MANITOBA CLEAN ENVIRONMENT COMMISSION	Page 1406
KEEYASK GENERATION PROJECT	
PUBLIC HEARING	
Maluma 7	
Volume 7	
Transcript of Proceedings	
Held at Fort Garry Hotel	
Winnipeg, Manitoba	
WEDNESDAY, OCTOBER 30, 2013	
* * * * * * * * * * * * * * * * * * *	

APPEARANCES	Page 1407
CLEAN ENVIRONMENT COMMISSION Terry Sargeant - Chairman Edwin Yee - Member Judy Bradley - Member Jim Shaw - Member Reg Nepinak - Member Michael Green - Counsel to the Board Cathy Johnson - Commission Secretary MANITOBA CONSERVATION AND WATER STEWARDSHIP Elise Dagdick Bruce Webb	
KEEYASK HYRDOPOWER LIMITED PARTNERSHIP Doug Bedford - Counsel Janet Mayor - Counsel Sheryl Rosenberg - Counsel Bob Roderick - Counsel Jack London - Counsel Vicky Cole Shawna Pachal Ken Adams Chief Walter Spence Chief Louisa Constant Chief Betsy Kennedy Chief Michael Garson	
CONSUMERS ASSOCIATION OF CANADA Byron Williams - Counsel Aimee Craft - Counsel Gloria Desorcy Joelle Pastora Sala MANITOBA METIS FEDERATION Jason Madden - Counsel Ms. Saunders	
MANITOBA WILDLANDS Gaile Whelan Enns Annie Eastwood PEGUIS FIRST NATION Lorraine Land - Counsel Cathy Guirguis - Counsel Lloyd Stevenson Jared Whelan	

Page 1408

CONCERNED FOX LAKE GRASSROOTS CITIZENS Agnieszka Pawlowska-Mainville Dr. Stephane McLachlan Dr. Kulchyski Noah Massan

PIMICIKAMAK OKIMAWIN Kate Kempton – Counsel Stepanie Kearns – Counsel Darwin Paupanakis

KAWEECHIWASIHK KAY-TAY-A-TI-SUK Roy Beardy

INDEX OF PROCEEDINGS	Page 1409
Keeyask Aquatic & Terrestrial Environment Panel Ms. S. Davies, Dr. F. Schneider-Vieira, Ms. S. Matkowski, Ms. L. Wyenberg, Mr. R. Berger, Dr. B. Knudsen, Mr. J. Ehnes,	
Cross-examination by Ms. Kearns 1411 Cross-examination by Mr. McLachlan and Mr. Massan 1440 Questions by Board members 1521	
Keeyask Terrestrial PanelPresentation by Mr. Ehnes1540Presentation by Ms. Wyenberg1574Presentation by Mr. Berger1615	

Γ

	Page 14	410
INDEX OF EXHIBITS		-
KHLP42 Terrestrial presentation	1652	
INDEX OF UNDERTAKINGS		
No undertakings given		

		Page 1411
1	Wednesday, October 30, 2013	Tage 1411
2	Upon commencing at 9:30 a.m.	
3	THE CHAIRMAN: Good morning. Welcome	
4	back to day seven. Also happens to be We Day in	
5	Winnipeg. So while the youth of our community get	
б	to hang out with Martin Sheen and Martin Luther	
7	King 3rd, you get to hang out with me, so	
8	We'll resume cross-examination on the	
9	Aquatic Panel, Pimicikamak. Ms. Kearns?	
10	MS. KEARNS: Thank you, good morning.	
11	So I will start slide 19 for the first	
12	set of slides. So this is the slide on the CAMP	
13	program. And Mr. Davies, my question to you is,	
14	could you describe the limitations to this	
15	existing aquatic monitoring program?	
16	MR. DAVIES: I can provide a long list	
17	of the benefits of the monitoring program. I'm	
18	trying to think of some of the things that I	
19	guess one of the items was it would have been nice	
20	to have started this earlier. We are getting a	
21	long-term database now, as of 2008. We do have a	
22	long-term database starting as of 2008 and going	
23	on into the future. And I had noted why, the CAMP	
24	program came into existence with the memorandum of	
25	understanding in 2006. And as I said, the only	
1		

		Page 1412
1	thing I can think of right now is it would have	-
2	been nice to have the aquatic program started	
3	earlier, but that's when it came into being.	
4	MS. KEARNS: Thank you.	
5	So that's my only question in that set	
6	of slides, so I'll move on to the other set.	
7	While it's being flipped over,	
8	Dr. Schneider-Vieira, you referenced the fact in	
9	your presentation that the population of sturgeon	
10	in Stephens Lake is not presently viable. Is this	
11	because Stephens Lake is a reservoir for the	
12	Kettle Generation Station and not an actual lake?	
13	MS. SCHNEIDER-VIEIRA: We have spent	
14	quite a lot of energy and thought, quite a lot of	
15	interest has been focused on the topic of why	
16	there are no sturgeon, or so few sturgeon in	
17	Stephens Lake. Since it is one of our proxy	
18	environments for the Keeyask Generation Project,	
19	so we really wanted to know what had happened. We	
20	have the Aboriginal traditional knowledge from Fox	
21	Lake which tells us that prior to the construction	
22	of Kettle, that there were sturgeon there. That	
23	doesn't give us a concrete number, we can't say	
24	there are 1,000 or 2,000 or whatever, but we do	
25	know they used to harvest sturgeon in the main	

		Page 1413
1	stem of the river close to Gillam, as I understand	Ū
2	it, and also I believe at the mouth of the Butnau	
3	River before it was diverted and so on. So we do	
4	know there were sturgeon present.	
5	Fox Lake has also reported that after	
6	Kettle was constructed, that the sturgeon were no	
7	longer there. And obviously, they weren't in the	
8	locations where they had been found previously	
9	because that was highly flooded.	
10	Now, we do know that there were	
11	sturgeon at Gull Rapids through the early '70s and	
12	into the 1980s. There are records of people	
13	actually harvesting the sturgeon. They were	
14	actually targeted both in a commercial fishery in	
15	the '70s as well as noted in bycatch in the '80s.	
16	So when we go out today, what we see	
17	basically is very few, very young sturgeon. We	
18	know that if the habitat was well, we know that	
19	the adult sturgeon that were born prior to the	
20	construction of Kettle Generating Station should	
21	still be there. So because there are no adult	
22	sturgeon, we feel that they have either been	
23	harvested, which we know there is a record of some	
24	of that, and there's also the potential that they	
25	left. That is one of the reasons why we keep on	

		Page 1414
1	stressing the potential emigration of adults from	r ugo 1414
2	the reservoir as being a possible effect.	
3	In terms of the young sturgeon, we do	
4	know that there are some young sturgeon there now,	
5	and it looks like there is habitat that's suitable	
6	for them. And certainly, we did from the early	
7	2000s also have some records of mature sturgeon	
8	that we thought were gathering to spawn in Gull	
9	Rapids. So it looks like those two life stages	
10	are there.	
11	So, currently, our working hypothesis	
12	is essentially loss of adults through harvest and	
13	loss of adults through emigration.	
14	MS. KEARNS: Thank you.	
15	So turning to slide 13 of the second	
16	set of slides, Dr. Schneider-Vieira, you mentioned	
17	that there were no technical data on water quality	
18	prior to the 1970s and that this limits the	
19	ability to assess the effects of the CRD, LWR and	
20	Kettle on water quality. But my question is,	
21	based on what is known, is it possible for you to	
22	provide a likely direction of historical changes	
23	interpreted A levels in the main stem of the lower	
24	Nelson River?	
25	MS. SCHNEIDER-VIEIRA: There is not	

1		Page 1415
1	that much well, as I say, turbidity varies	
2	considerably over time. In Stephens Lake itself,	
3	or in the thing that became a reservoir over time,	
4	in the initial years post impoundment, there was	
5	an increase in turbidity, and then that declined	
6	again over time. I mean, it was limited data, but	
7	that is the information that we have for that	
8	area.	
9	If you go out today, you could see,	
10	and I don't know if you've been in the area, but	
11	certainly the southern part of Stephens Lake is	
12	much more turbid than the north arm, which has	
13	become quite clear.	
14	Now, you also asked whether I have any	
15	information that can address long-term changes in	
16	water clarity on the Nelson River main stem	
17	related to LWR and CRD. And apart from noting	
18	that the Burntwood River is more turbid than the	
19	Nelson River, so increased flows, because CRD	
20	increased the flows on the Burntwood, there is	
21	proportionately more turbid water entering the	
22	system. I can't comment on terms of long-term	
23	changes. There weren't such substantial changes	
24	that they were detectable based on the information	
25	that we have.	

1	Page 1416
1	MS. KEARNS: Okay. Turning to slide
2	19, the second large bullet reads, this is about
3	water quality:
4	"During operation, effects to water
5	quality in flooded area, 10 to 15
6	years, and permanent reduction in TSS
7	in lower reservoir in southern portion
8	of Stephens Lake."
9	So is it correct that peat land disintegration
10	could continue for at least 30 years?
11	MS. SCHNEIDER-VIEIRA: I will leave
12	James to answer that question.
13	DR. EHNES: That is correct.
14	MS. KEARNS: And so do you predict
15	that there will be detectable increases in
16	nutrients and a decrease in dissolved oxygen
17	beyond 15 years post project?
18	MS. SCHNEIDER-VIEIRA: Not we
19	expect that the water quality will be very similar
20	to other, like, for example, the shoreline areas
21	or the shelter bays along Stephens Lake. The main
22	inputs are happening actually in the very first
23	few years. And after that, it will be a very low
24	amount.
25	MS. KEARNS: So despite that the peat

	Page 1417
1	is continuing to disintegrate, there won't be any
2	detectable changes in the water quality?
3	MS. SCHNEIDER-VIEIRA: The amount of
4	peat entering the system after 15 years is very,
5	very small.
6	MS. KEARNS: So slide 23 then, is it
7	correct that common carp has moved into the lower
8	Nelson and Churchill Rivers?
9	MS. SCHNEIDER-VIEIRA: Common carp
10	were actually first observed in Split Lake in
11	1963. That was prior to any hydroelectric
12	development, prior to LWR and CRD. And I should
13	also note that they are very, very uncommon in the
14	area, and that we have only found them actually in
15	the large mesh gill nets that we use for lake
16	sturgeon. And that the abundance of carp in those
17	nets is actually lower than the amount of carp, so
18	there are a few carp but they are very uncommon.
19	MS. KEARNS: And what are the expected
20	implications of the presence of the common carp in
21	the lower Nelson River on the fish community and
22	habitat once Keeyask is built?
23	MS. SCHNEIDER-VIEIRA: Because there
24	are so very few carp and we see very, very few
25	carp at Split, and also in Stephens, we don't

		Page 1418
1	expect there to be any effect.	
2	We would note of course that we are	
3	aware, and actually cite it in our document, that	
4	they have had a substantial effect on some	
5	freshwater environments in Southern Manitoba.	
б	MS. KEARNS: Okay. Turning to slide	
7	32, this slide refers to the limited present	
8	movements of adult Walleye, Lake Whitefish and	
9	Northern Pike upstream and downstream over Gull	
10	Rapids.	
11	And Dr. Schneider-Vieira, you	
12	mentioned that this movement is unusual; is that	
13	correct?	
14	MS. SCHNEIDER-VIEIRA: I mentioned	
15	that there is a very small proportion of the fish	
16	that have moved.	
17	MS. KEARNS: So my question is, how	
18	important can these rare movements within a fish	
19	population be for the long-term resilience of a	
20	fish population in a river system?	
21	MS. SCHNEIDER-VIEIRA: In terms of	
22	the well, I'm going to divide it into both	
23	upstream and downstream. Where these long-term	
24	movements are important is, well, there's usually,	
25	there are two concerns, one if you have headwater	

		Page 1419
1	lakes or some such environment that are isolated,	C
2	where you are concerned that there might be a	
3	local extinction. So a certain species disappears	
4	and then never comes back.	
5	The other concern is with genetic	
6	interchange.	
7	In our case, we were talking about the	
8	Gull Lake area, which is upstream of the	
9	generating station. That's connected basically to	
10	the entire Nelson River watershed. So we are not	
11	at all concerned about that being genetically	
12	isolated, or there being a potential for a local	
13	extirpation of a species, because it's connected	
14	to a huge system.	
15	Downstream in Stephens Lake, that lake	
16	will always receive some input from upstream,	
17	because there are fish that continue to move	
18	downstream through the station, either past the	
19	turbines, or over the spillway, or as younger fish	
20	as well.	
21	MS. KEARNS: Turning to slide 34, the	
22	first bullet under operation reads:	
23	"Initial decline in reservoir due to	
24	loss of aquatic plants in near shore	
25	area will recover when plants are	

		Page 1420
1	re-established in 10 to 15 years."	
2	Is it correct that the aquatic plants	
3	are expected to re-establish but perhaps only	
4	partially?	
5	MS. SCHNEIDER-VIEIRA: Yes. Depending	
6	on, the plant growth in the existing environment	
7	is highly variable depending on water levels,	
8	because we have had both droughts when the water	
9	levels are high sorry, droughts when they are	
10	low and floods when they are high. And basically	
11	the plant beds moved up and down, depending on	
12	what the water level is, and it takes usually a	
13	season to regrow.	
14	Within the long-term, in terms of the	
15	long-term average, we are predicting that the	
16	amount of plant beds will be somewhat lower, and	
17	that depends on how much cycling versus baseload	
18	at the station does.	
19	MS. KEARNS: Thank you.	
20	Is it correct that there can be long	
21	periods of time between spawning for lake	
22	sturgeon, for an individual lake sturgeon?	
23	MS. SCHNEIDER-VIEIRA: An individual	
24	female spawns every five years and the spawning	
25	interval or is thought to spawn every five	

	Page 1421
1	years in our area. For males, it's less. It can
2	be two to three years.
3	MS. KEARNS: Does the interval of
4	spawning for an individual sturgeon have any
5	relationship to the habitat conditions of that
6	fish?
7	MS. SCHNEIDER-VIEIRA: I believe that
8	it is related in part to how quickly they are able
9	to. Basically they are growing eggs internally,
10	if you will, and so it is shorter certainly when
11	they are, for example, in more southern
12	environments where it is warmer, they do have a
13	shorter, or they tend to have a shorter spawning
14	interval.
15	MS. KEARNS: So do things like water
16	quality and water flow patterns have any impact on
17	the interval for spawning?
18	MS. SCHNEIDER-VIEIRA: I'm not aware
19	of any effects of water flow patterns or water
20	quality. I should note that there have been
21	places in other locations where there was
22	substantial water pollution associated with pulp
23	mills where that had an adverse effect on sturgeon
24	populations, but that isn't our concern in this
25	area.

		Page 1422
1	MS. KEARNS: Okay. So then turning to	1 dge 1422
2	slide 57, the last bullet on this page reads:	
3	"Sturgeon still relatively abundant in	
4	Stephens Lake until at least the 1980s	
5	(local resource users)."	
6	How many people have said this?	
7	MS. SCHNEIDER-VIEIRA: I'm just going	
8	to check with my team. I'm thinking that there	
9	were about three, but let me just check, please?	
10	Two.	
11	MS. KEARNS: And did anyone say the	
12	opposite or something different than that?	
13	MS. SCHNEIDER-VIEIRA: Not that I'm	
14	aware of. And we also yeah, not that I'm aware	
15	of, and I didn't see, apart from in the Fox Lake	
16	traditional knowledge report where they reported	
17	the decline at initial impoundment, they didn't	
18	tie further changes to any specific years that I	
19	can recall.	
20	MS. KEARNS: Okay, thank you.	
21	So turning to slide 60, this is a map	
22	of the populations in the study areas. And I'm	
23	interested in the location downstream of Kelsey.	
24	And Dr. Schneider-Vieira, you	
25	mentioned that there were a couple of fish caught	

		Page 1423
1	with eggs in that area; is that correct?	1 490 1420
2	MS. SCHNEIDER-VIEIRA: Yes, that's	
3	correct. And I should clarify that with female	
4	sturgeon, it's difficult to determine the sex of a	
5	sturgeon when you catch it except for when it's	
6	right in spawning condition, and it's releasing	
7	either milt or eggs. And females, in particular,	
8	you can only basically make it extrude an egg when	
9	it's almost ready to spawn.	
10	MS. KEARNS: And when were those fish	
11	caught?	
12	MS. SCHNEIDER-VIEIRA: Just a minute,	
13	let me check.	
14	One in 2006 and one in 2013.	
15	MS. KEARNS: Is that the total extent	
16	of information we have about spawning in that	
17	location?	
18	MS. SCHNEIDER-VIEIRA: Yes, we have	
19	done quite a few years of gill netting and we did	
20	not find evidence of any other spawn. That's why	
21	we listed it as a suspected spawning, because it's	
22	not definitive. We do know that prior to the	
23	construction of Kelsey there were, I mean, it was	
24	spawning location.	
25	MS. KEARNS: When was the last	

Volume 7

		Page 1424
1	indication of spawning observed at Gull Rapids?	
2	MS. SCHNEIDER-VIEIRA: I believe the	
3	early 2000s. We didn't have we have never	
4	collected larval fish from Gull Rapids. There	
5	were some fish that were in spawning condition.	
6	MS. KEARNS: Thank you.	
7	So turning to slide 70. So on this	
8	slide, you mentioned Pointe Du Bois, and it was	
9	mentioned a few times in your presentation	
10	yesterday.	
11	And my question is: So Pointe Du	
12	Bois, I should preface, was mentioned as a place	
13	where Manitoba Hydro has tried spawning habitat	
14	creation; is that correct?	
15	MS. SCHNEIDER-VIEIRA: Yes, that's	
16	correct.	
17	MS. KEARNS: So could you please	
18	describe the relevant differences between the	
19	Pointe Du Bois area and the Keeyask area in terms	
20	of habitat conditions for sturgeon and flow	
21	patterns?	
22	MS. SCHNEIDER-VIEIRA: In terms of	
23	what the Keeyask Generating Station would look	
24	like in the future you mean?	
25	MS. KEARNS: Both the present	

Volume 7

		Page 1425
1	condition comparison and post project?	
2	MS. SCHNEIDER-VIEIRA: The most	
3	substantial difference between Keeyask and Pointe	
4	Du Bois at present is that there is a very large	
5	number of sturgeon at Pointe Du Bois. So when you	
6	go out to study spawning sturgeon, you have	
7	several hundred that are aggregating there and you	
8	can see how they are responding to the habitat.	
9	In the Keeyask area, there are very	
10	few. Downstream of Gull Rapids, as I mentioned,	
11	we haven't found any for a number of years. We do	
12	usually catch a few spawning sturgeon in the	
13	vicinity of Birthday Rapids. But basically it's	
14	the quantity, the number of sturgeon is very, very	
15	different.	
16	MS. KEARNS: So the habitat conditions	
17	are identical then?	
18	MS. SCHNEIDER-VIEIRA: No. I mean,	
19	one is I was going to say the Winnipeg River,	
20	it's somewhat smaller, it is I was doing to say	
21	it is more of a boreal well, actually they are	
22	both boreal shield rivers. There is more white	
23	water at Gull Rapids, it is much stronger. At	
24	Pointe Du Bois, it is going through a generating	
25	station. It is a little bit less turbulent, a	

1426

		D
1	little less wild, if you will. It is also easier	Page
2	from a practical point to get in there to try and	
3	catch sturgeon when they are in the act of	
4	spawning.	
5	MS. KEARNS: So once Keeyask is built,	
6	so if we were to do a comparison between the two,	
7	how would the habitat differ between the Pointe Du	
8	Bois area and the Keeyask area?	
9	MS. SCHNEIDER-VIEIRA: The Pointe Du	
10	Bois Station is quite an old station. It has, I	
11	was going to say 13 units, or perhaps even more, I	
12	am not entirely sure, so the flow is distributed	
13	quite widely.	
14	Keeyask would have seven units 16	
15	units I am told. Keeyask would have seven units	
16	and each of those units would provide more flow	
17	because the station is much more, it's a much	
18	larger river up there.	
19	In addition, downstream of Pointe, it	
20	was built over a hundred years ago now, there is	
21	considerable amounts of rubble. Like the bottom	
22	is much more complex, if you will.	
23	And Keeyask, the tailrace itself will	
24	be smooth and designed for passing outflow in a	
25	uniform way. But the structure that we're	

