than	
12	we were five years ago.	
13	MR. WILLIAMS: Now, no doubt	
14	MS. MATKOWSKI: Nobody is holding	
15	their breath.	
16	MR. WILLIAMS: No doubt Manitoba Hydro	
17	tracks on an annual basis survival rates from the	
18	Grand Rapids hatchery, agreed?	
19	MS. MATKOWSKI: Yes.	
20	MR. WILLIAMS: And that information is	
21	available in an easily compilable form.	
22	MS. MATKOWSKI: It's not available in	
23	an easily compilable form. What I do have what	
24	we do have is over the past couple of years, now	
25	that we are confident in our egg collection	

		Page 1377
1	methodology, we do have numbers for survival over	
2	the last couple of years. Before that, I would	
3	say it's we have only taken over operation of	
4	Grand Rapids hatchery in the last year. And so	
5	the records prior to that I would not be confident	
6	in.	
7	MR. WILLIAMS: So if we ask Manitoba	
8	Hydro for an undertaking to produce the survival	
9	rate at Grand Rapids hatchery for the last 10	
10	years, would you be prepared to take that under	
11	consideration?	
12	MS. MATKOWSKI: No. I am not	
13	confident in the last 10 years. But what I can	
14	tell you is that in the last year, for instance,	
15	where we collected eggs at the Landing River and	
16	the Burntwood River, we had a very high survival	
17	rate of Landing River fish, a very high hatch	
18	rate, because that is the site where sturgeon had	
19	been collected by the Nelson River Sturgeon Board	
20	for years already. They have all the bugs worked	
21	out. They know how to do it. They are using the	
22	hormone gamotropic releasing hormone to assist the	
23	fish, so the egg quality they are getting is very	
24	high, and so their hatch rate is very high. I	
25	would easily say over 75 percent.	

		Page 1378
1	However, for the Burntwood River, when	
2	we tried this for the first year last year, we	
3	were thrilled just to get a spawning fish, and	
4	then to take eggs. And I think those eggs in the	
5	future will be of very high quality. But last	
6	year there were some bugs to be worked out. The	
7	temperature was a bit high. The pumps were not in	
8	the right place. And so we had a low survival	
9	rate on those fish. Still we have 600 Burntwood	
10	River fingerlings in the hatchery right now that	
11	we will rear over winter and we will stock as	
12	yearling fish, and that is our target for the	
13	Keeyask spawning.	
14	MR. WILLIAMS: What was the survival	
15	rate from the Burntwood fish?	
16	MS. MATKOWSKI: I don't know offhand.	
17	I would guess that it is less than 10 percent.	
18	And that's not an unusual thing in fish culture.	
19	MR. WILLIAMS: Indeed, it would be	
20	fair to describe hatchery results as erratic in	
21	that one might have a really good year and a high	
22	success rate, juxtaposed with a very bad year and	
23	a low success rate?	
24	MS. MATKOWSKI: I wouldn't call it	
25	erratic. I would say there are occasional	

		Page 1379
1	instances when we do not have a successful year.	
2	There has been one year out of the last 10 when we	
3	have not been successful in rearing fish for the	
4	Nelson River Sturgeon Board. And on average over	
5	the last 10 years, we have produced over 10,000	
б	fingerlings out of Grand Rapids hatchery.	
7	MR. WILLIAMS: What percentage would	
8	that be? Survival rate	
9	MS. MATKOWSKI: From egg?	
10	MR. WILLIAMS: You've just given me	
11	the 10 years, what percentage would that be?	
12	MS. MATKOWSKI: I could not tell you	
13	right now.	
14	MR. WILLIAMS: Would it be fair to say	
15	that from time to time there would be inexplicable	
16	die offs at the Grand Rapids hatchery?	
17	MS. MATKOWSKI: I would not call them	
18	inexplicable, I would call them the result of poor	
19	fish husbandry practices. And so we would be	
20	guessing after they occurred whether or not it was	
21	because someone didn't clean the tank or didn't	
22	provide the food at the right time. And as I	
23	said, Manitoba Hydro has taken over operation of	
24	Grand Rapids hatchery for about a year now. We	
25	have introduced standard operating procedures.	