		Page 1427
1	building will be along the one shore, and that	
2	will have sort of the rough stones and the	
3	variation in flows that we know that are	
4	attractive to sturgeon when they spawn.	
5	MS. KEARNS: And is the water velocity	
6	different at Pointe Du Bois than it will be after	
7	Keeyask?	
8	MS. SCHNEIDER-VIEIRA: In terms of	
9	over the spawning structure, the water velocities	
10	will be in the range that sturgeon use to spawn,	
11	and that is also what we see at Pointe Du Bois.	
12	MS. KEARNS: So you mentioned about	
13	the observed movements of sturgeon in a few slides	
14	yesterday, and the fact that there haven't been	
15	many. But is it possible that during operations,	
16	once the reservoir is flooded, that there may be	
17	more sturgeon than recently observed that will try	
18	to move downstream and get out of the reservoir?	
19	MS. SCHNEIDER-VIEIRA: I'll divide	
20	your question into two. The first one is, will	
21	there be a movement of sturgeon downstream when	
22	the water levels change as a result of	
23	impoundment? Now, that is something that we have	
24	some evidence might have happened at Limestone.	
25	We have had a discussion about whether or not that	
1		

Page 1428 potentially happened when the Kettle Generating 1 Station was constructed, and that certainly has 2 3 been observed in a reservoir that was recently impounded in Quebec. So that's basically at 4 impoundment. 5 Now, later on when the station is in б operation, it will depend on how the sturgeon 7 respond to the modified environment. We have seen 8 some instances, some reservoirs where there's very 9 10 little downstream movement, and some there is also more. For example, there is some work that was 11 12 done on the Winnipeg River where they recorded, 13 I'm just trying to remember now the number, four and a half per cent of the adults were moving 14 downstream. That is higher than we see currently 15 from Gull Lake, and it's also higher than we've 16 seen in some of the other reservoirs. And it 17 really seems to be related in the habitat within 18 19 the reservoir and approaching the generating 20 station. 21 MS. KEARNS: And so if it turns out 22 that the sturgeon in this case do move downstream 23 at a higher rate, would this increase the 24 mortality in the turbines? 25 MS. SCHNEIDER-VIEIRA: The sturgeon

1	that we have seen from the work that we have done	Page 1429
2	in terms in looking at sturgeon that have gone	
3	downstream with acoustic tags, there has been	
4	quite a high proportion I was going to	
5	something like one in 10 we have observed about	
6	10 sturgeon going downstream through the lower	
7	Nelson River stations, and I believe one we	
8	haven't seen again, so that could potentially be a	
9	mortality. The other sturgeon we know are still	
10	moving around.	
11	In terms of most sturgeon that move	
12	downstream, we think are going over the spillway,	
13	if they are large. Smaller sturgeon could fit	
14	past the trash racks, but the larger ones, most of	
15	them seem to be turned away by the trash racks,	
16	though there's some uncertainty with that.	
17	MS. KEARNS: But if there's more	
18	sturgeon moving downstream, then there could be	
19	more that die?	
20	MS. SCHNEIDER-VIEIRA: Yes.	
21	MS. KEARNS: And at one point during	
22	your presentation yesterday, Dr. Schneider-Vieira,	
23	you mentioned that there is currently more habitat	
24	in the Keeyask area than sturgeon. Is it possible	
25	that the existing fragmentation of the lower	

		Page 1430
1	Nelson River is the cause of the fact that there	
2	are fewer fish than habitat?	
3	MS. SCHNEIDER-VIEIRA: I will just	
4	clarify that for you. I said there's more habitat	
5	than sturgeon actually in the upper Split Lake	
6	area, that is to the Burntwood River and to	
7	downstream of the Kelsey Generating Station, and	
8	also in the Grass River. Those are all areas	
9	where there are substantial amounts of habitat.	
10	I think it is also worth noting that	
11	in the area that we have been focusing on, that is	
12	from Stephens Lake, through Gull Lake, up into	
13	Split Lake and those river segments. As I	
14	mentioned in my presentation, there is over 200	
15	kilometres of habitat length in that area. So	
16	that is not what most people would think of as a	
17	highly fragmented area.	
18	So then I guess the answer is no, I	
19	wouldn't attribute the low number of sturgeon in	
20	that area to habitat fragmentation.	
21	MS. KEARNS: So the first areas that	
22	you listed, though, the ones, the Burntwood	
23	MS. SCHNEIDER-VIEIRA: They are all	
24	interconnected.	
25	MS. KEARNS: And so your answer for	

_		Page 1431
1	that area is that, no, fragmentation is not the	
2	reason for the low numbers?	
3	MS. SCHNEIDER-VIEIRA: That's true.	
4	And I also want to point out, because I think it's	
5	an interesting observation, that from the genetic	
б	work we did, that the sturgeon in Gull Lake are	
7	actually genetically different from the ones in	
8	the upper Split Lake area. So that implies, or	
9	that tells us that even with no physical barriers,	
10	there are some rapids which we know they can pass,	
11	but even with no physical barriers, the sturgeon	
12	themselves are using subsections of the river	
13	consistently enough that they are genetically	
14	different. And that genetic difference actually	
15	arose prior to any hydroelectric development.	
16	MS. KEARNS: And so turning to those	
17	genetic differences, would you agree that if brood	
18	stock has to be used that's genetically different	
19	than the existing population in the Gull Lake	
20	area, that this would have a negative impact on	
21	the existing sturgeon population?	
22	MS. SCHNEIDER-VIEIRA: We would	
23	certainly attempt to collect brood stock from the	
24	same location to which we are stocking. That is	
25	one of the things that is being considered in the	

1	Page 1432
1	stocking plan, as well as in how fish will be
2	raised in the hatchery, to keep those genetic
3	lines distinct.
4	If we find an area is entirely
5	extirpated, there is no other source of sturgeon
6	as, for example, happened in the upper Nelson
7	River, then you would have to use stock from,
8	brood stock from some adjacent area where you
9	think it is genetically the most similar.
10	MS. KEARNS: And if you did have to
11	use genetically different stock, would that have a
12	negative impact on the existing sturgeon?
13	MS. SCHNEIDER-VIEIRA: Well, if we
14	still had existing sturgeon, we would be
15	attempting to use those. In addition so then
16	the answer would be no, because we're using the
17	same ones.
18	If we find that we absolutely cannot
19	find any stock from our local areas, for example
20	in Stephens Lake, we would be using brood stock
21	from Gull Lake, which is the next adjacent one.
22	And we do know that there is downstream movement
23	from, or downstream drift in the existing
24	environment from Gull into Stephens Lake.
25	MS. KEARNS: And so then there would

		Page 1433
1	be no negative effects by using genetically	C C
2	different fish?	
3	MS. SCHNEIDER-VIEIRA: Okay. If we	
4	absolutely had so what you're asking me about	
5	is the hypothetical case where I still have an	
б	existing population, but I choose to get my brood	
7	stock from some other location?	
8	MS. KEARNS: Yes. Yesterday in	
9	response to some questions you talked about the	
10	challenges in getting enough spawning material,	
11	and particularly because you don't want to use the	
12	same female every year. And so my follow-up	
13	question to that discussion from yesterday is, if	
14	there are those challenges and you are unable to	
15	get genetically identical fish, would there be	
16	negative consequences for the existing population?	
17	MS. SCHNEIDER-VIEIRA: I think, once	
18	again, we would get to the actual I was going	
19	to say the actual issue at hand. If there is	
20	obviously a concern, and there would be a concern	
21	about negative consequences to a stock if you	
22	introduce genetic material from some other stock,	
23	if you have evidence that they are different, and	
24	that's why we would like to avoid it.	
25	However, if we're down to the level of	

	Page 1434
1	where there's only one or two spawning females in
2	an entire population, that also has negative
3	consequences. Because, essentially, you have no
4	more natural genetic diversity.
5	So in all cases you basically have to
6	look at what the best overall situation is.
7	It's not as if we would, for purpose
8	of convenience, go to somewhere where there are
9	abundant sturgeon and collect the eggs there, and
10	then go and release them at another location. We
11	would only be looking at using eggs from a
12	different location, or milt from a different
13	location, if we feel that we can't get stock from
14	the location that we're targeting? And that would
15	basically reflect a very, very severely depleted
16	adult population, in which case that in itself is
17	causing a genetic problem for that location.
18	MS. KEARNS: So then it would be a
19	negative consequence, but one of many negative
20	issues for the population?
21	MS. SCHNEIDER-VIEIRA: Yes.
22	MS. KEARNS: So how far upstream does
23	the zone of influence for the Kelsey Dam operation
24	extend?
25	MS. SCHNEIDER-VIEIRA: I'm sorry,

Page 1435 Kelsey or Keeyask? 1 2 MS. KEARNS: Kelsey. 3 MS. SCHNEIDER-VIEIRA: The effects of 4 Kelsey, I believe extend up into Sipiwesk Lake. Let me just check, please. 5 It extends up into Sipiwesk Lake, and б so the lower portion of the Landing River, which 7 we discussed yesterday, was affected by the Kelsey 8 Generation Station. 9 10 MS. KEARNS: Thank you. Mr. Davies, I have a couple questions 11 12 for you about studies you mentioned yesterday. 13 The first is you mentioned a 20 year study on Cross Lake fish populations following construction 14 of the Cross Lake weir. 15 16 Is there a report available on the results of that work? 17 MR. DAVIES: Yes. We're doing it, 18 19 actually, we had been doing it with the Cross Lake First Nation originally, and now Pimicikamak. A 20 21 copy of the report for at least the first 10 years, and probably 15, and it may still be 22 23 ongoing, I'm a bit divorced from that, have been given to Glen Smith in Cross Lake as they are 24 being produced. 25

		Page 1436
1	MS. KEARNS: Is it publicly available	
2	elsewhere?	
3	MR. DAVIES: It's given to the	
4	Pimicikamak in Cross Lake.	
5	MS. KEARNS: So that's it, one copy	
б	was sent and there's no other copies?	
7	MR. DAVIES: No. In order to conduct	
8	a fisheries investigation, we need a collection	
9	permit, and as part of the collection permit, we	
10	are bound to provide a copy of the report to the	
11	Provincial Government. So a copy of the final	
12	report goes to the Province of Manitoba and	
13	becomes part of the public record.	
14	MS. KEARNS: So that would be where,	
15	at like a Manitoba library somewhere?	
16	MR. DAVIES: It would be at Manitoba	
17	Conservation and Water Stewardship.	
18	MS. KEARNS: Thank you.	
19	Mr. Davies, you mentioned in passing,	
20	in a response to a question yesterday, the effect	
21	of Whitefish eating Rainbow Smelt. Could you	
22	provide a reference to any report on that issue?	
23	MR. DAVIES: It's actually Walleye	
24	that are eating the Rainbow Smelt.	
25	MS. KEARNS: Thank you.	

		Page 1437
1	MR. DAVIES: And the majority of	0
2	information that's available on that is actually	
3	from ATK. A lot of the commercial fishermen are	
4	complaining that the quality of the Walleye is	
5	deteriorating. And one of the things that the	
6	commercial fishermen are doing now is they are	
7	trying to process the Walleye faster so that we	
8	don't receive this belly burn and still receive	
9	the higher prices for the Walleye.	
10	In one way, the Rainbow Smelt actually	
11	are advantageous to the fishery because they are a	
12	very high calorie fish, and Walleye are growing	
13	very fast because they are feeding off of them.	
14	And as long as the fishermen, fishers, are able to	
15	clean the fish and get the contents of the stomach	
16	out fast enough, they are fully marketable. But	
17	they do have belly burn if they stay in too long.	
18	MS. KEARNS: Thank you.	
19	Yesterday, Dr. Schneider-Vieira, you	
20	agreed that the mitigation measures that are being	
21	proposed to recover sturgeon as part of the	
22	Keeyask project could be done without Keeyask. Is	
23	that correct?	
24	MS. SCHNEIDER-VIEIRA: You mean, you	
25	are referring to the stocking program?	

		Dogo 1429
1	MS. KEARNS: Yes.	Page 1438
2	MS. SCHNEIDER-VIEIRA: Yes. And I did	
3	note, and I would leave it to actually Shelley to	
4	comment on what the sturgeon stewardship program	
5	might do in the absence of Keeyask.	
6	MS. KEARNS: I just wanted to confirm	
7	that that's what you said yesterday?	
8	MS. SCHNEIDER-VIEIRA: Yes, but I did	
9	note that what they would it would really	
10	depend on decisions that are made in terms of	
11	funding and so on. That's why I believe that	
12	Shelley should comment further on that.	
13	MS. MATKOWSKI: The lower Nelson River	
14	sturgeon stewardship committee is concerned with	
15	that particular area. And as I mentioned in my	
16	presentation yesterday, they are making plans for	
17	projects and actions that they will undertake, and	
18	that could include stocking. But they certainly	
19	will not have the resources to undertake a similar	
20	stocking program to the one that's proposed under	
21	Keeyask.	
22	MS. KEARNS: Okay. So this could be	
23	to either of you. Would you agree then with the	
24	statement that if sturgeon are better off in the	
25	lower Nelson River after Keeyask, it will be in	

		Page 1439
1	spite of Keeyask and not because of it?	
2	MS. SCHNEIDER-VIEIRA: The Keeyask	
3	project would provide basically the funding to	
4	support a very comprehensive stocking program,	
5	including well, it's over 25 years, targeting	
6	not only the area affected by Keeyask, but also	
7	the upper Split Lake area. And that would	
8	represent a substantial increase in the number of	
9	sturgeon in the reach of the Nelson River between	
10	the Kelsey Generating Station and the Kettle	
11	Generating Station.	
12	MS. KEARNS: But is it correct that	
13	the physical structure of Keeyask will destroy	
14	sturgeon habitat?	
15	MS. SCHNEIDER-VIEIRA: The physical	
16	structure of the Keeyask Generating Station will	
17	destroy sturgeon spawning habitat at Gull Rapids.	
18	Because of our proposed habitat compensation	
19	measures, that doesn't imply that the area will be	
20	able to support fewer sturgeon, because we are	
21	basically targeting, providing basically, we	
22	are providing alternate habitat. So it's not as	
23	if there would be fewer sturgeon because of the	
24	Keeyask Generating Station considering the habitat	
25	measures that we are using.	
l i i i i i i i i i i i i i i i i i i i		

		Page 1440
1	MS. KEARNS: Okay, thank you.	i ago i i io
2	Those are my questions. Thank you.	
3	THE CHAIRMAN: Thank you, Ms. Kearns.	
4	Fox Lake Citizens, Mr. McLachlan?	
5	MR. McLACHLAN: Would it be	
6	appropriate to introduce Mr. Massan here?	
7	THE CHAIRMAN: Of course.	
8	MR. MASSAN: Hello, my name is Noah	
9	Massan. I live in Gillam. Well, it was to be Fox	
10	Lake, but it's Gillam anyways. Thank you.	
11	MR. McLACHLAN: So we'll be working on	
12	this together, and Noah has comments, and I have	
13	questions for the panel.	
14	THE CHAIRMAN: I would just note, it's	
15	not a time for comments, it is a time for	
16	questioning.	
17	MR. McLACHLAN: Yeah, questions and	
18	responses to observations that are made by the	
19	panel. We'll present it in the form of questions.	
20	THE CHAIRMAN: Okay.	
21	MR. McLACHLAN: So, as with all the	
22	other intervenors, I'm going to be going through	
23	the slides as presented here.	
24	Thank you very much for your	
25	presentations.	

		Page 1441
1	I guess we could start by looking at	-
2	slide 2355. And so obviously here we're talking	
3	about historic conditions. And under technical	
4	studies, you mentioned that it's difficult to make	
5	comparisons because of changes in methods over	
6	time. That might be in terms of formal analysis,	
7	but can you speak more, in more detail about some	
8	of the kind of qualitative differences you have	
9	seen over time?	
10	MS. SCHNEIDER-VIEIRA: The studies	
11	that were done were basically looking at the	
12	comparison of work, of data collected in the 1980s	
13	during the Manitoba environmental or ecological	
14	monitoring program, to present day. And there	
15	were some evidence that some fish species became	
16	relatively more abundant.	
17	I would have to check for a second. I	
18	believe that it was that Walleye became	
19	potentially less abundant, but let me just	
20	double-check that, please.	
21	If you're interested in knowing the	
22	actual species, I'll have to take a minute and	
23	look it up in the section of the aquatic	
24	environment supporting volume.	
25	MR. McLACHLAN: Well, maybe could	

		D
1	somebody in your team do that and we could	Page
2	continue?	
3	MS. SCHNEIDER-VIEIRA: Okay, that's	
4	fine. I'll just let you know when we find it out.	
5	MR. McLACHLAN: But would you	
6	attribute, what would you attribute those changes	
7	that we haven't described yet to?	
8	MS. SCHNEIDER-VIEIRA: There was a	
9	suggestion by one of the DFO scientists, I	
10	believe, that could have been related to	
11	variations in commercial fishery. What we're	
12	talking about here are changes in Split Lake where	
13	there is a commercial fishery. That commercial	
14	fishery was closed down in the early 1970s because	
15	there were mercury concerns related to mercury	
16	concerns on Lake Winnipeg. And the overtime, if	
17	you close down the fishery, basically, you can see	
18	some shifts in the relations between Walleye and	
19	other species such as Sucker and Pike.	
20	MR. McLACHLAN: Along the same line,	
21	what about changes in species composition	
22	associated with Kettle?	
23	MS. SCHNEIDER-VIEIRA: There wasn't	
24	any fisheries work done early on in association	
25	with Kettle. For that area, we relied on the	

	Page 1443
1	traditional knowledge from Fox Lake.
2	MR. McLACHLAN: So there were no
3	scientific studies before
4	MS. SCHNEIDER-VIEIRA: Not early on,
5	not related to the construction of the Kettle
6	Generating Station.
7	MR. MASSAN: Back in early '60s and
8	'70s, there was studies being done, I think the
9	Province of Manitoba is doing it. Because one
10	time we were at Gull Rapids, the chopper landed
11	there. At that time there was helicopters, they
12	had a bubble. They asked us what we are doing
13	here. We said we're fishing. And then I asked
14	him, what are you doing? He said, oh, we're
15	studying fish along the Nelson, like Gull Rapids
16	and below Kettle. Because they told me there was
17	a hydro dam going to be put up in Kettle. So what
18	happened to that study there? I even seen them
19	beyond there. I seen them at Angling River too
20	one time. What happened to that? Where were you
21	guys before? You know, you guys had been studying
22	this before. People keep telling us, you guys are
23	40 years behind.
24	We had a lot of fish before in our
25	community, in the river.

1		Page 1444
1	MR. DAVIES: There were actually	
2	studies conducted in the 1960s and 1970s, there	
3	were some studies that were conducted prior to the	
4	Lake Winnipeg/Churchill/Nelson River Study Board	
5	reports, which occurred from 1972 to 1979, but	
6	also some work that was done by Dr. Kachinsky in	
7	some of the areas prior to that, particularly in	
8	Playgreen Lake area, but also in other spots.	
9	There may have been studies that were	
10	occurring in that general area where you would	
11	have seen a helicopter, but they may not have	
12	specifically been in that particular area. Most	
13	of the work on Stephens Lake was conducted under	
14	the Manitoba Ecological Monitoring Program, which	
15	was the one that started in 1985.	
16	MS. SCHNEIDER-VIEIRA: Sorry, I have	
17	in front of me now the figure, and if you're	
18	interested in looking at it, it is in the aquatic	
19	environment supporting volume, figure 5-1, and it	
20	compares a catch per unit effort between studies	
21	done from 1983 to 1989, as part of the Manitoba	
22	Ecological Monitoring Program, as well as the work	
23	done by North/South Consultants as part of the EIS	
24	studies for Manitoba Hydro and the Partner First	
25	Nations.	