24

1	And so I would have to disagree with you.	Page 1380
2	MR. WILLIAMS: Okay.	
3	MS. SCHNEIDER-VIEIRA: I was just	
4	going to make a couple of points. One is that one	
5	of the notes that I made in the presentation is	
6	that when we're looking at the Gull Rapids	
7	population of sturgeon, we have to date in the	
8	last decade found one year when we have had	
9	successful recruitment. So that's one in 10. And	
10	what was being described for the Grand Rapids	
11	hatchery is a much higher success rate. So a much	
12	higher potential frequency of successful	
13	recruitment in terms of introducing young fish to	
14	the wild. The other point is those 625 yearlings	
15	or fingerlings may not sound like a lot. That, if	
16	they are raised to yearlings in spring and	
17	released, that would be actually greater than the	
18	number of adults that are currently in the Split	
19	Lake reach.	
20	And we know from some of the work that	
21	was done on the Upper Nelson River at Sea Falls	
22	when we compare the number of fish that were	
23	stocked as yearlings to the number of fish that we	

25 survival rates for fish that were stocked as

are recapturing, we're seeing very, very high

1381

		Dogo
1	yearlings. So even that failure, if you will,	Page
2	would represent a substantial number of fish being	
3	put into that Split Lake population.	
4	MR. WILLIAMS: And thank you, Dr.	
5	Schneider, because we are going to get both to	
6	hatchery over the winter and to the introduction	
7	of fingerlings. But just while you've stepped	
8	back into the discussion, you spoke of the one	
9	successful year in terms of the existing	
10	environment, which is the 2008 year, in terms of	
11	the study area, agreed?	
12	MS. SCHNEIDER-VIEIRA: Yes, that is	
13	true.	
14	MR. WILLIAMS: And do you interpret	
15	the one in 10 year as being an indicia of a	
16	compromised environment?	
17	MS. SCHNEIDER-VIEIRA: Yes, what we	
18	did is even in the "healthy population" such as	
19	the sturgeon population downstream of Pointe Du	
20	Bois, the amount of recruitment, if you will, of	
21	the size of that young year class varies	
22	considerably among years, but downstream of Pointe	
23	Du Bois we can see a much higher frequency	
24	basically of young sturgeon being detectable	
25	within the population. I should also point out	

1	that the 2008 year classes are now five year old	Page 1382
2	fish, so they are considerably easier to catch	
3	than the younger ones. The other thing I did want	
4	to point out is that in CEC round one, 0031, we	
5	did describe in detail the results of the	
6	comparison between recruitment in Gull Lake versus	
7	at Pointe Du Bois.	
8	MR. WILLIAMS: Yes. And in terms of	
9	your stocking mitigation strategy, the current	
10	plan certainly contemplates the potential for the	
11	release of fall fingerlings into the river,	
12	agreed?	
13	MS. SCHNEIDER-VIEIRA: Yeah, we have	
14	identified all three life stages or ages as being	
15	either as fry, fingerlings or yearlings, and the	
16	likely end result is going to be that it will be	
17	some combination of all three life stages. We	
18	anticipate that in developing the stocking program	
19	further, that both Fisheries and Oceans Canada,	
20	and perhaps more importantly Manitoba Conservation	
21	and Water Stewardship, will have significant input	
22	into the stocking program since they have to	
23	essentially authorize the fish handling that's	
24	required to enable it.	
25	MR. WILLIAMS: And focusing on the	

		Page 1383
1	fingerlings experience, the corporation is aware	0
2	of research on the Winnipeg River by Ms. Cheryl	
3	Klassen, et al, in terms of the success rates of	
4	fingerlings introduced into the Winnipeg River,	
5	agreed?	
6	MS. MATKOWSKI: Yes.	
7	MR. WILLIAMS: And while recognizing	
8	that Ms. Klassen's work is preliminary, she did	
9	examine the results from the stocking of	
10	fingerlings on the Winnipeg River between 2006 and	
11	2010; agreed?	
12	MS. MATKOWSKI: I believe that's	
13	correct.	
14	MR. WILLIAMS: And would I be correct	
15	in suggesting that her preliminary research	
16	indicates a significant drop in weights for	
17	hatchling fingerlings recaptured within a few	
18	weeks of fall stocking?	
19	MS. MATKOWSKI: I believe that's	
20	correct, and that would be expected.	
21	MR. WILLIAMS: Would one relate a	
22	significant drop in weight to an inability to	
23	obtain food and a struggle for habitat?	
24	MS. MATKOWSKI: Those fish when	
25	stocked would be searching for a spot that's	

		Page 1384
1	suitable and where they could find food. That	rage 1504
2	time of year, their metabolism is slowing down as	
3	well. And so that's part of the reason that there	
4	would be a drop in weight.	
5	MR. WILLIAMS: Might it be inferred	
6	that they were starving?	
7	MS. MATKOWSKI: I don't know if you	
8	can infer that they were starving. Certainly a	
9	large percentage of stocked fish will not make it	
10	over the first winter. A large percentage of any	
11	fish will not make it over the first winter. The	
12	size of fish to be stocked is one of the things	
13	that we are certainly concerned with, and we are	
14	finding from our research right now that stocking	
15	yearling fish gives us a much greater success	
16	rate, the fish are that much larger. They are	
17	stocked in the summer when they have warmer water,	
18	higher metabolism and they are able to establish	
19	themselves better.	
20	So our stocking plan, as Friederike	
21	has pointed out, has the flexibility to be	
22	modified as we learn which fish are going to	
23	survive the best. I don't think of it in terms of	
24	are they fingerlings, being zero age, a few months	
25	old, or are they yearlings. I think the size is	

	Page 1385
1	very important. And if we can get fingerlings to
2	a large size, perhaps similar to what we get
3	yearlings to now, maybe those will survive much
4	better. It is something that we have learned a
5	lot about in the last few years, and we know now
6	that we have great success rate on our yearlings
7	for sure. We know that some of our fingerlings
8	have survived, but certainly not as many as our
9	yearlings.
10	MR. WILLIAMS: At least one of the
11	concerns you expressed to me in terms of the
12	fingerlings at this current stage is their
13	inadequate size which materially reduces their
14	prospects for surviving?
15	MS. MATKOWSKI: That certainly can be,
16	yes.
17	MR. WILLIAMS: Now, let's turn to
18	yearlings now. Of course with yearlings, they
19	have to stay in the hatchery for longer; agreed?
20	MS. MATKOWSKI: Yes.
21	MR. WILLIAMS: And it would be fair to
22	say that the longer that fish are reared in the
23	hatchery, the greater is the potential for disease
24	transmission. Agreed?
25	MS. MATKOWSKI: Yes.

		Page 1386
1	MR. WILLIAMS: And would it also be	
2	fair to say that Manitoba Conservation has	
3	expressed the concern that stocking older fish	
4	will create a population more suited to rearing in	
5	a hatchery setting than in the wild?	
6	MS. MATKOWSKI: I believe they have.	
7	That is something that has happened with salmon	
8	species, for instance, on the West Coast. One of	
9	the ways of addressing that is to stock a variety	
10	of ages of fish. If we stock some of our larval	
11	fish, then if that's a problem with stocking	
12	yearlings, stocking the larval fish will allow	
13	some of those that would have been less likely to	
14	survive in hatchery, or be more likely to survive	
15	in the wild, to actually get out there into the	
16	wild. It's like not putting all your eggs in one	
17	basket.	
18	MR. WILLIAMS: That was quite clever,	
19	whether inadvertently or not. I like that one.	
20	Would it be fair to say that in terms	
21	of the hatchery fish, there has been a disease	
22	recently observed in the lake sturgeon?	
23	MS. MATKOWSKI: I believe the last	
24	time that there was what was thought to be a	
25	virus in lake sturgeon from the Winnipeg River in	