	Page 1445
1	And it just shows a higher, in '83 to
2	'89 period there were relatively more Cisco,
3	Whitefish, Sucker and Mooneye, and relatively
4	fewer White Sucker, Walleye and Northern Pike.
5	MR. McLACHLAN: And you still
6	attribute that to the commercial fishing when you
7	look at the figure now?
8	MS. SCHNEIDER-VIEIRA: No. On
9	Stephens Lake, we wouldn't attribute that to the
10	commercial fishing. There we had thought that it
11	could be related to differences in the methods.
12	MR. McLACHLAN: What about changes in
13	sturgeon populations that emerge from those past
14	studies?
15	MS. SCHNEIDER-VIEIRA: Within the
16	Stephens Lake itself, as I mentioned in the
17	response to the earlier question, we relied on the
18	Aboriginal traditional knowledge from the Fox Lake
19	people, including Mr. Massan, to tell us that
20	prior to the development of the Kettle Generating
21	Station there were sturgeon in that area. And
22	they noted in the reports that they prepared where
23	they did see the sturgeon.
24	The first sturgeon studies that I'm
25	aware of for Stephens Lake were actually started
1	

		Page 1446
1	in the early 2000s, as part of the work being done	. agee
2	for the Keeyask Generating Station.	
3	MR. McLACHLAN: And today you describe	
4	some of that, but you described it in very kind of	
5	general kinds of ways. In terms of those	
6	interviews with Mr. Massan and others, did you try	
7	to get at actual numbers in terms of harvest and,	
8	you know, kind of energy that was put into	
9	harvesting, or those kinds of data as well?	
10	MS. SCHNEIDER-VIEIRA: The Aboriginal	
11	traditional knowledge work done with each of the	
12	Partner First Nations was lead by those First	
13	Nations. And so the interviews that were done for	
14	Aboriginal traditional knowledge were done	
15	basically by Fox Lake themselves.	
16	We did at some point provide some	
17	interview guidelines that asked for somewhat more	
18	detailed information. The extent to which they	
19	chose to follow those guidelines was obviously up,	
20	or those requests, was obviously up to the First	
21	Nations themselves.	
22	MR. McLACHLAN: We have talked today	
23	about ATK and its use in describing past	
24	conditions, especially when scientific data aren't	
25	available.	

		Page 1447
1	Did you ask questions about future	
2	impacts, in terms of, did you see each value first	
3	of all in Aboriginal traditional knowledge, in	
4	predicting future impacts? And secondly, can you	
5	describe that?	
6	MS. SCHNEIDER-VIEIRA: To clarify once	
7	again, the North/South Consultants did not do any	
8	of the traditional knowledge interviews. Those	
9	were done by the First Nation. They chose how to	
10	do the program, they chose who to interview. As I	
11	said, we had provided some suggestions and some	
12	requests, but the programs themselves were	
13	designed and implemented by the First Nations.	
14	There will be a panel, I believe, after this one	
15	that will talk that will be the First Nations	
16	and you'll be able to ask them about the methods	
17	that they used.	
18	MR. McLACHLAN: Fine. I'm less	
19	interested in the methods and more about the	
20	predicted impacts. You have incorporated past	
21	impacts in your presentation, but you haven't	
22	talked about predicted impacts that arose out of	
23	the ATK.	
24	MS. SCHNEIDER-VIEIRA: The predicted	
25	impacts from the Fox Lake First Nation were	

		Page 1448
1	discussed in the response to EIS guidelines, as	
2	well as obviously in their own report. And they	
3	raised concerns in particular in relation to	
4	effects to fish movements. And they also raised	
5	concerns I'm just trying to remember now, it is	
6	highlighted. Would you like me to pull out that	
7	part of the documents?	
8	MR. McLACHLAN: Sure, that would be	
9	wonderful.	
10	MS. SCHNEIDER-VIEIRA: Okay.	
11	In terms of now, all of the First	
12	Nations prepared their own reports, as I'm sure	
13	you are aware. So here are just some of the key	
14	points specific to the aquatic environment that	
15	were referenced in the Fox Lake report.	
16	One was, the first was, I should just	
17	provide you a page reference, it's the response to	
18	EIS guidelines, page 6-239 going on to page 6-240.	
19	So, first of all, all the First	
20	Nations noted they felt that water levels on Split	
21	Lake would increase. There were concerns related	
22	to water level increases and the decay of peat and	
23	other organic matter. This erosion was expected	
24	to result in the deposition of more sediments on	
25	the bottom.	

		Page 1449
1	You'll notice a lot of these are very	0
2	similar to the technical conclusions.	
3	There are concerns related to spillway	
4	and turbine mortality, and an interest in looking	
5	at fish passage. As I mentioned yesterday, there	
6	were two fish passage workshops in Thompson where	
7	fish passage was discussed.	
8	There were concerns with dewatering of	
9	the south channel of Gull Rapids, as being an area	
10	that needed, required some form of mitigation.	
11	And that is also actually a mitigation measure	
12	that has been undertaken.	
13	Fox Lake members are concerned with	
14	the long-term viability of the sturgeon population	
15	in the Gull Lake area if Keeyask is built. And	
16	they expect that there will not be viable	
17	populations without significant restocking	
18	efforts. And there is concerns about the	
19	long-term success of those stocking programs.	
20	There were concerns from some of the	
21	elders with respect to the collection of lake	
22	sturgeon eggs. And they also had indicated that,	
23	as we found in some of the technical work, that	
24	survival will be lower if the fish are released at	
25	a younger life stage.	

		Page 1450
1	And finally, there was the report	
2	that, as we have indicated, that when there is	
3	hydroelectric development, the suitability of fish	
4	for consumption in terms of palatability, their	
5	taste and texture declines. And that effect was	
6	expected to continue if Keeyask is developed.	
7	MR. McLACHLAN: Great. Thank you.	
8	MR. DAVIES: I'll just add one point.	
9	We also noted that Mr. Massan had	
10	specific concerns about potential presence of	
11	baffle blocks downstream of the spillway.	
12	MR. MASSAN: I thought we were talking	
13	about Gull Rapids, not Long Spruce, like about	
14	those baffle blocks.	
15	MS. SCHNEIDER-VIEIRA: Yes. To	
16	clarify, Mr. Massan, you are correct that you had	
17	observed the baffle blocks downstream of Long	
18	Spruce.	
19	MR. MASSAN: Long Spruce.	
20	MS. SCHNEIDER-VIEIRA: As I recall,	
21	you were concerned if you put that in Keeyask,	
22	fish going over that spillway will be killed if	
23	they hit the baffle blocks. The advantage of the	
24	spillway at Keeyask is that it will not have	
25	baffle blocks. It's being developed in the	

		Page 1451
1	existing river channel, which is really hard	
2	bedrock, so there is no need for baffle blocks, or	
3	any kind of a deep basin like you see at the	
4	Kettle Generation Station either.	
5	MR. MASSAN: The concern I had with	
6	baffle blocks at Long Spruce, why did they leave	
7	them? You know, I hear different stories from	
8	other Hydro people. They were put there for, once	
9	that forebay, Long Spruce Forebay was, the water	
10	went through the the guy that told me, he said	
11	to slow the water down when it comes through the	
12	spillway. I saw those baffle blocks were put in	
13	there, but why didn't they pull them out? They	
14	are still there. Because I noticed I said I go	
15	fishing down there sometimes. When they open the	
16	spillway, you see all the seagulls. So I started	
17	wondering why seagulls are all flying around over	
18	there. So I went and looked. I see a lot of dead	
19	fish around there, is that why those two baffle	
20	blocks are killing those fish, you know, when they	
21	let that water through the spillway?	
22	MS. SCHNEIDER-VIEIRA: My	
23	understanding from the engineers is that Long	
24	Spruce, the situation in the spillway is	
25	different. And there those large blocks are still	

		Page 1452
1	required because when there's a spill, they need	C
2	to put something in there to basically take some	
3	of the energy that water hits it and it uses up	
4	some of the energy. Otherwise, it would erode the	
5	shoreline or something like that.	
6	MR. MASSAN: Well, Kettle is same	
7	thing. How come they didn't put baffle blocks in	
8	there?	
9	MS. SCHNEIDER-VIEIRA: I'm sorry?	
10	MR. MASSAN: They had the same kind of	
11	rock the rock was the same thing, granite.	
12	Long Spruce is same thing. But they didn't put	
13	baffle blocks at Kettle when they opened the	
14	spillway, it's just wide open. How come they	
15	couldn't do that for Long Spruce? They should	
16	take those baffle blocks out I think. But I don't	
17	know how they are going to do that because they	
18	jammed a bunch of rebar in there.	
19	I was in the right place the same	
20	time. I made a road to those baffle blocks when I	
21	was operator, that's all I know. Because if I	
22	didn't bring that concern in Thompson, you know,	
23	they asked me how do you know about it? Because I	
24	work there to see. That's how I know these	
25	things. I was the operator. I made a road to	

		Page 1453
1	those baffle blocks, you know.	-
2	MS. SCHNEIDER-VIEIRA: I'm not an	
3	engineer, but what I understand is that in each,	
4	depending on the design of the spillway, sometimes	
5	you need a way to get some of the energy out of	
б	the water. So in Kettle, they used one kind of	
7	design, in Long Spruce they used baffle blocks but	
8	those baffle blocks are still required.	
9	At Keeyask, we are fortunate in that	
10	baffle blocks aren't required because of the type	
11	of stone that will be present in the spillway, and	
12	that they will be able to use the existing river	
13	channel, which is very hard rock, so we won't need	
14	any stone, or to add baffle blocks in that area.	
15	MR. MASSAN: Okay. I have a question.	
16	There is an engineer, but I'm not saying his name,	
17	he's Hydro, Manitoba, he works for you guys. He's	
18	an engineer, he told me different story. You're	
19	telling me all different too.	
20	MR. McLACHLAN: Is there room within	
21	this process, if a question comes up for say	
22	another panel that has already presented, to	
23	follow up with them?	
24	THE CHAIRMAN: Well, this really isn't	
25	an issue before this panel. We're looking at the	

		Page 1454
1	Keeyask Generation Station. I think it's a	
2	legitimate question that Dr. Schneider-Vieira has	
3	attempted to respond to, but it's not really a	
4	matter before this panel. I think that at some	
5	point, Manitoba Hydro has been directed to do a	
6	regional cumulative effects assessments, and	
7	that's the type of question that could be put at	
8	that time in that process.	
9	MR. McLACHLAN: Maybe we can follow up	
10	at a later date around that.	
11	THE CHAIRMAN: Yes.	
12	MR. McLACHLAN: Okay.	
13	So moving on, if we look at page 19,	
14	under the coordinated aquatic monitoring program?	
15	And it says here that it was first implemented, or	
16	kind of incorporated in management in 2008, but	
17	that it was designed earlier in 2006. Is that	
18	right?	
19	MR. DAVIES: There was a memorandum of	
20	understanding that was in place between the	
21	Province of Manitoba and Manitoba Hydro in 2006.	
22	In 2007, there was a workshop and a number of	
23	discussions, and at the workshops we invited a	
24	number of external experts, people from the	
25	Department of Fisheries and Oceans, Department of	

		Page 14
1	the Environment, external scientists, I think I	Fage 14
2	mentioned that one of the individuals actually	
3	worked on the original Lake	
4	Winnipeg/Churchill/Nelson River Study Board	
5	reports, and a number of other government agencies	
6	to assist in developing the program to make sure	
7	that we had the full scientific expertise for	
8	this.	
9	After 2007, there were very strict	
10	protocols that were developed and put in place to	
11	make sure that we didn't have the problem that we	
12	had in the past where data that were being	
13	collected weren't comparable. So the protocols	
14	were put in place in 2007 and the sampling started	
15	in 2008.	
16	MR. McLACHLAN: And those protocols	
17	are still maintained now then?	
18	MR. DAVIES: Yes, they are.	
19	MR. McLACHLAN: So was CAMP, the	
20	description and the content included in the EIS?	
21	MR. DAVIES: CAMP data was used in the	
22	EIS. And where it is, I believe it's noted.	
23	MR. McLACHLAN: Now, I have been told	
24	that it's only mentioned in the glossary, but that	
25	there isn't a full description in terms of the	

		Page 1456
1	data that had been collected through CAMP. Is	C
2	that right, or is it present in greater detail in	
3	some of the documentation?	
4	MR. DAVIES: There were over 10 years	
5	of very directed field studies that were conducted	
6	for the Keeyask project. So the majority of the	
7	information collected for the Environmental Impact	
8	Statement was actually directed by the Keeyask	
9	studies itself. There was some information that	
10	was provided by CAMP that was also used, but it	
11	was supplemental information.	
12	MR. McLACHLAN: And is that	
13	information available to the participants here, in	
14	any compiled manner?	
15	MR. DAVIES: As I was saying, there is	
16	a website that's being developed, and it's a	
17	public website, and there is information on the	
18	website right now, and it will be populated within	
19	the near future so that people have access,	
20	immediate access to the information that's being	
21	collected.	
22	MR. McLACHLAN: And so you're	
23	anticipating what's the time line that you are	
24	anticipating for that to take place?	
25	MR. DAVIES: One moment, please.	

1		Page 1457
1	I'll have to get back to you. As I	
2	said, the website is up and there is information	
3	on it. The types of information that will be put	
4	on will be more of a summary type for people to be	
5	able to understand what has been going on and the	
6	types of data that have been collected. If you'd	
7	like me to get back when there will be more	
8	information, I can do that.	
9	MR. McLACHLAN: That would be great.	
10	Do you anticipate that there will be	
11	raw data, or more detailed data outside of the	
12	summary information available on the website?	
13	MR. DAVIES: Right now the plans are	
14	to put on, not the raw data itself, but the	
15	analyzed data. The primary reason is that the raw	
16	data usually isn't of much use to people. It is	
17	being shared with other organizations, but it's	
18	not really much use to people unless it's put in a	
19	way that people can understand. And we are trying	
20	to use the information that we're comparing, say	
21	mercury levels in one community to mercury levels	
22	in another lake, and then mercury levels in	
23	another lake, so that people have an idea of what	
24	the mercury levels might be in their lake as	
25	compared to Playgreen Lake, or Cross Lake, or	

	Page 1458
1	Split Lake, and provide a better understanding to
2	the public.
3	MS. JOHNSON: Excuse me, could I just
4	interrupt for a second? Is this an undertaking,
5	are you asking for an undertaking, and what
6	exactly are you asking for, just so we can have it
7	on the record.
8	MR. McLACHLAN: Is that directed to
9	me?
10	MS. JOHNSON: To both of you.
11	MR. McLACHLAN: I think there was a
12	concern amongst some of the participants that
13	there were data that had been collected through
14	the CAMP that might have been useful in terms of
15	making sense of past changes. And obviously, I
16	mean, it's great this website is being developed,
17	but perhaps there are other ways that those data
18	could be made available in the interim, would be
19	number one.
20	And number two, I guess I'm wondering
21	if there's a way through that website, if people
22	want additional information, if there's a process
23	by which they could follow through that website to
24	collect those data?
25	MR. DAVIES: I'd like to answer the

		Page 1459
1	previous question first. I have just been told	
2	that the website is up and running, and that the	
3	information should be on in approximately three	
4	months, so relatively short time frame. And that	
5	the majority of the information that will be	
6	provided will be figures and tables. If there are	
7	requests for specific information, that will be	
8	made through Manitoba Hydro.	
9	MR. McLACHLAN: For sure. Thank you.	
10	And as part of CAMP, were you collecting ATK as	
11	well in the past, or was it a science only	
12	initiative?	
13	MR. DAVIES: At this time, it's a	
14	science initiative. There is consultation by	
15	Manitoba with each of the communities where the	
16	work is being conducted.	
17	MR. McLACHLAN: Okay, thank you.	
18	Going forward, 1143. Here, 1143, and this is only	
19	for visual reference. I mean there's mention here	
20	acoustic tagging, it's my experience and	
21	experiences, you know, of other people,	
22	researchers in the north, that there is often	
23	community concerns around acoustic tagging and	
24	some of the other manipulative tools that we as	
25	scientists use. Can you speak to that a little	

Page 1460 bit? 1 2 MS. SCHNEIDER-VIEIRA: You are quite 3 correct, there are a lot of concerns with all of 4 the First Nations with any kind of technique where basically you are catching fish, you're doing 5 something, be it injecting hormones for spawn 6 collection, be it putting in internal tags. Even 7 there is a level of discomfort with just applying 8 the little floyd tags or the little spaghetti tags 9 because it's seen as being both potentially 10 harmful and also disrespectful to the fish. 11 12 The early work that we did during the 13 EIS in terms of both acoustic and radio tagging 14 was done in the early 2000s. At that time, we tagged relatively few fish for that very reason. 15 We tagged enough to demonstrate that, yes, fish 16 can go upstream and downstream over Gull Rapids 17 but we did not pursue it further because of the 18 19 concerns of the communities with the internal 20 tagging. 21 During the fish passage workshops which were held around, I was going to say 22 23 2008/2009, that would be subject to check, there were First Nations once again raised their 24 concerns with the tagging but they also then began 25

		Page 1461
1	to realize the importance of the data that could	
2	be collected through these tags. Before	
3	additional tagging or internal tagging was done,	
4	there were then further one-on-one meetings	
5	actually where Dr. Barth went actually to the	
6	Community of Fox Lake in particular to discuss	
7	with them how the tagging is done, why it's	
8	important, and get their input into the study	
9	design that is currently being conducted.	
10	But yes you are right, there is a lot	
11	of concern with these kinds of internal tags. And	
12	we have worked very closely with the First Nations	
13	to get a better mutual understanding what's going	
14	on and to get their input into the studies which	
15	we hope increases their level of comfort with the	
16	work that's being done.	
17	MR. McLACHLAN: As a follow-up to	
18	that, you described how early on you reduced the	
19	number perhaps of fish that you had actually	
20	tagged to accommodate those concerns. Are there	
21	other ways more recently that you changed your	
22	design or changed your methodology to accommodate	
23	concerns?	
24	MS. SCHNEIDER-VIEIRA: What we did	
25	more recently is we have basically gone as indeed	

		Page 1462
1	I should mention that the biologists themselves	
2	also don't want to tag more fish than is required	
3	because we also recognize that you're catching a	
4	fish, you're implanting something. Yes, we feel	
5	that it's not having a long-term negative effect	
6	but you also want to be to not disrupt fish or	
7	the environment unnecessarily when you yourself	
8	are doing your studies.	
9	But what we are doing now is we're	
10	working with the minimum number of tags that both	
11	DFO and Manitoba Conservation and Water	
12	Stewardship have indicated are acceptable for the	
13	different areas. And there is also, as I said,	
14	been the close work with the communities in terms	
15	of telling them what's going on. They actually	
16	are participating in the studies where the tags	
17	are being put on as well as discussing with them	
18	where things like the transmitters are being put	
19	into the environment. So there's that close work	
20	with the communities, or I should say with Fox	
21	Lake.	
22	MR. McLACHLAN: You just spoke now	
23	about how you, a scientist, recognize that it can	
24	have adverse impacts in the short term in terms of	