		Page 1387
1	the University of Manitoba and possibly at the	
2	Grand Rapids hatchery, was 2010. And based on	
3	that occurrence, Manitoba Hydro has taken it as an	
4	opportunity to do some research. We have	
5	partnered with the Fisheries and Oceans Canada,	
б	with one of their fish pathology scientists, and	
7	she is doing a four year study for us of lake	
8	sturgeon viruses. She has identified a virus from	
9	those Winnipeg River fish, and she is developing a	
10	test for it, and we will be using that test on	
11	every lot of the fish that we stock from Grand	
12	Rapids hatchery to ensure that we are not stocking	
13	diseased fish into the Nelson River.	
14	MR. WILLIAMS: And are you also	
15	testing or investigating the prevalence and	
16	distribution of this virus in the wild	
17	populations?	
18	MS. MATKOWSKI: The same researcher	
19	will be doing that test. She already has samples	
20	from several different rivers in Manitoba, as well	
21	as the Rainy River in Ontario.	
22	MR. WILLIAMS: Okay. I want to turn	
23	to the issue of Young of the Year and habitat.	
24	And again, it's to either of you, I'm just going	
25	to use Dr. Schneider, but please whoever wants to	

	Page 1388
1	go in. I think we have previously agreed that the
2	availability of suitable habitat may be more
3	limiting for Young of the Year than for adults?
4	Agreed?
5	MS. SCHNEIDER-VIEIRA: That certainly
6	may be the case.
7	MR. WILLIAMS: And in terms of what
8	Young of the Year require apart from nurturing
9	parents, certainly they are looking for they
10	require a habitat that contains an invertebrate
11	community capable of supporting the population.
12	Agreed?
13	MS. SCHNEIDER-VIEIRA: That is true.
14	MR. WILLIAMS: And we tend to find
15	them hanging out, Young of the Year, in habitat
16	consisting of coarse sediments such as sand
17	agreed?
18	MS. SCHNEIDER-VIEIRA: Yes, that's
19	true.
20	MR. WILLIAMS: And we tend not to find
21	them in habitat that is over-saturated with fine
22	sediments such as mud?
23	MS. SCHNEIDER-VIEIRA: Well, that is
24	actually a point of active discussion. There have
25	been examples from the Winnipeg River system where

389

1	in the Great Falls reservoir where they actually	Page 13
2	were found on silty substrates. But it is true	
3	that the majority of places they were found, they	
4	have been on the sand substrate.	
5	MR. WILLIAMS: And I'm going, for the	
6	purposes of my next couple of questions, define	
7	the word experimental as something that means an	
8	activity that has not been attempted before, okay,	
9	for the purposes of our conversation.	
10	Would it be fair to describe Manitoba	
11	Hydro's efforts to create habitat for Year of	
12	Young as experimental?	
13	MS. SCHNEIDER-VIEIRA: Yes, the Young	
14	of the Year habitat has not been experimentally	
15	created before. I mentioned that in my	
16	presentation and it was also highlighted in our	
17	environmental impact assessment.	
18	MR. WILLIAMS: And I misspoke and said	
19	Year of the Young instead of Young of the Year, so	
20	thank you for correcting me.	
21	And as I understand it, there are no	
22	successful examples of creation of Young of the	
23	Year nursery habitat for lake sturgeon?	
24	MS. SCHNEIDER-VIEIRA: No one has	
25	attempted it.	

		Page 1390
1	MR. WILLIAMS: Now in the event that	
2	creation of Young of the Year habitat is	
3	undertaken, we can agree that the area of the	
4	preferred location for construction of the sand	
5	blanket will not be where Young of the Year	
6	sturgeon are currently located under existing	
7	conditions?	
8	MS. SCHNEIDER-VIEIRA: Yes, that's	
9	true, because the reservoir will be created, the	
10	water flow conditions will change such that larval	
11	sturgeon drifting downstream are not expected to	
12	be able to even reach the place where they	
13	currently have habitat. In addition, I have	
14	noted, that habitat will be covered with silt. So	
15	the Young of the Year habitat will be created	
16	essentially from the change in velocities we	
17	believe they will settle out, and that is also	
18	coincidentally the place where you would expect to	
19	have sand in a natural river system.	
20	MR. WILLIAMS: Okay. As compared to	
21	developing and maintaining adult sturgeon spawning	
22	areas, can we agree that the creation of habitat	
23	for Young of the Year is more complex?	
24	MS. SCHNEIDER-VIEIRA: We can agree	
25	that it is less it hasn't been done elsewhere,	

		Page 1391
1	so it's associated with a higher degree of	
2	uncertainty. And that is also a point that we	
3	made in our impact assessment.	
4	MR. WILLIAMS: And one of the degrees	
5	of uncertainty is whether or not the appropriate	
6	biota will invade the new habitat. Agreed?	
7	MS. SCHNEIDER-VIEIRA: You're	
8	referring I imagine to invertebrates. What we	
9	find in the river system such as this is that	
10	there's actually quite a large number of	
11	invertebrates that periodically or continuously	
12	actually drift in the river column, so you can	
13	picture these small bugs, little fish flies and	
14	other things, they live in the bottom.	
15	Periodically they get up and they drift downstream	
16	and they recolonize in other areas. We have seen	
17	in other places, for example, when you look at	
18	newly flooded habitat land, within a year or so	
19	they will recolonize. So there's a lot of	
20	movement of invertebrates in the river system.	
21	And so we would expect that that this new sand	
22	area will become very rapidly colonized with	
23	invertebrates, as would be typical of a natural	
24	sandy area.	
25	MR. WILLIAMS: So one of the issues,	

		Page 1392
1	though, will be the intensity of the benthic	
2	invertebrate invasion and the pace of it. Agreed?	
3	MS. SCHNEIDER-VIEIRA: Yeah, based on,	
4	as I say, work that we have done in other places,	
5	both looking at how quickly invertebrates move	
6	back into the edges of lakes, for example, when	
7	the lake has been drawn down and then is raised	
8	again. You're seeing that within a season. It's	
9	very fast.	
10	MS. MATKOWSKI: And I might add that	
11	there's always drift of invertebrates, and that is	
12	partially what the fish are picking up, is not	
13	necessarily only invertebrates that are produced	
14	where they are, but invertebrates that are	
15	drifting down with the current to them.	
16	MR. WILLIAMS: Mr. Chair, I'm aware of	
17	the time. I have	
18	THE CHAIRMAN: It's just after ten	
19	after four.	
20	MR. WILLIAMS: I may or may not	
21	conclude today. I'm getting very close, though.	
22	And we have had some discussions in	
23	terms of over the last couple of days in terms	
24	of impact of previous hydroelectric developments.	
25	Would I be correct in suggesting that one impact	

1	Page 1393 of the Churchill River Diversion in combination
2	with Lake Winnipeg Regulation was to reverse the
3	Nelson River pre-project seasonal water level and
4	flow patterns in the Keeyask study area? I can
5	elaborate on that if you like.
6	MS. SCHNEIDER-VIEIRA: Summer flows
7	are basically the same and the winter flows have
8	increased, so you don't see that seasonal
9	variation any longer.
10	MR. WILLIAMS: In essence, you have
11	increased the water levels and flows during
12	periods of ice cover?
13	MS. SCHNEIDER-VIEIRA: Yes, that's
14	true.
15	MR. WILLIAMS: And you have reduced
16	the flows during the open water period?
17	MS. SCHNEIDER-VIEIRA: No. My
18	understanding one second I'll just confirm
19	no, it hasn't.
20	MR. WILLIAMS: We are jumping around a
21	little bit here, but when we look at a long-lived
22	population like lake sturgeon, would it be fair to
23	say that in terms of the population that's
24	currently in the study area, a number of the
25	sturgeon in the population today were born prior