25 a fish health. What about studies that have done

		Page 1463
1	follow-up studies on tagged fish? Are there any	
2	data that show that there are differences in	
3	behaviour and mortality associated with tagged	
4	fish? And can you speak to those, please?	
5	MS. SCHNEIDER-VIEIRA: With very	
6	limited exception, we have had no mortalities or	
7	immediate post tagging mortalities of tagged fish.	
8	I believe that there was one. The size of the tag	
9	that you put in is very important. If you put	
10	in basically if you want to tag that will	
11	continue to transmit over a longer period, you	
12	need to have a larger battery. And so it's the	
13	size of that battery and the additional	
14	information from having a longer term tag versus	
15	the size of the fish that's very important. Early	
16	on, we did some work where there was a tag that	
17	was inserted in the fish that was simply too	
18	large. We discovered that that didn't work. And	
19	we subsequently modified our methodology.	
20	The trick is that apart from	
21	mortality, we don't know how non-tagged fish move	
22	in the environment. So we have seen tagged fish	
23	move widely. We don't think they are being	
24	negatively affected but I do recall that at one of	
25	the fish passage workshops, an elder took the	

		Page 1464
1	opposite view. She said well those fish are	Ū
2	swimming all over the place because they are being	
3	disturbed by the tag. And she has a point. I can	
4	only say if the fish is healthy enough to swim	
5	around, but I don't know because there is no	
6	tagging data on how an untagged fish would be	
7	swimming in the environment.	
8	MR. McLACHLAN: And in terms of other	
9	studies, you know, in terms of marked and	
10	recaptured studies of fish that have been tagged	
11	and ones that haven't, are there any data that	
12	indicate that they do suffer from differences in	
13	mortalities?	
14	MS. SCHNEIDER-VIEIRA: We haven't seen	
15	any difference in where the tagged and non-tagged	
16	fish that were we haven't seen any clear	
17	evidence. But as I say, it's difficult because we	
18	don't know how the non-tagged fish are moving. We	
19	also don't see a huge difference between our floyd	
20	tagged and our acoustic tagged fish. And we have	
21	recaptured the acoustic tagged fish many times	
22	over time and we have also seen those acoustic	
23	tagged fish survive for a long time. We have even	
24	had some returns of acoustic tagged fish after the	
25	tag was no longer functional and they were caught	

1	Page 1465
1	by a resource harvester and they returned that tag
2	to us.
3	MR. DAVIES: For people that aren't
4	familiar with floyd tags, they are a very small
5	spaghetti like tag that's attached to the fish.
б	They are not inserted like acoustic or radio tags.
7	MR. McLACHLAN: And so that's your
8	experience. But is that also reflected in the
9	larger literature?
10	MR. DAVIES: There have been some
11	scientific studies that have shown, for example,
12	that if a tag weighs less than 2.5 percent of the
13	body weight of the fish, that there doesn't appear
14	to be any impact on that fish.
15	MR. McLACHLAN: Perfect, thank you.
16	Noah has a question for you related to the
17	behaviour of the fish.
18	MR. MASSAN: Once you guys cut up to
19	put that, I don't know what you guys put in that
20	sturgeon, in their stomach there, why is that fish
21	just hanging around that area? Like, for instance
22	Kettle, Kettle dam there. I caught the sturgeon
23	below the bay where the sturgeon used to be a long
24	time ago. I caught that fish in gill nets. I
25	caught one below that bay and one near that dam.

	Page 1
1	The one that's tagged, that sturgeon. And then it
2	wasn't even healed too, it's kind of bruised up
3	here. How long does it take for them to heal?
4	MS. SCHNEIDER-VIEIRA: Let me just
5	check with the individuals who do the tagging. I
6	was told, obviously we can't record in the wild
7	how long it takes for them to heal up competely.
8	You will continue to be able to see the incision.
9	Just like when a human has a cut. I
10	should explain. There's an incision and that
11	incision is actually stitched shut. So for any of
12	you who have ever had a cut, you know you have a
13	cut, it's stitched up, it heals, but you still can
14	see the scar for a long time.
15	In terms of it not being in terms
16	of what we know about how quickly it heals, there
17	were just some fish that had internal tags put on
18	them in a hatchery environment where we were
19	keeping them and those were observed to be
20	completely healed within a week.
21	MR. MASSAN: Okay. Next summer, if I
22	catch it, I want to put him out of his misery if
23	he's not healed. You know, that fish shouldn't
24	suffer that if he's not healing. One of those
25	first nations, our band was telling me they tied

		Page 1467
1	that fish upstream and it ended up down there.	
2	And they told us he's not healing. You know, next	
3	summer when I set the nets in place there, if I	
4	catch it, you know, I would have kept it but I	
5	don't know if it's safe to eat.	
6	MS. SCHNEIDER-VIEIRA: It would be	
7	very interesting to us if you do catch a sturgeon	
8	that has been, you know, that has one of those	
9	incisions, if you could note what the number is on	
10	the floyd tag because then that would really give	
11	us valuable information on saying yes, that	
12	sturgeon you know, this is when the acoustic	
13	tag was put in and this is what the incision looks	
14	like, however much longer after it's put in that	
15	you capture it.	
16	We are aware of the two sturgeon that	
17	moved from Stephens Lake downstream into the	
18	downstream of Kettle, so they went past the	
19	generating station. And we know that they are	
20	still moving around. And so we know the last time	
21	we still had the transmitters in the environment,	
22	we'd know that they were still alive, but it would	
23	be interesting to know how well that incision has	
24	healed over time.	
25	MR. MASSAN: What's in it for me? Why	

-		Page 1468
1	should I do your studies? There's nothing in it	
2	for me, I'm just fishing.	
3	MS. SCHNEIDER-VIEIRA: Well, Noah, as	
4	you know, if you do harvest the fish, you can get	
5	some money, a small payment for the tag return as	
б	information. We have to say from a scientific	
7	perspective, it's very we really appreciate it	
8	when people don't harvest the tagged fish because	
9	then they can continue to provide information to	
10	the studies. I suppose we would have to appeal to	
11	your interest in a better understanding of lake	
12	sturgeon in terms of if you choose whether or not	
13	to tell us what the fish is looking like when you	
14	catch it.	
15	MR. McLACHLAN: I just wonder, and	
16	this is a question for you all, if this might be	
17	an example of how community members and fishers in	
18	this case can work with scientists in CAMP. And	
19	so bringing it back to CAMP, do you see these	
20	kinds of experiences as an opportunity for better	
21	monitoring information coming out when harvesters	
22	are working more closely with Hydro and more	
23	specifically the scientists involved in CAMP?	
24	MR. DAVIES: I think that's correct.	
25	And as I had said previously, there was a very	

	Page 1469
1	large number of First Nation members that
2	participated in the studies and that we develop
3	very good relationships with those individuals.
4	And a lot of information was shared both from our
5	people to them and from their people to us. And
6	the information was quite valuable. And we are
7	getting information from people like Mr. Massan
8	and others in the area.
9	MR. McLACHLAN: Perfect. Thank you.
10	If we move ahead to 13-45. Here it talks about a
11	temporary increase in phosphorous. Can you
12	explain to me why there would be an increase in
13	phosphorus?
14	MS. SCHNEIDER-VIEIRA: Can you please
15	give us a slide number?
16	MR. McLACHLAN: 13-45.
17	THE CHAIRMAN: Thirteen in Dr.
18	Vieira's presentation.
19	MR. McLACHLAN: Sorry, I'll always use
20	the higher number from now on.
21	MS. SCHNEIDER-VIEIRA: Could you
22	please repeat the question?
23	MR. McLACHLAN: So the question was,
24	there's an observation here that there's a
25	temporary increase in phosphorus and I'm just

-		Page 1470
1	wondering what the cause of that is.	
2	MS. SCHNEIDER-VIEIRA: This was a	
3	study that was done after the Lake Winnipeg	
4	Regulation and Churchill River Diversion. And the	
5	thought was that that was related to the flooding	
6	as a result of the Churchill River Diversion. And	
7	that will be subject to check.	
8	MR. McLACHLAN: So would you	
9	anticipate a similar first of all, is there a	
10	similar increase in terms of the water data that	
11	you have collected as it relates to Keeyask?	
12	MS. SCHNEIDER-VIEIRA: First of all,	
13	let me just indicate that the authors of that	
14	study, it was a historic study, and they didn't	
15	attribute a specific cause to the increase in	
16	phosphorus.	
17	In terms of the Keeyask project, we	
18	anticipate that there will be an increase in	
19	phosphorus in the flooded areas. As I stated in	
20	my presentation, because of the large volume of	
21	water moving down the main stem of the Nelson	
22	River and the limited mixing between the flooded	
23	area and the main stem, we don't expect the	
24	concentration of phosphorus to increase measurably	
25	in the main stem of the Nelson River.	

_	Page 1471
1	MR. McLACHLAN: That said, I think we
2	have heard observations that there had been
3	increases in algae. Is that true?
4	MS. SCHNEIDER-VIEIRA: There are two
5	different pathways by which algae can be affected.
6	We indicated that in the flooded areas, you might
7	see periodic algal blooms once the turbidity
8	declines over time. And that would be related to
9	the water not moving as much, being a little bit
10	clearer and perhaps having elevated levels or
11	somewhat elevated levels of phosphorus.
12	We also stated that because you are
13	constructing the dam and some of the sediments are
14	actually settling out of the water, you may have
15	an increase in the incidents of algal blooms in
16	the lower part of the reservoir and in the
17	southern part of Stephens Lake in the area. We're
18	not certain whether or not that will occur because
19	the water is still moving relatively swiftly
20	through that area so it just doesn't allow much
21	time for algae to grow.
22	MR. McLACHLAN: I have heard that even
23	in terms of your own studies, that there are algae
24	kind of covering your nets that you are using to
25	catch fish. Is that the case?

1	Page 1472 MS. SCHNEIDER-VIEIRA: Yes, that's the
2	case.
3	MR. McLACHLAN: So is that consistent
4	with experiences of fishers in the area as well?
5	MS. SCHNEIDER-VIEIRA: Yes, it is. I
6	mean everyone speaks of the green slime.
7	MR. McLACHLAN: And so with that, you
8	are saying you would anticipate that with
9	impoundment of the water, a reduction in the flow,
10	that you would anticipate that would continue to
11	be a problem in the future?
12	MS. SCHNEIDER-VIEIRA: In terms of the
13	green slime, or it's also the fancy algal name
14	for it is periphyton, that's been reported for
15	decades out of the system, even prior to any kind
16	of development. I was going to say there's a note
17	from the Fisheries people. Of course, it depends,
18	you know, on how long you leave your net in how
19	much slime it gets. I don't know that we would
20	anticipate there to be a detectable difference for
21	the fisher. You're getting the green slime now,
22	you will continue to get the green slime. I don't
23	know that the small difference we're expecting in
24	the amount of algae would cause a detectible
25	difference in the amount of slime that you're

		Page 1473
1	getting in your net.	
2	MR. MASSAN: That stuff you are	
3	talking about, back in '60s and '70s and '80s,	
4	there wasn't that much algae. Is that what you	
5	call it? There wasn't that much in them days.	
б	But I notice, I set my net out two weeks to catch	
7	fish. I got lots of that algae in my net, about a	
8	300-foot net two days. Lots of that stuff.	
9	There's a big change. There seems to be lots of	
10	it now.	
11	MS. SCHNEIDER-VIEIRA: Certainly when	
12	we looked at the well, there are a variety of	
13	sources that we used. The Split Lake PPER	
14	reported green slime. Each of the First Nation's	
15	reports indicated green slime. We have seen green	
16	slime. So it's interesting that you're saying	
17	that now this late in the fall, you are seeing a	
18	lot in a net and perhaps more than you have seen	
19	in other years. I can't speak to what is causing	
20	changes in the amount that you see over time. I	
21	have been told by people who fish, that it depends	
22	a lot on how long your net is in the water and	
23	where you set. And obviously what's been	
24	happening, you know, is the water still warm so	
25	the algae still can grow or has it cooled off?	

	Page 1474
1	And maybe right now, this is a very long warm fall
2	and so that's why there's more now than you would
3	normally see at this time of year. I can't say
4	for sure.
5	MR. MASSAN: Yeah, because you see a
6	lot of that stuff along the dykes too. Like
7	saddle dam, dyke four, dyke six, along the
8	shoreline. You see a lot of that stuff now.
9	Before we didn't used to see that. There has been
10	a big change along the shorelines.
11	MR. DAVIES: I'd just like to add one
12	thing. For people that haven't set nets, one of
13	the things that's quite annoying for the people
14	that do set nets, including scientists, is when
15	you pull that net up and it has the green slime on
16	it, it takes a long time for it to get off. So
17	that's one of reasons it's been brought up.
18	MR. MASSAN: I know there's no south
19	shed nets there. And I see some, the 200 nets
20	that were dumped there about a month ago I think.
21	I said, "How come you guys are throwing these
22	away?" "Too much algae," he said. "It costs too
23	much to pay a guy to clean them." That's what the
24	guy told me. So I don't know.
25	MR. DAVIES: I'll have to speak to

		Page 1475
1	them about that.	
2	MR. MASSAN: Because I picked some of	
3	those nets, I clean them myself. I just hang them	
4	on the tree and just shake the thing off, you	
5	know. Maybe I should have took pictures of them.	
б	I'm sorry I didn't. But they threw nets away and	
7	burnt them too.	
8	MR. DAVIES: I will definitely speak	
9	to them about them.	
10	MR. MASSAN: If you want to see nets,	
11	go to the Hydro compound. There's some hanging	
12	with algae right now. Two days ago I seen them.	
13	They didn't take them off the fence. You can give	
14	me them if you want to. I'll go clean them.	
15	MR. McLACHLAN: So do you anticipate	
16	that kind of with the changes, that there will be,	
17	and this was spoken to by one of the other	
18	intervenors, that there will be changes in the	
19	type of green slime, you know, different algae	
20	species that will kind of grow to occupy the	
21	impounded water?	
22	MS. SCHNEIDER-VIEIRA: In our	
23	analysis, we didn't anticipate there to be a	
24	change. In particular, it's important to remember	
25	that for there's a very large amount of flow in	

		Page 1476
1	the Nelson River. And just as we see in Stephens	
2	Lake, the areas that are off current are quite	
3	different from the areas along the main flow. And	
4	that main flow will go through the Keeyask	
5	reservoir and it will continue on through the	
6	southern part of Stephens Lake. So no, we're not	
7	anticipating there to be a big change in the kinds	
8	of algae. However, because sometimes people are	
9	not correct in their predictions, part of the	
10	monitoring program will be analysis of both	
11	chlorophyll A, which is the pigment that's in	
12	algae, to give a general amount, as well as we do	
13	collect periodic samples to look at the kinds of	
14	algae that are there because algae of course is a	
15	concern to people using the environment.	
16	MR. McLACHLAN: And so when you look	
17	at past experience say with some of the proxy	
18	sites, there's no indication that those changes do	
19	occur in other comparable sites? Is that true?	
20	MS. SCHNEIDER-VIEIRA: I'll have to	
21	check back on that. I am remembering that there	
22	was some work out of the Churchill River	
23	diversion. But I almost think that they found	
24	that the incidents of the blue/green algae	
25	actually decreased and I think that was because of	

		Decis 44
1	the increased flow through some of the lakes. But	Page 14
2	I'll need to get back to you on that.	
3	MR. DAVIES: I'd just like to add one	
4	thing. I was being flippant when I was saying I	
5	will speak to our people about it, and I will, but	
6	one of the things that we do require when we are	
7	doing the tests, is we have to have good quality	
8	nets. If we're testing catch per unit effort, the	
9	number of fish that you catch per net, the nets	
10	have to be in good shape so that we can do	
11	comparisons between the different types of nets.	
12	So if one of the nets is damaged and	
13	there's lots of holes in it and we set that and we	
14	compare it to a net that's new, we'll catch more	
15	fish in the net that's in better condition. So	
16	once a net reaches a certain point, it has less	
17	value in terms of providing comparative data	
18	between sites.	
19	MR. McLACHLAN: Do you agree that this	
20	might be an opportunity to, say, share nets that	
21	are no longer of use for scientific studies but	
22	are of use to local fishers as an opportunity to	
23	spread good will?	
24	MR. DAVIES: Absolutely. And I had	
25	mentioned earlier that one of the very young	
1		

 summer students from TCN that worked for us in Winnipeg probably saw more gillnets than he ever wanted to see in his life. And that was one of the things he was doing actually. THE CHAIRMAN: I think we're starting 	
3 wanted to see in his life. And that was one of 4 the things he was doing actually.	
4 the things he was doing actually.	
5 THE CHAIRMAN: I think we're starting	
6 to stray a little off topic hear.	
7 MR. McLACHLAN: Perfect, okay. I will	
8 move forward to page 27 I guess, and 59 in the	
9 lower number. Sorry, I guess 27 is the slide	
10 number and 59 is the lower number where it talks	
11 about construction effects. And so my question	
12 here is around fish salvage and what will happen	
13 to the fish in the cofferdams.	
14 MS. SCHNEIDER-VIEIRA: A fish salvage	
15 is designed basically to maintain live fish. So	
16 typically you start off with short-term sets so	
17 you can catch the fish in good condition and move	
18 them. And generally, we would follow the	
19 conditions in our fish handling permit. But	
20 typically, you release them to the nearest water	
21 which in this case will be immediately downstream.	
22 MR. MASSAN: I notice the last three	
23 dams I worked in, most of the Hydro people got a	
24 hold of those fish. Where were you guys again?	
25 Like when we pump the water out of the cofferdam,	

		Page 1479
1	all the fish go to that pump there. I noticed	i ago i no
2	that when I was working night shift. There was	
3	nobody there. They grabbed the sturgeon, they	
4	didn't need the small jacks and whatever.	
5	MS. SCHNEIDER-VIEIRA: The generating	
6	stations on the lower Nelson River did not have	
7	fish salvages done. The first time that I'm aware	
8	of that a fish salvage was done for a large	
9	hydroelectric project was at the Wuskwatim	
10	Generating Station. And there were over, from the	
11	lower cofferdam, I think we salvaged over 2,000	
12	fish that were then transported downstream.	
13	Earlier stations such as Kettle, Long Spruce and	
14	Limestone did not have fish salvages that I'm	
15	aware of.	
16	MR. McLACHLAN: And do those do any	
17	follow-up studies and monitoring indicate, say	
18	with Wuskwatim or otherwise other studies or other	
19	projects, that those fish suffer higher mortality	
20	or any adverse effects from being shifted in that	
21	way?	
22	MS. SCHNEIDER-VIEIRA: There aren't	
23	any studies. Essentially what we want to do is	
24	capture the fish and move them as quickly as	
25	possible with as little handling as possible. So	

	Page 1480
1	I couldn't tell you how they survived. I did have
2	a note though that for the Limestone Generating
3	Station, there were some sturgeon that were
4	salvaged and moved by Manitoba Conservation and
5	Water Stewardship.
6	MR. MASSAN: Yeah. During the day
7	only but what happened to the nights, night
8	shifts? Because I seen some guys taking sturgeon
9	there when I was working night shift near those
10	pumps. You know, they are not there full 24 hours
11	what I got to see.
12	MS. SCHNEIDER-VIEIRA: I am also aware
13	of reports from both the Limestone well
14	actually all three generating stations that
15	sturgeon were harvested at the time the generation
16	stations were conducted. And that was one of the
17	potential reasons why the sturgeon numbers in
18	those particular forebays decreased following
19	impoundment, because the sturgeon were removed.
20	MR. McLACHLAN: And does your
21	information indicate that it was primarily Hydro
22	employees that were taking those?
23	THE CHAIRMAN: That's not relevant.
24	MR. McLACHLAN: I would just add
25	okay, let me change that. So when we look at the