1	to the educate of budaecleaterin development on the	Page 1394
1	to the advent of hydroelectric development on the	
2	lower Nelson River?	
3	MS. SCHNEIDER-VIEIRA: Yes, they were.	
4	MR. WILLIAMS: And given that the	
5	first generating station on the lower Nelson River	
6	was built in the early 70's, it would be accurate	
7	to say that only a single generation of sturgeon	
8	would have matured since that time?	
9	MS. SCHNEIDER-VIEIRA: Yeah.	
10	MR. WILLIAMS: Would it be accurate to	
11	say that in terms of drawing definitive	
12	conclusions about the long-term, which I define to	
13	mean over more than one generation, affects of the	
14	habitat alteration, we're not there yet in terms	
15	of lake sturgeon?	
16	MS. SCHNEIDER-VIEIRA: In terms of the	
17	lower Nelson River, no. We certainly have the	
18	examples which we have brought forward previously	
19	from the Winnipeg River system where we are	
20	looking at stations that are 100 years old, and	
21	there we have had multiple generations.	
22	MR. WILLIAMS: Within the Nelson River	
23	system we're not there yet?	
24	MS. SCHNEIDER-VIEIRA: Not in the	
25	lower Nelson River. Also the Kelsey generating	

		Page 1395
1	station was built in the early 50's, there would	
2	have been a couple of generations following that.	
3	MR. WILLIAMS: I'd like to turn you to	
4	the other exhibit presented by CAC today, which is	
5	the production of the Canadian Science Advisory	
б	Secretariat, Recovery Potential Assessment of Lake	
7	Sturgeon in terms of Nelson River populations.	
8	And Dr. Schneider or others, in particular well	
9	let me back up. The Nelson River system was	
10	COSEWIC assessed and designated DU3 on or about	
11	2007; is that about right?	
12	MS. MATKOWSKI: Yes, 2006, 2007.	
13	MR. WILLIAMS: And subsequent to this,	
14	there was a discussion paper provided by the	
15	Canadian Science Advisory Secretariat assessing	
16	the recovery potential assessment of lake sturgeon	
17	on the Nelson; agreed?	
18	MS. MATKOWSKI: That is the	
19	requirement of the Species at Risk Act process.	
20	The Department of Fisheries and Oceans held a	
21	workshop to gather information and essentially	
22	update the COSEWIC status summary assessment, and	
23	assess the recovery potential of each designatable	
24	unit of sturgeon.	
25	MR. WILLIAMS: And you spoke of	

		Page 1396
1	designatable units. So if we go to the very last	
2	page, being page 19 of this particular excerpt at	
3	the back, in essence there are the Nelson River	
4	has been divided into six different units,	
5	starting from number one, Playgreen Lake and	
6	Whitemud Falls in the south, and then moving up to	
7	the Limestone number 6, to Hudson Bay as well,	
8	agreed?	
9	MS. MATKOWSKI: Yes, those are called	
10	management units, and they are parts of the	
11	designatable unit and essentially they are between	
12	the generating stations.	
13	MR. WILLIAMS: And in terms of	
14	recovery potential in different parts of the	
15	management units, they range from a number of lows	
16	to one high being the region between Limestone and	
17	Hudson Bay; agreed?	
18	MS. MATKOWSKI: That table is not	
19	indicating recovery potential. It is indicating	
20	with the first letter, you will see that the table	
21	is generally two letters, L, L, if I'm on the same	
22	one that you are, H, M. Oh, I'm not.	
23	MR. WILLIAMS: I'm referring you to	
24	the very last page, which is page 19, and I	
25	apologize for my imprecision.	

	Page 1397
1	MS. MATKOWSKI: Yes. Then I agree,
2	yes, those are the recovery potentials.
3	MR. WILLIAMS: Okay. At least as
4	determined by this analysis; agreed?
5	MS. MATKOWSKI: Correct.
6	MR. WILLIAMS: I want to take you to
7	page 11 for a moment. And to the paragraph just
8	above limiting factors for population recovery.
9	And I'll give you a couple, just a couple of
10	seconds to read it, if you'd like.
11	So I'm just referring you to page 11
12	to the paragraph just above "limiting factors for
13	population recovery," the paragraph that begins
14	"In summary" I'll just give you a second to
15	peek at that.
16	Ms. Matkowski, you see that in this
17	paper, they are flagging what the authors of this
18	report consider the most important current threats
19	to survival and recovery of lake sturgeon in this
20	particular region; agreed?
21	MS. MATKOWSKI: That's correct,
22	although that is not the conclusion section of the
23	document.
24	MR. WILLIAMS: Yeah.
25	MS. MATKOWSKI: I have the whole

Page 1398 document, if you'd like it. 1 2 MR. WILLIAMS: I've got the whole 3 document too. I just wanted to -- what they are 4 flagging from their perspective, though, are concerns related to, one of the major concerns is 5 habitat degradation or loss resulting from the 6 presence of dams or impoundments. Agreed? 7 MS. MATKOWSKI: Yes. 8 9 MR. WILLIAMS: Another serious concern is pressure from fishing? 10 11 MS. MATKOWSKI: That's correct. 12 MR. WILLIAMS: And another concern 13 they identify is population fragmentation which 14 may result from the presence of dams or impoundments or other barriers. Agreed? 15 16 MS. MATKOWSKI: Correct, yes. MR. WILLIAMS: What I was curious 17 about in terms of this articulation of risk, would 18 19 that be what Hydro identifies as the major risks 20 in this system as well? 21 MS. MATKOWSKI: Right now the major risks in this system are fishing and barriers. 22 And barriers that have these same effects that are 23 24 described there, fragmentation and habitat change. 25 MR. WILLIAMS: Now you might want to

	Page 1399
1	turn, and I will just get the reference from your
2	powerpoint, I believe it's slide 66. And I
3	believe Dr. Schneider was discussing it, but I'm
4	happy with either of you. Dr. Schneider, on this
5	page you flag recovery or mitigation methods used
6	elsewhere, agreed?
7	MS. SCHNEIDER-VIEIRA: Yes, that's
8	true.
9	MR. WILLIAMS: And I was intrigued by
10	down near the bottom you flagged not only habitat
11	creation but hydraulic manipulations. Agreed?
12	MS. SCHNEIDER-VIEIRA: Yes.
13	MR. WILLIAMS: But I didn't hear you
14	discuss that in any great detail. Would I be
15	correct in suggesting to you that by hydro
16	manipulations used elsewhere, you would be
17	referring to factors such as changing the
18	operations of hydraulic flows or matters like
19	that?
20	MS. SCHNEIDER-VIEIRA: There have been
21	situations where they have provided flow
22	downstream or flow appropriate for spawning
23	sturgeon downstream, yes. Sorry, it can also be
24	related to spawning habitat creation.
25	MS. MATKOWSKI: And that may be as

		Page 1400
1	simple as just which turbines on the generating	
2	station you have on or off. Because if you have	
3	10 turbines on, or rather you have 10 turbines and	
4	you really only need two on at a time, and you	
5	know the fish spawn over in front of two	
6	particular turbines, you can manipulate your flow	
7	to make sure that it's happening over that	
8	spawning area.	
9	MR. WILLIAMS: And I guess the other	
10	manipulation, maybe I'm not using the right word	
11	here, that I've seen is dam removal, that's been	
12	another activity contemplated in other	
13	jurisdictions.	
14	MS. MATKOWSKI: Definitely on the Red	
15	River in the U.S., they have removed several dams.	
16	MR. WILLIAMS: Okay. When we talk	
17	about the objective of enhancing the population of	
18	sturgeon in this study area, Dr. Schneider, you	
19	would agree with me that measures such as stocking	
20	can be undertaken whether or not Keeyask proceeds?	
21	MS. SCHNEIDER-VIEIRA: Yeah.	
22	Certainly stocking can proceed with or without	
23	Keeyask. However, stocking in terms of a program	
24	with the magnitude being contemplated for Keeyask	
25	is a very costly initiative, and so you would need	