_		Page 1481
1	current situation, are you taking steps to prevent	
2	that from happening?	
3	MS. SCHNEIDER-VIEIRA: Yes.	
4	MR. McLACHLAN: What would those steps	
5	be?	
6	MS. SCHNEIDER-VIEIRA: People will not	
7	be allowed to harvest fish at the project site and	
8	that is within the actual construction area there	
9	won't be any harvest permitted.	
10	MR. McLACHLAN: Thank you. If we can	
11	move forward now to page 23 or 55, or I guess it's	
12	backwards to 23 or 55.	
13	THE CHAIRMAN: Dr. McLachlan, I'm just	
14	looking to taking a morning break. Will you be	
15	much longer?	
16	MR. McLACHLAN: I'm about halfway	
17	through, so would it be a good time to take a	
18	break now?	
19	THE CHAIRMAN: Yes, I think it would	
20	be. We'll break for 15 minutes.	
21	(Proceedings recessed at 11:00 a.m.	
22	and reconvened at 11:15 a.m.)	
23	THE CHAIRMAN: We will reconvene now,	
24	please?	
25	Okay. I would hope that we can	

		Page 1482
1	conclude this segment by the time of our noon	
2	break, and that would include a number of	
3	questions from the panel.	
4	Dr. McLachlan, I would ask you to not	
5	stray too far from the materials that were	
6	presented by this panel yesterday.	
7	MR. McLACHLAN: Sorry, about that, I	
8	will try and remain a little bit more focused.	
9	So I have a series of questions around	
10	non-indigenous and invasive species. So for	
11	visual reference, I guess the same page, 2355,	
12	down at the bottom talks about rainbow smelt. We	
13	heard a little bit earlier about common carp. And	
14	so I guess what I'm asking is, how has the rainbow	
15	smelt affected the forage fish community?	
16	MS. SCHNEIDER-VIEIRA: The rainbow	
17	smelt have become one of the most abundant forage	
18	fish species. And we haven't seen any enormous	
19	change in sort of the other species. When rainbow	
20	smelt first came in, we were concerned, basically	
21	what has been seen in other places, for example,	
22	Ontario, is they add another level to the food	
23	chain so that species such as walleye would have	
24	higher mercury levels. We have not seen that.	
25	And the other thing which has been seen in some	

		Page 1483
1	lakes is that when you have rainbow smelt, that	
2	the lake whitefish disappear. And also we haven't	
3	seen that. So two of the effects that we were	
4	most concerned with have not occurred.	
5	MR. McLACHLAN: Do we know how they	
6	were introduced?	
7	MS. SCHNEIDER-VIEIRA: I am sorry?	
8	MR. McLACHLAN: Do we know how they	
9	were introduced, the rainbow smelt?	
10	MS. SCHNEIDER-VIEIRA: The rainbow	
11	smelt have been spreading through the system.	
12	They were observed in Lake Winnipeg first, and	
13	then going down the Nelson River. So I think they	
14	have just been following the natural watershed.	
15	MR. McLACHLAN: Thank you.	
16	Do we anticipate that their presence	
17	will be affected, one way or another, either by	
18	the construction or the operation of the dam?	
19	MS. SCHNEIDER-VIEIRA: That is one of	
20	the questions that we looked at. Currently, they	
21	are actually somewhat more abundant in Gull Lake	
22	than in Stephens Lake. Technically you would	
23	expect that in a reservoir they would be more	
24	abundant, but certainly at present that doesn't	
25	seem to be the case.	

		Page 1484
1	MR. McLACHLAN: But you would	C
2	anticipate then that with the impoundment of the	
3	water, that they will increase in the newly	
4	created reservoir?	
5	MS. SCHNEIDER-VIEIRA: You would think	
6	they would increase in the reservoir. As I	
7	mentioned, in the reservoir that we have, they	
8	have not. They are not more abundant than in Gull	
9	Lake. So it is one thing that will be open to	
10	monitoring.	
11	MR. McLACHLAN: Why would you have	
12	anticipated it would increase?	
13	MS. SCHNEIDER-VIEIRA: Because they	
14	are more common in lake environments than in river	
15	environments.	
16	MR. McLACHLAN: I have a question	
17	around the implications of, first of all, the	
18	construction and then the operation of the dam for	
19	indigenous species.	
20	So when you look at proxy studies and	
21	when you look at, you know, previous experience,	
22	do you anticipate, first of all, with the	
23	construction of the dam that there will be any	
24	changes in either the benthic invertebrates or	
25	fish that are non-indigenous?	

		Page 1485
1	MS. SCHNEIDER-VIEIRA: In terms of	
2	invasive species?	
3	MR. McLACHLAN: Invasive or otherwise.	
4	MS. SCHNEIDER-VIEIRA: The spiny water	
5	flea has recently been recorded from Lake	
6	Winnipeg, as well as the upper portions of the	
7	Nelson River. And at the request of Manitoba	
8	Conservation and Water Stewardship, we did start a	
9	surveillance program for that species. I can't	
10	say whether it would be more or less abundant in a	
11	reservoir environment. To date, what has been	
12	noted in the Winnipeg River, for example, so we	
13	are basically just going to monitor for it. That	
14	was just a very recent addition within the last	
15	year.	
16	In terms of rainbow smelt, we have	
17	already discussed. And finally carp were brought	
18	up, and we don't have any information that carp	
19	would become more abundant simply as a result of	
20	the construction of the Keeyask project. Though,	
21	as we, I think discussed when we talked about carp	
22	yesterday, because over time if the water becomes	
23	warmer as a result of climate change, over time	
24	you expect southern species to shift their	
25	distribution in a northward direction.	

		Page 1486
1	MR. McLACHLAN: Is it true that for	
2	invasive species that prefer warmer water, that	
3	they will tend to be found in greater numbers in	
4	those reservoirs?	
5	MS. SCHNEIDER-VIEIRA: The reservoir	
6	itself will not have an effect on the water	
7	temperature. These reservoirs are stratified and	
8	don't change the water temperature. So the	
9	invasive species will do what they will as a	
10	result of regional changes, if you will,	
11	province-wide changes, global changes, but we	
12	haven't identified any that we think would do	
13	markedly better or worse with a reservoir.	
14	MR. McLACHLAN: Perfect, thank you.	
15	If we go to 39 and 71, so kind of	
16	so page 39 or 71, depending on what you are	
17	looking at. And then the following page as well,	
18	in terms of mercury effects, and then the previous	
19	page. So those three pages all have to deal with	
20	methylmercury concentration. I guess, first of	
21	all, looking at the graph, we see that decline	
22	that you had anticipated. But the high point	
23	seems in, I guess 1982 or something, '83, to be	
24	greater than 1.6. And yet you talk in terms of	
25	model predictions that mercury concentrations will	

	Page 148	7
1	only reach about one part per million. Can you	
2	explain why those would be different?	
3	MS. SCHNEIDER-VIEIRA: In Stephens	
4	Lake there were 220 hectares that were flooded.	
5	And so compared to the pre-existing area of water,	
6	there was a much greater percentage of flooding	
7	than in the Keeyask reservoir, where it will be	
8	basically 50 per cent flooding and 50 per cent	
9	existing.	
10	MR. McLACHLAN: I guess this a	
11	question, pardon my ignorance, for the Chair, will	
12	we be talking about human health impacts of	
13	methylmercury through another panel?	
14	THE CHAIRMAN: I believe that will be	
15	before the I think it is the fourth panel.	
16	MR. DAVIES: It is the next panel.	
17	MR. McLACHLAN: So the socio-economic,	
18	okay. Perfect, thank you, I will hold off on	
19	that.	
20	Do you anticipate that there will be	
21	any other changes in the concentrations of other	
22	heavy metals associated with the dam?	
23	MS. SCHNEIDER-VIEIRA: In the water	
24	quality section, there is a description of changes	
25	to metal levels in the water, and there are a	

		Page 1488
1	variety of metals that will increase following	
2	flooding. As with the other parameters that we	
3	have discussed, we don't expect there to be a	
4	detectable change in the main flow of the Nelson	
5	River.	
б	MR. McLACHLAN: I know other studies,	
7	for example, have found that wildlife and fish	
8	have high cadmium levels. Would you anticipate	
9	that with the increased exposure of, you know, the	
10	mineral air and rock that that will increase?	
11	MS. SCHNEIDER-VIEIRA: No, there is	
12	actually a section in the EIS, which I can	
13	reference you to if you like, but when we	
14	examined, the other metals that will increase do	
15	not bio accumulate in fish, so we don't expect	
16	there to be increases.	
17	MR. McLACHLAN: So cadmium you are	
18	saying doesn't bio accumulate in fish?	
19	MS. SCHNEIDER-VIEIRA: We are not	
20	expecting increases in cadmium, no.	
21	If you are interested, that is	
22	described in the IR CAC 22B.	
23	MR. McLACHLAN: Perfect, thank you.	
24	Now, as part of the monitoring you	
25	will obviously be taking kind of samples of fish	

		Page 1489
1	in the future, to see if there are any	
2	unanticipated changes in heavy metals?	
3	MS. SCHNEIDER-VIEIRA: We will be	
4	monitoring for mercury. At present there is no	
5	monitoring for other heavy metals planned. If in	
6	its review of the program, either the Department	
7	of Fisheries and Oceans or Manitoba Conservation	
8	and Water Stewardship request that this be added,	
9	then it would be added.	
10	MR. McLACHLAN: But you were saying	
11	that you haven't seen any, or you don't anticipate	
12	any increases in the other heavy metals, but you	
13	are not monitoring the fish to, I gather from what	
14	you just said, to see if those changes are	
15	occurring? Is that based on past data then?	
16	MS. SCHNEIDER-VIEIRA: It is based on	
17	experience from other hydroelectric developments.	
18	Other heavy metals just haven't been an issue	
19	elsewhere. So when you are determining what you	
20	are going to monitor, you do look at experience	
21	from other water bodies and other developments.	
22	MR. McLACHLAN: In Manitoba, but	
23	certainly it is my experience that in other parts	
24	of Canada we have seen increases in, say, cadmium	
25	levels in Northern Alberta that might be	

1	attributed to hydroelectric development. But you	Page 1490
2	are saying that would be different here because	
3	the raw conditions are different?	
4	MS. SCHNEIDER-VIEIRA: I'm certainly	
5	not aware of studies that have indicated increases	
6	in cadmium as a result of hydroelectric	
7	increases of cadmium in fish as a result of	
8	hydroelectric developments. I have seen it in	
9	terms of concerns with mines, and also air	
10	emissions from mines and smelting operations.	
11	MR. McLACHLAN: Would you anticipate	
12	there would be any polycyclic aromatic	
13	hydrocarbons generated through the construction	
14	phase of the dam?	
15	MS. SCHNEIDER-VIEIRA: We don't	
16	anticipate well, that type of substance could	
17	be introduced through an accidental spill. There	
18	is a spill management plan that has it is	
19	basically to address spills.	
20	MR. DAVIES: I would just like to add	
21	to that that the most sensitive test that I know	
22	of for hydrocarbons in fish is actually taste.	
23	The very, very small percentages of hydrocarbons	
24	in fish will be tasted by people, and then, of	
25	course, we would be advised of that.	
1		

	Page 1491
1	MR. McLACHLAN: So as part of your
2	monitoring, if there was an accidental spill that
3	was known or otherwise, if people experience
4	changes in the taste of the fish, would you then
5	incorporate that into your monitoring program and
6	testing to see
7	MS. SCHNEIDER-VIEIRA: I anticipate
8	that if there is, for example, an accidental
9	spill, that the monitoring would be adjusted
10	accordingly to address the environmental effects
11	of that spill, and I should add, if it is a spill
12	where it is expected that there was a release to
13	the water. If there is a spill that is contained
14	at a fueling area, for example, and there is no
15	risk of release to the water environment, we won't
16	be modifying our aquatic monitoring program.
17	MR. McLACHLAN: Thank you.
18	But hypothetically, say if people were
19	noticing differences in the taste of the fish that
20	were consistent with that kind of contamination
21	having taken place, is there a flexibility enough
22	within your monitoring to accommodate that and to
23	do the testing, even if there was no evidence of a
24	spill in terms of your own records?
25	MS. SCHNEIDER-VIEIRA: Yes, there

	Page 1492
1	certainly is. And in the very last panel of this
2	series from the Partnership, you will hear about
3	the environmental, I was going to say the overall
4	environmental monitoring program, as well as the
5	monitoring advisory committee, which is a joint
6	committee of all of the partners. And that is
7	where we would expect concerns such as this to be
8	raised, such that both the technical and
9	Aboriginal traditional knowledge programs could be
10	modified to address such concerns.
11	MR. McLACHLAN: Thank you.
12	Just as a point of clarification, I
13	guess, in page 2153, so either 21 or 53, in terms
14	of operation effects, down at the bottom
15	associated with the Long Rapids, you talk about
16	habitat essentially unchanged.
17	MS. SCHNEIDER-VIEIRA: Yes.
18	MR. McLACHLAN: What do you mean by
19	essentially unchanged?
20	MS. SCHNEIDER-VIEIRA: There is a very
21	small increase in the water levels as a result of
22	impound that extended just downstream of Long
23	Rapids. And so technically you would say, yes,
24	the water levels have gone up 10 centimetres, so
25	yes, your habitat changed. But in terms of the

1493

		Page
1	characteristics that are important to aquatic	
2	biota, that would not affect it.	
3	In addition there is, as was discussed	
4	by previous panels, there is that very small	
5	effect during some I was going to say some	
б	years of low flows there will be a larger ice dam,	
7	so, yes, there would be a small increase in water	
8	levels when they would normally be lower. Once,	
9	again, that is, technically that is a change but	
10	it is not a change that's going to affect your	
11	aquatic biota.	
12	MR. McLACHLAN: Thank you.	
13	In the paper that was brought forth	
14	yesterday and entered into evidence, DFO signs	
15	advisory report around the COSEWIC. As part of	
16	the tables, the first table that was presented	
17	there, they identified a series of different	
18	stressors. And they indicated there that domestic	
19	fisheries or subsistence fisheries contribute to	
20	decline of sturgeon. And I think you also	
21	perhaps, kind of when you were presenting, also	
22	implied that the local fishing had contributed to	
23	the decline. Can you speak to that in a little	
24	bit more detail?	
25	MS. SCHNEIDER-VIEIRA: Well, I will	

		Page 1494
1	start, and then Ms. Matkowski can add if she has	U U
2	additional information.	
3	What I emphasized was that when we are	
4	dealing with extremely low populations like, for	
5	example, in the Gull Lake area where we are	
6	talking several hundred fish, even a small	
7	domestic fishery of maybe 50 fish, or 60 fish, or	
8	30 fish, which in an un-impacted population would	
9	not affect that population, because these	
10	populations have been reduced by so many other	
11	factors, in particular the commercial fishery,	
12	that even a very small domestic fishing effort can	
13	have an adverse effect.	
14	We also actually saw that in the	
15	1990s. At the Landing River there was a	
16	population of sturgeon that were still spawning	
17	there, and as a result of continuing domestic	
18	fishing, once again not at excessive rates, that	
19	population was virtually extirpated. And that was	
20	one of the big impetuses for starting the Nelson	
21	River Sturgeon Board.	
22	MR. McLACHLAN: Go on.	
23	MS. MATKOWSKI: Yes, I would add that	
24	that paper that was entered does indicate that the	
25	magnitude of things like, the impact of things	

	Page 1495
1	like domestic fishing varies from management unit
2	to management unit. And the table that you
3	mentioned indicates that for the particular
4	management unit between Kelsey and Kettle
5	Generating Station, they have assessed the
6	occurrence of domestic and subsistence fishing as
7	being high, and that the level of severity of the
8	threat also being high for that particular
9	management unit. It is not the same in all of the
10	sections of the Nelson River, but for that section
11	it is in this report high.
12	MR. McLACHLAN: But, again, you would
13	attribute that to the low numbers of the
14	population?
15	MS. SCHNEIDER-VIEIRA: Yes, it is
16	always the proportion of fish that are taken.
17	MR. McLACHLAN: Is that something that
18	is monitored with the communities in terms of the
19	actual numbers of the fish that are harvested?
20	MS. SCHNEIDER-VIEIRA: The communities
21	can provide us with harvest information if they
22	wish. The aspects of the Aboriginal traditional
23	knowledge monitoring programs are still being
24	developed. And certainly, as I have mentioned
25	previously, the communities conducted their own

		Page 1496
1	ATK work. In that work they chose not to provide	
2	quantitative estimates of the amount of sturgeon	
3	that were taken. We have some information of	
4	sturgeon harvest, both from what people have told	
5	us, as well as when we get tag returns we can	
6	calculate a percentage of harvest.	
7	MR. McLACHLAN: And as we've heard	
8	today, there may be also other sources of domestic	
9	fishing, in the case of Hydro employees perhaps	
10	fishing or collecting fish. So you will be	
11	monitoring that if indeed it does take place,	
12	right?	
13	MS. SCHNEIDER-VIEIRA: Certainly at	
14	the construction site, harvest will not be	
15	allowed. Because it is just, within the	
16	construction site there is also safety concerns,	
17	but that is something that the Partnership can	
18	regulate. In terms of domestic harvest of	
19	sturgeon that occurs in other areas, that is not	
20	something that the Partnership can regulate. And	
21	in terms of the monitoring for that, it would only	
22	occur to the extent that resource harvesters	
23	choose to report their harvests.	
24	MR. DAVIES: I would just like to add	
25	that there won't be any personal boats allowed by	

1	the site which will make it much more difficult	Page 1497
1	the site, which will make it much more difficult	
2	to access areas where they would be able to	
3	harvest sturgeon.	
4	MR. McLACHLAN: Thank you.	
5	MS. MASSAN: What about right now,	
6	that camp off 280 road? You see a lot of Hydro	
7	vehicles. One time I went by, there was four	
8	Hydro vehicles parked at that north, you know, the	
9	cement bridge when you come to 280, they were	
10	fishing there. How come they get I don't know,	
11	some people tell me this why are they using	
12	Hydro vehicles to go fishing?	
13	MR. DAVIES: I'm not aware that that	
14	occurred.	
15	MR. MASSAN: Nobody is monitoring	
16	that. Maybe they will be doing that at the	
17	Nelson, but they don't do that along that 280	
18	road. Like I see that when the pickerel is	
19	running, I see four Hydro vehicles are sitting	
20	there on the bridge, and those guys are fishing	
21	there. You know, nobody watches that.	
22	MR. DAVIES: Again, that's something I	
23	wasn't aware of, but I appreciate you making a	
24	point of that, and I'm sure that Manitoba Hydro	
25	will look into it.	