		Page 1401
1	to I mean it would depend I guess on whether or	
2	not anybody would wish to do the stocking or the	
3	amount of stocking that would happen with or	
4	without Keeyask.	
5	MR. WILLIAMS: You wouldn't ordinarily	
6	recommend the construction of a hydroelectric	
7	generating station and dam as a mechanism to	
8	restore threatened fish species, would you?	
9	MS. SCHNEIDER-VIEIRA: That would be	
10	beyond the scope of what we would normally be	
11	answering. We weren't ask to assess	
12	MR. WILLIAMS: I am just playing with	
13	you.	
14	MS. SCHNEIDER-VIEIRA: I know you are.	
15	It's late.	
16	MR. WILLIAMS: Mr. Chair, what's the	
17	time?	
18	THE CHAIRMAN: Five minutes.	
19	MR. WILLIAMS: I think I will do it in	
20	less.	
21	THE CHAIRMAN: Very good.	
22	MR. WILLIAMS: So rare I get	
23	commendation, Mr. Chair, I'm so grateful.	
24	THE CHAIRMAN: Enjoy it while you can.	
25	MR. WILLIAMS: More in terms of the	

		Page 1402
1	literature review related to your cumulative	0
2	effects assessment, would you have considered	
3	authors or authors who discuss cumulative	
4	watershed effects and watershed analysis such as	
5	Leslie Reid? Would that be an author that's	
6	familiar to you?	
7	MR. DAVIES: I think that was a	
8	question that probably would have been more	
9	appropriate for panel 4 A.	
10	MR. WILLIAMS: So, it wouldn't be	
11	something that's ringing a bell with you?	
12	MR. DAVIES: Could you repeat the	
13	name, please?	
14	MR. WILLIAMS: Leslie Reid.	
15	MR. DAVIES: I'm not familiar with	
16	that name. I have reviewed a great deal of	
17	literature on that, but not that particular paper.	
18	MR. WILLIAMS: Okay. And again, if	
19	this is unfair, you'll tell me. But would you	
20	have, again in looking at the cumulative effects	
21	assessment for an effects-based approach for	
22	watershed scale, would you have looked at any of	
23	the work of Alison Squires?	
24	MR. DAVIES: I didn't look at her work	
25	specifically, but I was actually asked to attend	

		Page 1403
1	the workshop with Mr. Noble, and I believe the	0
2	University of Saskatchewan in 2008 to look at	
3	cumulative effects assessments for watersheds. I	
4	was asked to attend as a practitioner to provide	
5	advice on actually what could be done in terms of	
6	a cumulative effects assessment of that magnitude.	
7	MR. WILLIAMS: Okay. Thank you.	
8	Mr. Chair, I appreciate the patience of the Hydro	
9	panel and your patience as well.	
10	THE CHAIRMAN: Thank you,	
11	Mr. Williams. That brings us to a minute or two	
12	from 4:30, so we're not going to continue with	
13	proceedings today. We'll resume at 9:30 tomorrow.	
14	We have two participants remaining to	
15	cross-examine this panel. So, we'll require at	
16	least the aquatic part of this panel back up at	
17	9:30 tomorrow morning. Madam secretary.	
18	MS. JOHNSON: Yes, I have a couple of	
19	documents to put on file. The aquatic	
20	presentation will be KHLP41. The two articles	
21	that Mr. Williams brought in, the Recovery	
22	Potential Assessment article will be CAC002 and	
23	the Home Range article will be CAC003.	
24	(EXHIBIT KHLP41: The aquatic	
25	presentation)	

		Page 1404
1	(EXHIBIT CAC002: Recovery Potential	
2	Assessment article)	
3	(EXHIBIT CAC003: Home Range article)	
4	THE CHAIRMAN: Thank you. Any other	
5	business? Okay. We're adjourned until 9:30	
6	tomorrow morning.	
7	(Adjourned at 4:28 p.m.)	
8		
9		
10		
11		
12		
13		
14		
15		
16		
17		
18		
19		
20		
21		
22		
23		
24		
25		

Page 1405

OFFICIAL EXAMINER'S CERTIFICATE

Cecelia Reid and Debra Kot, duly appointed Official Examiners in the Province of Manitoba, do hereby certify the foregoing pages are a true and correct transcript of my Stenotype notes as taken by us at the time and place hereinbefore stated to the best of our skill and ability.

Cecelia Reid Official Examiner, Q.B.

Debra Kot

Official Examiner Q.B.

This document was created with Win2PDF available at http://www.win2pdf.com. The unregistered version of Win2PDF is for evaluation or non-commercial use only. This page will not be added after purchasing Win2PDF.