		Page 1498
1	MR. McLACHLAN: So, then that was my	1 age 1400
2	follow-up question, you will adapt the monitoring	
3	and the management to accommodate those kinds of	
4	offsite fishing excursions?	
5	MR. DAVIES: If those type of things	
6	occur, yes, we would.	
7	MR. McLACHLAN: Page 92, I will go	
8	with the high numbers I guess.	
9	Are the Gull Rapids considered	
10	historic sturgeon spawning areas, either according	
11	to Manitoba Hydro data or ATK?	
12	MS. SCHNEIDER-VIEIRA: I am sorry, do	
13	you mean this slide? Just from your reference I	
14	understood a different slide, do you mean this	
15	one?	
16	MR. McLACHLAN: Or whichever makes	
17	sense, it doesn't matter. It would be, I guess it	
18	would be a different whichever the slide is	
19	that reflects spawning.	
20	MS. SCHNEIDER-VIEIRA: Okay.	
21	And could you repeat your question,	
22	please?	
23	MR. McLACHLAN: So the question was,	
24	are they considered, the Gull Rapids, are they	
25	considered to be historic sturgeon spawning areas	

1499

		_
1	according to data from either Manitoba Hydro or	Page
2	according to ATK?	
3	MS. SCHNEIDER-VIEIRA: Gull Rapids has	
4	been identified as a spawning area, both from	
5	observations during the EIS studies, as well as	
6	from the community's reports.	
7	MR. McLACHLAN: Okay, thank you.	
8	I guess now that we are looking at	
9	that slide in terms of the populations in the	
10	study area, you have three kinds in the legend,	
11	you have known spawning locations, spawning known	
12	to occur in the general area, can you tell me what	
13	the difference is between those two?	
14	MS. SCHNEIDER-VIEIRA: Yes. The known	
15	spawning location, which is First Rapids on the	
16	Burntwood River, was based on obtaining basically	
17	drifting larval sturgeon immediately downstream of	
18	that area. So it is a fairly restricted place.	
19	The spawning known to occur in the	
20	general areas basically highlighted the entire	
21	rapids, because from the capture of fish in	
22	spawning condition within the vicinity of those	
23	rapids, we knew that they were spawning somewhere,	
24	but say, yes, they were spawning the left bank or	
25	the right bank or wherever, it wasn't that	

		Page 1500
1	specific. And finding the suspected spawning	i age i eee
2	locations, which we discussed this morning, is	
3	because we have caught very limited numbers of	
4	fish. As I say, I believe there was one from the	
5	Grass River, as well as two from downstream of the	
6	Kelsey Generating Station, including one just this	
7	past year, it looked like, yes, there is a female	
8	in spawning condition. But there were really not	
9	enough fish caught there that we could say, yes,	
10	they are definitely spawning at these locations.	
11	MR. McLACHLAN: So does that	
12	information incorporate ATK as well, or is it	
13	solely based on your own sampling?	
14	MS. SCHNEIDER-VIEIRA: This map	
15	incorporates our own sampling. However, from the	
16	ATK we have not heard of other spawning locations,	
17	besides the ones that are illustrated on this map,	
18	in this particular reach of the river.	
19	MR. MASSAN: You talk about sturgeon	
20	and walleye and pike. How come the other species	
21	don't come in, like burbet, what happened to the	
22	goldeyes, whatever you call those little fish?	
23	Before there used to be lots. What happened to	
24	them? Even trout, before Kettle dam?	
25	MS. SCHNEIDER-VIEIRA: In the EIS we	

_		Page 1501
1	did sample and we did talk about what we call the	
2	entire fish community, that is all of the species	
3	that you just mentioned. And we talked in general	
4	terms about how they have changed over time, and	
5	what we expect would happen in the future. But we	
6	had to focus our work on a few key species,	
7	because otherwise, I mean, we already have a stack	
8	of documents that's very high. And we didn't	
9	basically, you just can't provide information on	
10	each detailed information on each of the 37	
11	species. You need to be able to focus your work	
12	so you can focus your attention on the species	
13	that are of the greatest concern.	
14	As I talked about in my presentation	
15	yesterday, looking at these different species that	
16	use different kinds of habitat as the VECs,	
17	looking at sturgeon, which are dependent on the	
18	river, pike that are, you know, working along the	
19	shoreline areas, as well as lake whitefish and	
20	walleye which are using the main part of the lake,	
21	that helps us understand what is happening more in	
22	the environment as a whole, and that is one of the	
23	reasons we picked those species. The other reason	
24	is that those are species that are the biggest	
25	concern to many of the local First Nations.	

		Page 1502
1	MR. MASSAN: There was no studies done	
2	before Kettle Dam, because when I was growing up	
3	listening to the elders, I learned a lot off those	
4	elders when they talk about the river. And I seen	
5	a few places in that, from Kettle to Gull Rapids,	
6	where the sturgeon were spawning. Because I	
7	remember one old man, Dallius, it was Dallius	
8	Ouskun, he told me look at the little fish, I	
9	thought they were minnows. But they were a bunch	
10	of little sturgeon, right on that island they call	
11	Turtle Island. I don't know where that name come	
12	from. It is all Manitoba Hydro naming these	
13	islands now. That old man was saying that	
14	environment here in Gillam, you know, why don't	
15	you just call it Kettle reservoir instead of a	
16	fancy name, Stephens Lake? You know, it is a	
17	reservoir only, that's all it is, not a lake.	
18	Kettle is holding all that water back. And same	
19	thing will happen to Gull Rapids, you know, they	
20	should just call it Gull Rapids reservoir, what is	
21	the fancy name, Kettle Lake and all of that?	
22	There is another thing about fish,	
23	what is going to happen to those minnows, where	
24	the cofferdam is going to be, there is a lot of	
25	minnows back in the '60s, '70s and '80s. I notice	

		Page 1503
1	every year there is hardly any around that area	-
2	because of that green stuff, I think, I'm not	
3	sure. Like I'm not a scientist, I just see	
4	MS. SCHNEIDER-VIEIRA: In terms of the	
5	fish salvage, I would have to check back into how	
6	small the fish that we did the salvage on, how far	
7	down we went in terms of the size of the fish for	
8	the Wuskwatim project, and I will get back to you.	
9	You are correct that the smallest	
10	minnows, it is practically not feasible to scoop	
11	up every minnow and release it. Because of the	
12	way the station is being built, I'm sorry, the	
13	timing of when in-stream construction will occur,	
14	there was an attempt, for example, to not close	
15	off parts of the river in spring when fish could	
16	be gathering at Gull Rapids to spawn, so there	
17	will be fewer fish that will be potentially	
18	enclosed with the cofferdams and have to be	
19	salvaged. So there's both the fish salvage as	
20	well as the timing of construction that will help	
21	reduce the number of fish that are trapped by the	
22	cofferdams.	
23	MR. McLACHLAN: So, hypothetically if	
24	there were sturgeon fingerlings, or tiny fish that	
25	were caught in the cofferdams, there would be no	

Page 1504 way of transporting those either? 1 2 MS. SCHNEIDER-VIEIRA: When the 3 in-stream construction in Gull Rapids will 4 happen -- or they will be sealing off different parts of Gull Rapids through the late summer and 5 into the fall, and at that time of the year there б 7 are not spawning sturgeon in the rapids. Any sturgeon that do spawn will spawn in the spring 8 and then their eggs would hatch, and those larval 9 10 fish don't stay in the rapids, they come up out of the substrate and they drift downstream. So 11 12 because of the timing of the construction, there 13 won't be little sturgeon in the rapids. 14 MR. McLACHLAN: Thank you. Page 75 or 107, and it talks about 15 16 upstream fish passage. So we heard from you yesterday about 17 the multi-million dollar cost of the fish ladder 18 19 and why, when presented to the community, it kind of, in the context of uncertain results, there was 20 21 a kind of recognition that perhaps it would cost a 22 lot, perhaps too much by some of the people 23 participating in those workshops. But you also, here you talk about other methods, trap and 24 25 transport and nature like bypass channels. Are

		Page 1505
1	those viable alternatives?	
2	MS. SCHNEIDER-VIEIRA: They are all	
3	viable alternatives, and they all come with a	
4	substantial price tag. And as I discussed	
5	yesterday, which, and if fish passage will be	
6	implemented will be decided not just by the	
7	Partnership or Manitoba Hydro, but with input from	
8	both the Department of Fisheries and Oceans, and	
9	Manitoba Conservation and Water Stewardship. And	
10	they will be looking at what they feel is required	
11	to support the fish populations.	
12	And so it won't the result wouldn't	
13	be, I guess it looks like really you should have	
14	fish passage, but it is not going to be built	
15	because it is too expensive. If it looks as if	
16	fish passage is required to maintain the	
17	populations, which we are not predicting, but if	
18	that does occur, then some method of fish passage	
19	would be installed.	
20	MR. McLACHLAN: In terms of your own	
21	experience as an expert, or others in the panel,	
22	can you critically comment on the potential of	
23	those other two solutions that are lower in cost	
24	perhaps than the fish ladder, as a way of	
25	mitigating against mortality?	

		Page 1506
1	MS. SCHNEIDER-VIEIRA: My	
2	understanding is that actually the costs of those	
3	three, there are fish ladders which cost more or	
4	less; trap and transport can be quite expensive	
5	just because you are building a collection	
6	facility and then there is higher operating costs.	
7	So you shouldn't look at that as a decrease in	
8	costs, they are all costly. And it is not like a	
9	fish ladder costs more than the other methods.	
10	In terms of what would work, it really	
11	depends on what your objective is. If your	
12	objective is that you absolutely want to take a	
13	sturgeon from Stephens Lake and transport it up to	
14	the Keeyask reservoir, then your best method would	
15	be basically to catch that sturgeon and move it.	
16	If your objective might be, well, let's leave the	
17	fish do whatever they might want to do and not	
18	worry about whether any fish ever goes, but let's	
19	create some fish habitat, something like a nature	
20	like channel might be a best method. If you want	
21	to sort of have a hybrid between the two, or if	
22	you want to look at other methods, or other areas	
23	where at least sturgeon species have been observed	
24	to move, then you might want to look at a fish	
25	ladder. So it really depends on what your actual	

		Page 1507
1	objective is in installing fish passage.	
2	MR. McLACHLAN: Thank you.	
3	In terms of those workshops when you	
4	presented those different alternatives, was there	
5	any difference in response on the part of those	
6	participating in terms of which they felt would	
7	sit best with them?	
8	MS. SCHNEIDER-VIEIRA: I don't recall	
9	one method being universally more or less favoured	
10	than the others. It was really at the fish	
11	passage workshops there was not a clear consensus,	
12	it wasn't like yes, we definitely want fish	
13	passage, and we want it to be done in this way, it	
14	was more like this is a concern and we are seeing	
15	that there isn't a very good clear solution for	
16	that concern.	
17	MR. McLACHLAN: Do you agree, for	
18	example, with the trap and transport that there	
19	may be other benefits, for example, employment to	
20	local youth or perhaps other locals that might be	
21	involved in such an initiative?	
22	MS. SCHNEIDER-VIEIRA: We focused our	
23	work on fish so I can't speak to other benefits.	
24	MR. McLACHLAN: Thank you. You	
25	mentioned that should this be recommended by DFO	

		Page 1508
1	and other agencies, that the cost would be shared	
2	by the Partnership. And so do you anticipate that	
3	that would create kind of financial burdens for	
4	the First Nations that are involved?	
5	MS. SCHNEIDER-VIEIRA: That's also a	
б	question which I can't speak to. I'm not aware of	
7	the economic considerations in the Partnership.	
8	MR. McLACHLAN: Thank you. On page	
9	108, so the next page.	
10	MS. SCHNEIDER-VIEIRA: I didn't catch	
11	your slide number?	
12	MR. McLACHLAN: 108, so the next page.	
13	THE CHAIRMAN: 76.	
14	MR. McLACHLAN: 76, 108, yes. So	
15	downstream fish passage talks about that there is	
16	mortality associated with and injury associated	
17	with the turbines. Do you have a sense of the	
18	relative numbers of fish that might either be	
19	injured or especially killed by the turbines	
20	compared to and here we are talking about	
21	sturgeon compared to those associated with the	
22	domestic fishing?	
23	MS. SCHNEIDER-VIEIRA: If we look at	
24	the current number of sturgeon moving downstream	
25	from Gull Lake, it is less than 2 per cent of the	

1	Page 1509 total number in the lake. And I'm just trying to
2	
	remember, I think over the past year or two, we
3	had one or two sturgeon that moved downstream.
4	And we, as we've discussed, whether the sturgeon
5	goes through the turbines or whether it goes over
6	the spillway and whether or not it is killed is
7	also not certain. But certainly in our current
8	estimates of harvest, the estimate of harvest is
9	higher than one or two sturgeon from Gull Lake.
10	However, post project, the First Nations have
11	indicated that they don't want to harvest within
12	reservoirs, at least for other fish species, so
13	the amount of harvest from Gull Lake or the
14	Keeyask reservoir in the future, may also decline.
15	There will also be work with the First Nations via
16	in part through the lower Nelson River Sturgeon
17	Stewardship Committee, spreading the information
18	that the sturgeon in this area are vulnerable and
19	that it would be better for the populations not to
20	harvest them.
21	MR. McLACHLAN: And when you look at
22	the data for other fish species, you know, that
23	are harvested by community members, do you are
24	the mortality kind of numbers comparable to the

25 subsistence harvesting numbers?

		Page 1510
1	MS. SCHNEIDER-VIEIRA: Once again it	
2	sounds like I'm avoiding the question, but it	
3	depends on what the domestic harvest is. For the	
4	information that we have received from the First	
5	Nations is that the main stem of the Nelson River	
6	is not a preferred harvest location because the	
7	fish have a poor taste and quality. But we do	
8	know that there is some harvest for the First	
9	Nations in terms of the post-project due to the	
10	elevated mercury levels for several decades.	
11	Programs have been put in place where they will be	
12	obtaining fish from off-system, from areas outside	
13	of the Keeyask reservoir. And so post-project we	
14	would anticipate that the level of domestic	
15	harvest will decline, and so then obviously the	
16	amount of mortality associated with turbines would	
17	be higher. In the existing environment I don't	
18	have an estimate of the amount of domestic	
19	harvest, so I can't do a direct comparison.	
20	However based on the work that we've done and	
21	predicting over 90 per cent of survival of the	
22	majority of fish that would be going downstream,	
23	as well as the number of fish in the relative size	
24	of the lakes and the small proportion of fish that	
25	we expect to go downstream, we don't expect there	

		Page 1511
1	to be a detectable effect to the populations.	J
2	MR. McLACHLAN: Thank you. If we move	
3	to page 83, or 115, I appreciate there have been a	
4	number of questions that have focused on the part	
5	of intervenors on the stocking programs and on the	
6	habitat creation, but I have a few more. It says	
7	here at the bottom of that that an overall	
8	increase in sturgeon numbers in the Kelsey to	
9	Kettle region is expected due to stocking. And we	
10	heard you defend that. It seems like it is	
11	predicated on two main components, as you	
12	indicated yesterday, the first creation of new	
13	habitat, especially for young-of-the-year, so I	
14	have questions around that. You also indicated it	
15	hasn't been done before, so this was highly	
16	innovative and that's great to see. But would you	
17	agree that when you are initiating habitat	
18	creation of this sort that's never been done	
19	before, that there are higher risks involved?	
20	MS. SCHNEIDER-VIEIRA: Yes, you are	
21	correct, that there are higher risks involved when	
22	you are trying something new. I should also, and	
23	I probably didn't stress it sufficiently	
24	yesterday, in the assessment of potential effects	
25	to the young-of-the-year sturgeon, we were being	

		Page 1512
1	very conservative in that we were basing our	
2	assumption on that they would use only a very	
3	specific kind of sand habitat. And that's based	
4	on both our observations in the Gull Lake area as	
5	well as some work done by other researchers.	
6	However, there is also other work done, and even	
7	in our examinations of sturgeon, young sturgeon in	
8	Stephens Lake, we do see that they potentially	
9	could use a wider variety of substrates. For	
10	example, in Stephens Lake we found them on some	
11	gravels, and in some of the work from the Winnipeg	
12	River they were found on fine silts. So we are	
13	being very conservative in our assessment of what	
14	is suitable for them because we felt that was	
15	appropriate. But it is possible that through	
16	monitoring that we find that, yes, indeed either	
17	there are pockets of sand or that they are able to	
18	use a wider range of habitats. Now moving on to	
19	your question about habitat creation, it is	
20	something that is that we would be testing, if	
21	required, and you are correct that it is an	
22	experimental approach. Our big advantage, or what	
23	gives us time and increased confidence for this	
24	project is that we know that we can support our	
25	sturgeon populations through stocking, even if it	

		Page 1513
1	takes us some years to get this young-of-the-year	
2	habitat working well. We can also stock yearling	
3	fish which don't require young-of-the-year	
4	habitat.	
5	So it is almost like we have this	
6	backup plan that allows us the luxury of having	
7	multiple years to sort out, if we need	
8	young-of-the-year habitat, and if we do, we can	
9	install it by either sand, and if we find it is	
10	not in the right location or whatever, we do have	
11	the opportunity to maintain our sturgeon	
12	population through stocking until we can get the	
13	young-of-the-year habitat functioning effectively.	
14	Taking one step back, the increase in	
15	sturgeon numbers is actually predicated upon the	
16	success of stocking to enhance the populations in	
17	the upper Split Lake area, because there we do	
18	have demonstrated sturgeon habitat, we have	
19	historic records of more sturgeon, and we know	
20	that's an area where the habitat is not being	
21	affected by Keeyask. So regardless of what is	
22	happening down the Keeyask reach, we do have this	
23	large area where there would be more sturgeon, if	
24	that population is supplemented through stocking.	
25	MR. McLACHLAN: Thank you for that.	

		Page 1514
1	Now hypothetically, if that innovative program	
2	doesn't work at all after monitoring and	
3	experimentation, would you see yourself in a	
4	position that you just abandon it with a more	
5	conventional spawning habitat?	
б	MS. SCHNEIDER-VIEIRA: I am sorry, the	
7	spawning habitat that we are creating is based on	
8	work that's been done in other places that has	
9	worked successfully, it is the young-of-the-year	
10	habitat that has not been created elsewhere. And	
11	no, we would continue to work if we are finding	
12	that young-of-the-year aren't successfully	
13	recruiting in the reservoir, there is a long term	
14	commitment to continue to work to find ways of	
15	creating that appropriate environment for those	
16	fish.	
17	MR. DAVIES: I would also like to add	
18	that we are working with B.C. Hydro and Wisconsin	
19	on young-of-the-year habitat, and any information	
20	that would be gained that would be useful for this	
21	project would also be transferred.	
22	MR. McLACHLAN: So you are saying in	
23	those other regions that they have embarked on	
24	similar kinds of young-of-the-year habitat	
25	experimentation?	

		Page 1515
1	MR. DAVIES: They are currently	
2	looking for young-of-the-year habitat.	
3	MR. McLACHLAN: But to your knowledge	
4	are there any other agencies that are, or actors	
5	that are embarking on similar kinds of	
6	experimentation?	
7	MS. SCHNEIDER-VIEIRA: Not agencies	
8	that are attempting to create young-of-the-year	
9	habitat.	
10	MR. McLACHLAN: Obviously you are in	
11	conversation with experts that work in those other	
12	agencies. What, if any, feedback have you got	
13	from them on the potential success or even kind of	
14	appropriateness of this strategy?	
15	MS. SCHNEIDER-VIEIRA: In some ways	
16	the work that we have done here on	
17	young-of-the-year both in capturing them in the	
18	large river environments, as well as the proposed	
19	habitat requirements are at the forefront of	
20	research on young-of-the-year sturgeon. As Mr.	
21	Davies mentioned, some experts from our office are	
22	actually going out to other places to assist them	
23	in the work on young-of-the-year.	
24	MR. McLACHLAN: So, for a second	
25	assuming in a very gloomy way that this was a	

		Page 1516
1	complete failure, you know, hypothesizing that,	Ū
2	could you find yourself in a situation that in 25	
3	years time, or 75 years time you are still	
4	dependent on stocking as a way of maintaining	
5	those sturgeon populations?	
6	MS. SCHNEIDER-VIEIRA: I was going to	
7	say that I personally won't be here in 75 years,	
8	just by point of clarification. But yes, I	
9	suppose that if all attempts failed, that we would	
10	expect that, yes, you would need to continue to	
11	stock. Because of the diversity of reservoir	
12	environments where we do find sturgeon, I'm quite	
13	confident that there are ways that you can	
14	continue to keep sturgeon in the Keeyask	
15	reservoir.	
16	MR. McLACHLAN: So pardon my	
17	ignorance, but when you are looking at this	
18	innovative program, how quickly can you generate	
19	data that indicate whether it is being successful	
20	or not? I mean, surely we are not talking about	
21	25 or 50 years but	
22	MS. SCHNEIDER-VIEIRA: Our first	
23	challenge will be that, and I have to say that	
24	when we first generated this, our work, we weren't	
25	aware of how low the natural rate of recruitment	

1	was from Gull Lake. Currently we have only found	Page 1517
2	successful recruitment one in ten years. So we	
3	would hate to have to wait until some sturgeon may	
4	spawn again every ten years to see whether or not	
5	there is successful young-of-the-year habitat. So	
6	if in our continued recruitment monitoring we are	
7	really finding that the natural recruitment is	
8	very low, we would be looking at other approaches.	
9	For example, in our stocking program, we could	
10	stock quite young fish into the area where we	
11	believe that they should go, and through	
12	subsequent monitoring we could determine whether	
13	those fish survive. Because due to the low	
14	natural rate of recruitment, it might be very	
15	difficult, or it is not something that we would	
16	want to rely on in terms of a reasonable duration	
17	of determining whether or not the habitat is	
18	available.	
19	MR. McLACHLAN: Thank you. When we	

20 talk about these different sub populations that 21 are reflected in the sturgeon numbers, did you 22 indicate that there is any genetic variation among 23 those sub populations, or is it just sort of an ad 24 hoc sub population, or how would you define those 25 populations?

		Page 1518
1	MS. SCHNEIDER-VIEIRA: We had	
2	initially defined them based on movement, and then	
3	with the subsequent genetic studies which I showed	
4	in my presentation demonstrated that there is a	
5	genetic difference amongst the the Kelsey,	
6	Burntwood is genetically different from the Gull	
7	Lake area. We did not in that genetic analysis	
8	have material from the Stephens Lake area, that we	
9	are currently doing a more refined genetic	
10	analysis which includes samples from young fish at	
11	Stephens Lake, so that would be post hydro. And	
12	we are interested to see whether they are	
13	different from Gull Lake or if indeed they are	
14	young sturgeon that drifted down the stream, over	
15	Gull Rapids from the Gull Lake spawning	
16	population, since we know there are very, very few	
17	spawners in Stephens Lake.	
18	MR. McLACHLAN: And you may have	
19	addressed this with the last intervener, but when	
20	you in the advent that there is genetic	
21	variation in the Stephens Lake population, and	
22	given the low numbers, if you are restocking	
23	those, is there a danger that you will get	
24	homogenization?	
25	MS. SCHNEIDER-VIEIRA: We will	

	Pa	age 1519
1	definitely be using Gull Lake fish for Stephens	0
2	Lake. There just aren't enough in Stephens Lake.	
3	But as I mentioned, they may well be the same	
4	fish. We will determine that information will	
5	come in an upcoming genetic analysis where we are	
6	doing more basically it is a higher level of	
7	precision to look if there are further	
8	subdivisions amongst these populations.	
9	MR. McLACHLAN: And should that	
10	actually occur, do you see that as a problem, if	
11	you get genetic homogenization?	
12	THE CHAIRMAN: That was covered	
13	earlier.	
14	MR. McLACHLAN: Thank you, Mr. Chair.	
15	I just have a few more questions. One more is the	
16	use of stream side rearing facilities, and I think	
17	you indicated earlier that most of your stock is	
18	going to come from Grand Rapids?	
19	MS. SCHNEIDER-VIEIRA: The Nelson	
20	River Study Board has used both Grand Rapids and I	
21	believe they have tested some stream side rearing	
22	facilities. The current plan is to use Grand	
23	Rapids, but there is also the potential to use	
24	stream side facilities. And I will just look to	
25	Shelly if she wants to add?	

-		Page 1520
1	MS. MATKOWSKI: There definitely is	
2	the potential to use stream side facilities, and	
3	right now we are using Grand Rapids for the Nelson	
4	River Sturgeon Board. And as I understand it,	
5	during construction of Keeyask we will be using	
6	Grand Rapids hatchery.	
7	MR. McLACHLAN: And so do you	
8	anticipate that you might use both approaches, and	
9	what would you see as being the benefits of using	
10	each?	
11	MS. MATKOWSKI: There is definitely an	
12	option of using each. And there are pros and cons	
13	in using each. Stream side you don't have to	
14	worry about moving eggs. You've got the same	
15	water that the eggs that the fish have come	
16	from that you are going to be incubating the eggs	
17	in. The problems that you can have are lack of	
18	control of temperature, lack of control of silt in	
19	that water, those sorts of things.	
20	MR. McLACHLAN: But you see them as	
21	complimentary approaches?	
22	THE CHAIRMAN: That's been answered.	
23	MS. MATKOWSKI: They could be	
24	complimentary.	
25	MR. McLACHLAN: That's all I have. Do	

	Pa	ge 1521
1	you have any final questions, Noah? No, perfect.	
2	THE CHAIRMAN: Thank you both very	
3	much. The panelists have a number of questions,	
4	and perhaps we will just run down the table, Mr.	
5	Shaw?	
6	MR. SHAW: Dr. Schneider, just	
7	following up on some of the questions that Dr.	
8	McLachlan asked you about, sort of the level of	
9	determination of the Partnership in terms of	
10	developing a self-sustaining population of	
11	sturgeon; is the Partnership committed to stocking	
12	and/or other compensation measures until a	
13	self-sustaining population is established sort of	
14	regardless of the number of years it would take?	
15	MS. SCHNEIDER-VIEIRA: Yes, that was	
16	stated in the environmental impact statement, and	
17	that is a commitment that the Partnership has	
18	made.	
19	MR. SHAW: Thank you. And one other	
20	question. Have you studied the status of fish	
21	populations in water bodies where the offsetting	
22	programs in the adverse effects agreements are	
23	proposed?	
24	MS. SCHNEIDER-VIEIRA: There were	
25	fishery surveys done in some of the lakes that	

		Page 1522
1	were selected, initially selected for the	
2	offsetting programs, and those fishery studies	
3	were done in order to determine what the or to	
4	provide input into the sustainable harvest plans	
5	being developed by the Partner First Nations.	
6	MR. SHAW: Thank you.	
7	THE CHAIRMAN: Ms. Bradley.	
8	MS. BRADLEY: I have a number of	
9	questions regarding mercury. I would like to	
10	start, first of all, on page 14, and that's also	
11	slide 14. On this slide the map depicts a number	
12	of mercury sampling locations. Do these locations	
13	represent current monitoring locations or both the	
14	current and past?	
15	MR. DAVIES: I believe it is	
16	up-to-date to 2012, and it contains all of the	
17	past and up to 2012.	
18	MS. BRADLEY: Thank you.	
19	MR. DAVIES: Sorry, from around, I	
20	believe, 1975 to 2012.	
21	MS. BRADLEY: Okay. My next question	
22	will move on to slide 39 on page 71. This slide	
23	explains the predicted effects to fish in Gull	
24	Lake, but doesn't mention Stephens Lake. What are	
25	the predicted effects on Stephens Lake fish	

Volume 7

-		Page 1523
1	population?	
2	MS. SCHNEIDER-VIEIRA: Subject to	
3	check, but I believe that the concentrations in	
4	walleye and pike will increase to approximately .5	
5	parts per million. Yes, that's true.	
6	MS. BRADLEY: Thank you. And what	
7	uncertainty is associated with predicted fish	
8	mercury concentrations in terms of the magnitude	
9	and timing?	
10	MS. SCHNEIDER-VIEIRA: In terms of the	
11	magnitude, they can be both higher or lower. We	
12	were trying to be fairly conservative in that we	
13	would tend to over-estimate effects, and that	
14	would be related to effects basically in the food	
15	web, what is happening in your food web, how many	
16	levels of concentration, if you will, are the	
17	organisms going through before the, let's say the	
18	pike or walleye eat them. If, for example, they	
19	eat a small fish, which then eats a larger fish	
20	and then it is consumed by the pike, that would	
21	cause an increase above our predicted levels, or	
22	it would tend to make it higher.	
23	The other thing is in terms of the	
24	timing, if the peat breakdown is more rapid than	
25	you expect, then you would have more organic	

Volume 7

		Page 1524
1	material entering more quickly so your peak could	Ū
2	happen more quickly and might be a little bit	
3	higher. If the rate of peat breakdown is slower	
4	and it is more protracted over time, you would	
5	expect a longer, flatter peak.	
6	MS. BRADLEY: You may have covered	
7	this, so if you have, then I will move on. What	
8	increase in fish mercury levels in Stephens Lake	
9	or reservoir would be sufficient such that the	
10	proponent would extend fish monitoring farther	
11	downstream?	
12	MS. SCHNEIDER-VIEIRA: It would be if	
13	it increases to greater than .5 parts per million.	
14	If it is less than that, we really don't think	
15	that we could have a that we would be able to	
16	detect any change further downstream.	
17	MS. BRADLEY: So greater than .5?	
18	MS. SCHNEIDER-VIEIRA: 0.5.	
19	MS. BRADLEY: 0.5, thank you. Further	
20	then, given the uncertainties involved on the	
21	downstream limit of increased fish mercury levels,	
22	would it be more prudent to include fish mercury	
23	monitoring in the Limestone forebay from the	
24	outset and stop if no effects were observed,	
25	rather than initiate monitoring if concentrations	

1	increase sufficiently in the Stephens Lake
2	reservoir?
3	MS. SCHNEIDER-VIEIRA: We have the
4	luxury in that the CAMP program, which has been
5	previously described, is already monitoring
6	mercury in the Limestone forebay. And so it is
7	not as if we don't have any record of what is
8	happening in mercury concentrations downstream.
9	So basically that just leaves the Long Spruce
10	reservoir where presently we would extend our
11	monitoring to if we see changes greater than
12	expected in Stephens Lake.
13	MS. BRADLEY: Okay. You touched on
14	this; to what extent have the effects of wetlands
15	been included with respect to predictions of fish
16	mercury concentrations?
17	MS. SCHNEIDER-VIEIRA: The mercury
18	models were based on the amount of flooded
19	material. And so we didn't distinguish amongst
20	peat or forested areas. And in terms of the two
21	models that were used, the one that was developed
22	from work that had been done in all of Northern
23	Manitoba essentially integrates the full range of
24	conditions of flooding that happened in those
25	various reservoirs. For the other approach that

Page 1525

		Page 1526
1	we took where we simply looked at how mercury	
2	concentrations had increased in Stephens Lake,	
3	that is based on a more similar topography, or	
4	more similar terrain, and so that's largely a peat	
5	based environment, and so those two approaches	
6	were used for determining the mercury levels.	
7	MS. BRADLEY: And my final question;	
8	is sampling planned for total mercury or	
9	methylmercury in sediments in the reservoir or	
10	downstream during the operation phase?	
11	MS. SCHNEIDER-VIEIRA: The current	
12	aquatic effects monitoring plan does not include	
13	any monitoring of sediment quality. We anticipate	
14	that, or we felt that based on the predicted	
15	effects that sediment quality monitoring was not	
16	required. However, if the Department of Fisheries	
17	and Oceans or Manitoba Conservation and Water	
18	Stewardship indicate that we should include	
19	sediment monitoring, it can be done. There has	
20	been baseline information collected as part of the	
21	EIS studies.	
22	MS. BRADLEY: Thank you.	
23	THE CHAIRMAN: Mr. Nepinak.	
24	MR. NEPINAK: My question is going to	
25	be on slide 60, page 92. And I believe you have	

		Page 1527
1	answered a portion of the question that I'm going	
2	to ask, but I'm going to ask it anyway, because it	
3	asks for more information. Can you discuss the	
4	various types of evidence that can be used to	
5	determine or infer where lake sturgeon are	
6	spawning, and which of those types lead to the	
7	conclusion that spawning is occurring at each of	
8	the locations or general areas shown?	
9	MS. SCHNEIDER-VIEIRA: All right. I	
10	will go through it area by area. First of all,	
11	starting with the turquoise area at First Rapids;	
12	at that location we observed aggregations of	
13	sturgeon in spawning condition, as well as we	
14	found a larval sturgeon going through what are	
15	called drift samples. That is you can put	
16	floating and sinking nets into the water that have	
17	a very fine mesh and they collect what is drifting	
18	in the water column, and so we did collect some	
19	larval sturgeon from that location. In addition	
20	the First Nations, particularly from Tataskweyak,	
21	had identified that as a spawning location. In	
22	terms of the Kelsey Generating Station and the	
23	Grass River, as I mentioned previously, those were	
24	both historic spawning locations. We have been	
25	sampling extensively in both of those areas	
I		

1	looking for sturgeon in spring. And we have found	Page 1528
2	one large female in the Grass River, which we have	
3	recaptured many years, and one year she had a	
4	significant decline in her weight, and you would	
5	expect that she had spawned in that year.	
6	Also as I mentioned previously we did	
7	catch in I think it was 2006, and this year, a	
8	female sturgeon downstream of Kelsey which did	
9	had some eggs that could be extruded. As I said,	
10	we didn't view that as sufficient evidence of	
11	definitive spawning in that area.	
12	Moving on downstream to Long Rapids;	
13	two larval lake sturgeon were captured just	
14	downstream in 2004, once again in drift traps.	
15	Then going further downstream in the Birthday	
16	Rapids area, for quite a few years we have	
17	captured sturgeon in spawning condition down	
18	there. And finally going down to Gull Rapids, as	
19	I mentioned earlier we did catch sturgeon, I was	
20	told, in spawning condition downstream of the	
21	rapids in either 2000s. And both Birthday Rapids	
22	and Gull Rapids have been identified in the	
23	traditional knowledge reports as spawning areas.	
24	I can't recall if spawning has been reported by	
25	the First Nations in the Long Rapids area, though	

		Page 1529
1	I wouldn't be surprised if it had been.	
2	MR. NEPINAK: Thank you. Is it	
3	possible that other spawning areas exist in the	
4	study area that have not been identified?	
5	MS. SCHNEIDER-VIEIRA: We have had	
6	some reports from Clark Lake that there might	
7	actually be another set of spawning areas where	
8	the river enters Clark Lake there is some fast	
9	flowing water, and it is not clear to us, we have	
10	had First Nations who report, yes, we are catching	
11	sturgeon at these locations. We haven't done test	
12	netting through Clark Lake in spring that I'm	
13	aware of.	
14	MR. NEPINAK: You mentioned there was	
15	a discussion on fish salvage by one of the	
16	questions earlier. What kind of what method is	
17	used for fish salvage?	
18	MS. SCHNEIDER-VIEIRA: In the	
19	Wuskwatim area we used gill net sets. And I would	
20	have to check whether or not we used other methods	
21	as well.	
22	MR. NEPINAK: Okay. Thank you.	
23	THE CHAIRMAN: Mr. Yee.	
24	MS. SCHNEIDER-VIEIRA: Sorry, it was	
25	just noted for smaller fish in the Wuskwatim area	

		Page 1530
1	we also used what is called backpack electro	
2	shocking. You can put a very small current	
3	through the water. It temporarily stuns the fish,	
4	they float to the surface, and you can basically	
5	scoop them up. It doesn't cause any long term	
6	harm to them, and it is actually a very effective	
7	way of capturing fish with minimal handling.	
8	MR. YEE: Just a few questions that I	
9	have. Yesterday we heard from Ms. Matkowski that	
10	the numbers of lake sturgeon are increasing in the	
11	study area; is this correct?	
12	MS. MATKOWSKI: The numbers of lake	
13	sturgeon that we are seeing coming to those	
14	spawning areas that Friederike described have been	
15	going up slightly. And as I mentioned, they are	
16	small, young fish. So what we believe is we are	
17	starting to get more fish maturing into adult age.	
18	MR. YEE: Thank you. I guess, based	
19	on this information and referring to the exhibit	
20	registered by Mr. Williams yesterday entitled	
21	Recovery Potential Assessment of Lake Sturgeon,	
22	Nelson River Populations, does this suggest that	
23	the population trajectory for lake sturgeon,	
24	Kelsey Generating Station to Kettle management	
25	unit number 3, might be more accurately described	

-		Page 1531
1	as increasing?	
2	MS. MATKOWSKI: I think that would be	
3	preliminary to say that. Having been involved in	
4	the development of that document and the	
5	workshops, there was a lot of discussion of	
6	whether or not we would call a trend increasing or	
7	stable, and I think that would still be uncertain	
8	enough that they wouldn't change it to increasing.	
9	MR. YEE: I'm going to reword this. I	
10	had this question a few ways. I am going to	
11	reword it a bit. I'm trying to get a bit of a	
12	picture in terms of the Partnership has presented	
13	a lot of information, historical studies and there	
14	has been a lot of maps showing spawning areas,	
15	populations, genetics, existing habitat, and you	
16	have projected the post project habitat. So I'm	
17	just wondering, and I guess I could put it in	
18	relation to slide 79 on page 111. This slide	
19	states on a regional scale there is more habitat	
20	than sturgeon. And again I guess we heard that	
21	this morning about continuous habitat or	
22	discontinuous habitat for the sturgeon. I'm just	
23	trying to put this into perspective. If the	
24	Keeyask project didn't proceed, I'm wondering what	
25	would the status or the population of sturgeon be	

		Page 1532
1	in this particular reach of the river?	U U
2	MS. SCHNEIDER-VIEIRA: That has been	
3	obviously the topic of considerable discussion. I	
4	believe that in IR CEC31 we provided some	
5	additional information on the status of the	
6	various sturgeon populations in the area. And I'm	
7	going to start off with the Burntwood and Kelsey	
8	area. We know, it is information that we also	
9	provided, that there are some young sturgeon,	
10	which Ms. Matkowski noted, are growing up to	
11	become spawners. They are young fish, I would say	
12	in their early 20s, but I'm guessing there. They	
13	are the large females that are really, the most	
14	highly productive group in the population are	
15	extremely rare in this area. I personally can	
16	think of one very large female in the Grass River	
17	and that's all. The other sturgeon that we have	
18	been seeing are very small, are the smaller ones,	
19	with a much lower reproductive potential. It is	
20	possible if we leave this area alone and come back	
21	100 years from now, we will see that the	
22	population has gradually increased. But that rate	
23	of increase will be very small because currently	
24	we have a very low number of reproducing	
25	individuals, and they are small and their ability	

1	to produce is quite they are just not producing	Page 1533
2	a large number of eggs. And it would be	
3	considered very vulnerable.	
4	When we move further downstream into	
5	the Gull Lake area, we have a somewhat different	
6	situation. We have some large sturgeon still left	
7	there, very few but there are some, but we have	
8	this extremely limited recruitment, so we are	
9	seeing young fish being born, and I'm just going	
10	to use the figure 1 in 10 years, that's what we	
11	have seen to date. So if anything were to happen	
12	to those very few females that are reproducing	
13	there, that population will be lost.	
14	And then finally we move down to the	
15	Stephens Lake area, where I'm going to just	
16	estimate now, it is about 65 or 70 per cent of the	
17	sturgeon that we caught there are from this 2008	
18	year class. So it is an extreme remnant, and it	
19	is very vulnerable to extirpation. If we left it	
20	all alone, whether it would increase at a very,	
21	very slow rate over time, it could. It could also	
22	disappear entirely. So the answer to your	
23	question depends on what part of the river we are	
24	looking at.	
25	MR. YEE: Just a few more questions,	

		Page 1534
1	Mr. Chair. I'm just trying to clarify the	
2	proposed remedial measures for sturgeon. It	
3	sounds like these questions have already been	
4	raised, but I'm just trying to get some context	
5	around this. Based on the testimony yesterday in	
6	the EIS documentation, suitable habitat for all	
7	stages of lake sturgeon are required in order for	
8	self-sustaining population to be established and	
9	maintained; is that correct?	
10	MS. SCHNEIDER-VIEIRA: Yes, that's	
11	correct.	
12	MR. YEE: So in the EIS documentation	
13	and testimony, as well yesterday, stated that the	
14	known existing sturgeon nursery habitat upstream	
15	of Gull Rapids in the vicinity of Caribou Island	
16	will be altered by the Keeyask project in a matter	
17	that is likely to render it unsuitable as lake	
18	sturgeon habitat; is that also correct?	
19	MS. SCHNEIDER-VIEIRA: Yes, that's	
20	correct.	
21	MR. YEE: We also heard yesterday that	
22	the creation of a nursery habitat for lake	
23	sturgeon has not been undertaken elsewhere. And	
24	in supporting documentation for the EIS, it is	
25	stated that the likelihood of success in	

		Page 1535
1	constructing a new nursery habitat for lake	
2	sturgeon is considered to be low to moderate; is	
3	that correct?	
4	MS. SCHNEIDER-VIEIRA: Yes, that's	
5	correct. And I would add that we have the backup	
6	provision, first of all, of the stocking, as a way	
7	of providing additional time so that, you know, if	
8	your first attempt does not succeed, you can	
9	continue to work in the environment to try other	
10	things, perhaps greater areas. I mean, there is a	
11	variety, a whole range of potential approaches	
12	that could be used. The other point that I made	
13	this morning is that we were taking a very	
14	conservative approach. And it is possible that	
15	our young-of-the-year sturgeon would use a greater	
16	range of habitats than we indicated in the EIS.	
17	And that's based also on more recent information	
18	since preparing the EIS.	
19	MR. YEE: Thank you. I guess based on	
20	your responses as well as my previous questions,	
21	the probability of successfully creating or	
22	constructing a nursery habitat to replace the	
23	existing conditions would you say is low to	
24	moderate, or does that mean the likelihood of	
25	success or establishing sustaining the	

1		Page 1536
1	population of lake sturgeon in this reach is low	
2	to moderate?	
3	MS. SCHNEIDER-VIEIRA: I would say	
4	that it would be low to moderate in the first	
5	instance, but that over time we do have time,	
6	and that your probability of success would	
7	increase as time goes on. And as I said, at the	
8	time that we prepared this document we didn't have	
9	information which we now do looking at, for	
10	example, Stephens Lake where we have some not	
11	young-of-the-year sturgeon, but sturgeon that are	
12	a couple of years old, which are using a much	
13	greater range of habitat than we had expected.	
14	And we know that those young sturgeon don't move	
15	very much, and so that is opening up to us the	
16	possibility that even our young-of-the-year	
17	sturgeon are able to move to use more a	
18	greater range of habitat than when we had prepared	
19	the EIS, and that is consistent with what has also	
20	been recently found in the Winnipeg River.	
21	MR. YEE: Thank you very much.	
22	MS. MATKOWSKI: I would like to add if	
23	I could, that as Friederike mentioned before, we	
24	have been very conservative in dealing with this	
25	issue of habitat for young-of-the-year and stating	

		Page 1537
1	that sand is their preference, but they are likely	C C
2	to use a broader range. And I would like to just	
3	give you one more statement from my favorite	
4	document, the Manitoba Lake Sturgeon Management	
5	Strategy, 2012, and it says, that protecting	
б	habitat is also important. Lake sturgeon in	
7	several parts of the province have demonstrated	
8	they can adapt to fairly severe habitat	
9	alterations while proving unable to adapt to	
10	excessive levels of harvest.	
11	So they are a very robust fish is the	
12	point I'm trying to make, and they have been seen	
13	to adapt in many other places, including the	
14	Winnipeg River here in Manitoba.	
15	MR. YEE: Thank you very much. I have	
16	no further questions, Mr. Chair.	
17	THE CHAIRMAN: Thank you. I have a	
18	few random questions. Slide 114 shows a map in	
19	respect of cumulative effects assessment, and it	
20	indicates an inservice date for Conawapa as 2025,	
21	2026. What is the earliest start date for	
22	Conawapa?	
23	MS. SCHNEIDER-VIEIRA: When doing the	
24	cumulative effects assessment we relied on input	
25	from basically the Manitoba Hydro engineering	

		Page 1538
1	team, so I would need to consult with the	
2	appropriate people.	
3	THE CHAIRMAN: Does Mr. St. Laurent	
4	know that?	
5	MS. SCHNEIDER-VIEIRA: Mr. St. Laurent	
б	is checking.	
7	THE CHAIRMAN: Okay. Thank you. We	
8	will move on. On slide 57, you show a comparative	
9	abundance of the various lakes in Northern	
10	Manitoba. Is the catch per unit effort for all	
11	species or just for sport fish?	
12	MS. SCHNEIDER-VIEIRA: Let me just	
13	check. I believe that it was for all the large	
14	bodied species. Yes, it is for all species that	
15	were caught in what we call our standard gang	
16	nets. So that is a range of mesh sizes.	
17	THE CHAIRMAN: Thank you. Slide 63,	
18	the map depicts spawning shoals in the reservoir.	
19	Dr. Schneider, you've indicated in testimony in	
20	the last day or two, that spawning shoals could be	
21	built in the reservoir. Is this could or will?	
22	MS. SCHNEIDER-VIEIRA: It should be	
23	will.	
24	THE CHAIRMAN: Thank you. A question	
25	of clarification, Dr. Schneider; we heard earlier	

		Page 1539
1	in response to Dr. McLachlan, you indicated that	
2	the Kettle Generating Station flooded 228 hectares	
3	on Stephens Lake. I'm sure you meant 220 square	
4	kilometres?	
5	MS. SCHNEIDER-VIEIRA: Yes, that was a	
6	number that Mr. Davies indicated to me, and I see	
7	that I was the victim of his poor handwriting.	
8	I'm sorry.	
9	THE CHAIRMAN: Thank you. And one	
10	final observation from me, this CAMP program looks	
11	like a very good start for a regional cumulative	
12	effects assessment. We will just leave that	
13	unanswered as an observation. And perhaps after	
14	lunch if Mr. St. Laurent can get back to us with	
15	the early start date for Conawapa.	
16	MS. PACHAL: I can answer that	
17	question. In the EIS we considered Conawapa 2025,	
18	26 as the earliest inservice date.	
19	THE CHAIRMAN: Earliest inservice	
20	date. But when would be the start date for	
21	construction? You talk about overlaps or	
22	potential overlaps with Keeyask construction and	
23	Conawapa construction. Keeyask is 21, 22 for	
24	final inservice; is that correct?	
25	MS. PACHAL: Keeyask would be 2019 for	

		Page 1540
1	the first unit inservice, and last unit inservice	
2	2020.	
3	THE CHAIRMAN: So when would Conawapa	
4	commence so that there might be some overlap?	
5	Would it be starting in 2017, 2018?	
6	MS. PACHAL: About the end of 2016,	
7	beginning of 2017.	
8	THE CHAIRMAN: For construction or the	
9	review process?	
10	MS. PACHAL: Start of construction.	
11	THE CHAIRMAN: Okay. Thank you very	
12	much. Again our timing is not bad at all, it is	
13	time to break for lunch, we will come back at	
14	1:30.	
15	(Proceedings recessed at 12:32 p.m.	
16	and reconvened at 1:30 p.m.)	
17	THE CHAIRMAN: Okay, I'd like to	
18	reconvene. I believe there is one new panelist	
19	that needs to be sworn in, so Madam Secretary?	
20	MS. JOHNSON: Could you please state	
21	your name for the record.	
22	Brian Knudson: Sworn.	
23	DR. EHNES: Good afternoon Mr. Chair,	
24	members of the Commission and the audience.	
25	Mr. Davies described the overall	

_		Page 1541
1	approach to the aquatic and terrestrial	
2	assessments, and Dr. Schneider-Vieira described	
3	the aquatic assessment approach.	
4	I will now present the overall	
5	terrestrial assessment approach. The presentation	
6	will start by explaining how an ecosystem	
7	testimony based approach was implemented. Among	
8	other things, this provides a foundation for	
9	describing how VECs, supporting topics, and study	
10	areas were selected. This will be followed by the	
11	overall approach to assessing project and	
12	cumulative effects, which sets the stage for	
13	presenting results for terrestrial ecosystems,	
14	habitat and plants. Ms. Wyenberg and Mr. Berger	
15	will then tell you about wildlife.	
16	Dr. Schneider-Vieira did a good job	
17	telling you about the aquatic ecosystem and its	
18	linkages. I get to talk to you about the	
19	terrestrial ecosystem.	
20	If you fly over Keeyask area, you will	
21	see jack pine growing on gravel ridges, large	
22	black spruce bogs, marshes and streams, and many	
23	other different ecosystem types. The kind of	
24	plants you find in a particular place are mostly	
25	determined by climate, wild fires, and glacial	

		Page 1542
1	processes. Glacial processes refers to how the	
2	glaciers scraped and shaped the land, and then how	
3	glacial Lake Agassiz deposited material on the	
4	land after the glaciers left. Among other things,	
5	glacial processes created the topography and	
6	determined where the lakes and the rivers would	
7	be. The kinds of mineral deposits and topography	
8	left by the glaciers largely determine what kind	
9	of soils will develop over time and where	
10	different kind of plants will grow.	
11	For example, very large peat lands	
12	have formed over thousands of years in the low	
13	lying areas that were left by glacial processes.	
14	These are examples of drivers for change and	
15	linkages between ecosystem components.	
16	Another example of ecosystem linkages	
17	is the plants in this diagram.	
18	And I'm just going to see if I can get	
19	a mouse going, okay.	
20	The plants in this diagram are	
21	converting sunlight into living material. The	
22	plants are eaten by animals, and these animals are	
23	eaten by other animals. When the plants die, they	
24	become part of the soil and cause it to change	
25	over time.	
I		

		Page 1543
1	A strong foundation was built for the	5
2	terrestrial assessment by taking a regional	
3	ecosystem based approach. The Keeyask regional	
4	ecosystem is a key focus of the terrestrial	
5	environment assessment. The terrestrial	
6	assessment starts with the big picture, regional	
7	ecosystem, wildlife populations, and then	
8	evaluates how this big picture will be affected by	
9	the project. The focus is on maintaining regional	
10	ecosystem health and self-sustaining wildlife	
11	populations.	
12	To implement the regional ecosystem	
13	based approach, an early step in the terrestrial	
14	environment assessment was to identify the	
15	regional ecosystem that includes the Keeyask	
16	project. Natural ecosystem processes were used to	
17	determine the boundaries of the regional	
18	ecosystem.	
19	In this slide, you see a satellite	
20	image that was captured around 2000. Most of the	
21	pink areas there are some bright pink areas	
22	here and here in this satellite image are	
23	recent burns. And if you look at the number of	
24	large pink areas, and lighter pink areas, bright	
25	green areas, you'll see that large burns are a	
1		

		п
1	common feature in the Keeyask area.	Ρ
2	In fact, fire is the dominant natural	
3	force or driver that changes ecosystems in the	
4	Keeyask region. The species that live in the	
5	Keeyask region are used to coping with frequent	
6	large fires. Animal populations survive in the	
7	region, either because they can find alternative	
8	habitat elsewhere when a fire occurs, or they make	
9	use of recently burned areas. In other words, by	
10	the time a new area burns, other burned areas have	
11	become old enough to replace them.	
12	An historical fire analysis determined	
13	how large of an area is needed to maintain a	
14	relatively stable habitat composition so animals	
15	have new areas to move to as fires occur. In	
16	other words, the fire regime determines the	
17	appropriate size for the regional ecosystem	
18	surrounding the Keeyask project.	
19	This map shows areas burned by fires.	
20	Different colours are different decades going back	
21	to 1953. The very light green areas are areas	
22	that were burned prior to 1953. One thing to note	
23	about this map is that there are not many large	
24	very light green areas left in the left two-thirds	
25	of the map. So if you look in this part of the	

Page 1544

-		Page 1545
1	map, you don't see very many areas that are this	
2	light green colour.	
3	Another thing to note is that large	
4	fires are much less common in the area to the east	
5	of the study zones used for the assessment, so if	
6	you look in this general area over here.	
7	Basing the regional ecosystem size on	
8	fire ecology has two important implications for	
9	the terrestrial assessment. First, the project	
10	region is large enough to support self-sustaining	
11	populations for most of the resident wildlife	
12	species as large fires occur over the time.	
13	Second, even though large areas burned	
14	in the project area over this past summer, the	
15	terrestrial assessment conclusions are still valid	
16	because they have already taken into account the	
17	fact that large fires frequently occur, and fires	
18	will continue to occur in the region after the EIS	
19	submission.	
20	Regional ecosystem boundaries were	
21	mapped by extending outwards from the project	
22	footprint and disturbance areas. So, actually	
23	this map doesn't have it, but the project	
24	footprint areas are here, and there's project	
25	traffic, increases to traffic as a result of the	
1		

		16
1	Page 154 project that extend along PR 280 all the way back	16
2	to Gillam here.	
3	So the boundaries were mapped by	
4	expanding outwards from the project footprint and	
5	disturbance areas, through similar ecological	
б	conditions, until the appropriate size as	
7	determined by the fire regime was achieved.	
8	Relevant ecological conditions were	
9	fire regime, surface materials, land forms,	
10	watersheds and climate.	
11	The strong change in a number of	
12	ecological factors near Long Spruce, so that's in	
13	this general location here, formed the eastern	
14	boundary during this expansion. And as I	
15	previously noted, fire is a driving force for	
16	natural ecosystems, and this area to the east of	
17	our study zone boundaries, fires are much less	
18	common.	
19	And the fact that fires are less	
20	common reflect strong differences in surface	
21	materials, soils topography and climate. This	
22	slide shows the dominant surface materials and how	
23	they change at the western edge of what is called	
24	the Tyrell Sea deposition zone. So after the	
25	glaciers left, this area to the east was inundated	

		Page 1547
1	by a sea. And this general area here was the	
2	western limit of that sea and its deposition zone.	
3	In this area to the east, the terrain	
4	is flat compared to being somewhat rolling in this	
5	area to the west. Additionally, there are major	
6	differences in the dominant vegetation and soils	
7	in study zone five compared to the areas to the	
8	east of it. This reflects differences in climate	
9	as well as surface materials and soils.	
10	So if we look at the photo to the	
11	right, this is a representative photo for areas	
12	when you get away from the Nelson River. It's	
13	dominated by these raised bogs you're seeing in	
14	white and dark green, which are interspersed	
15	amongst these very wet peat lands.	
16	When you move into the area where our	
17	regional ecosystem is located, the terrain becomes	
18	rolling and it's a mixture of forest woodlands and	
19	some wet peat land areas, but there's a much	
20	greater variety of ecosystems.	
21	The strong change in the number of	
22	ecological factors east of the Long Spruce	
23	Generating Station formed the eastern boundary for	
24	the Keeyask regional ecosystem. So this is the	
25	area along here. Study zone five is the regional	

		Page 1548
1	ecosystem for the Keeyask project.	Ū
2	The Keeyask regional ecosystem was a	
3	focus of the terrestrial environment assessment,	
4	including evaluating changes to ecosystem	
5	condition and health, and to ecosystem components	
6	of high social concern.	
7	The project would have a number of	
8	impacts on the terrestrial environment, such as	
9	vegetation clearing, soil excavation, flooding,	
10	traffic and noise. And this diagram here shows	
11	some of those impacts. And we tend to think of a	
12	hydroelectric generation project primarily as a	
13	river impact project. But in terms of the	
14	terrestrial environment, there are a number of	
15	other effects that need to be considered.	
16	And on this basis, the VECs and	
17	supporting topics were selected by carefully	
18	considering terrestrial ecosystem linkages and the	
19	potential pathways of project effects on ecosystem	
20	components.	
21	On that basis, 13 VECs and nine	
22	supporting topics were carefully selected to	
23	provide a reliable indication of project and	
24	cumulative effects. Each of the specialists will	
25	speak to VEC and supporting topic selection for	

		Page 1549
1	their discipline.	
2	In brief, for terrestrial ecosystems,	
3	habitat and plants, there are four VECs and four	
4	supporting topics. There is one terrestrial	
5	invertebrate supporting topic, one amphibian and	
б	reptile supporting topic, for birds there are six	
7	VECs and one supporting topic. And finally for	
8	mammals, there are three VECs and one supporting	
9	topic. Mercury and wildlife is also included as a	
10	supporting topic.	
11	A local and a regional study area was	
12	identified for each VEC and supporting topic using	
13	ecological criteria. A VEC is affected or a	
14	VEC or supporting topic is affected inside the	
15	project footprint. In this diagram here, for	
16	example, flooding, clearing, access removes	
17	habitat or animals. In this hypothetical example,	
18	habitat for moose is lost in the project	
19	footprint.	
20	Indirect effects occur near the	
21	project's footprint. For example, noise or	
22	vegetation alteration remove habitat for moose.	
23	The local study area is where project	
24	effects on moose are most visible. That is the	
25	local study area is the project's zone of	

		Page 1550
1	influence on moose. And this holds true for all	
2	of the VECs and supporting topics.	
3	Although effects on individual moose	
4	are certainly of interest, the question of	
5	ultimate concern for the cumulative effects	
6	assessment is how project effects on individual	
7	moose and other ecosystem components translate	
8	into long-term effects on wildlife populations and	
9	regional ecosystem health.	
10	A VEC's regional study area is used to	
11	put local project effects into a broader context	
12	and to assess cumulative effects.	
13	A VEC's regional study area assesses	
14	cumulative effects because it's focused on	
15	ensuring that regional ecosystem health is	
16	maintained and that regional wildlife populations	
17	are self-sustaining.	
18	Regional study areas are a practical	
19	way to identify the wildlife populations and	
20	regional ecosystem affected by the project. They	
21	are a practical way to calculate the amount of	
22	available habitat with and without the project.	
23	They are a practical way to search for overlap of	
24	effects from other past, present and reasonably	
25	foreseeable future projects.	

		Page 1551
1	The cumulative effects assessment	
2	considers effects from projects physically located	
3	outside of the regional study area. An example is	
4	construction traffic for the Keewatinoow Converter	
5	Station that is travelling from Winnipeg to	
6	Conawapa. The cumulative effects assessments	
7	considers the dust created and the potential	
8	wildlife mortality created by this traffic, where	
9	that traffic passes through the VEC's regional	
10	study area. And those are not the only effects	
11	that are considered from these other projects that	
12	are physically located outside of the regional	
13	study area.	
14	Local and regional study areas for the	
15	VECs and supporting topics were generally selected	
16	from six study zones that were mapped using	
17	ecological criteria. This map shows those six	
18	study zones.	
19	Study zone five, which is the green	
20	shaded area plus all of the areas nested within	
21	it, is the Keeyask regional ecosystem. It	
22	captures the zone of influence around the project	
23	footprint and the increased traffic on PR 280.	
24	The Keeyask regional ecosystem is a regional study	
25	area for the ecosystem VECs such as intactness and	

		Page 1552
1	ecosystem diversity. The Keeyask regional	
2	ecosystem was also the regional study area for	
3	wildlife species for which study zone five was the	
4	appropriate size for maintaining a self-sustaining	
5	population.	
б	This regional ecosystem based approach	
7	provides a strong foundation for the terrestrial	
8	assessment, for example, as the basis for	
9	evaluating project effects on regional ecosystem	
10	health: For the remaining species, the regional	
11	study area was the one that was the appropriate	
12	size to support a self-sustaining population.	
13	Caribou had the largest regional study	
14	area, shown as study zone six in this map, because	
15	caribou range over a wide area. Beaver had a	
16	smaller regional study area, which was study zone	
17	four.	
18	Some VECs or VEC components had	
19	additional study areas because the population	
20	affected by Keeyask moves over very large areas.	
21	For example, Pen Island's caribou had an	
22	additional study area that captured their	
23	movements into Ontario.	
24	In the interrogatory, or the	
25	information request responses, including a recent	

		Page 1553
1	additional filing, the Partnership addressed	
2	questions as to why the Keeyask study zone five	
3	was not extended to the east to include Conawapa	
4	and other existing and identified future projects	
5	in the areas to the east. In those responses, and	
6	in slides nine to 12 of this presentation, we have	
7	explained the ecosystem based rationale for	
8	selecting the study zone five boundaries.	
9	Two additional considerations were as	
10	follows: First, the Keeyask project is not	
11	expected to have any detectable terrestrial	
12	effects in areas outside of study zone five,	
13	including the regional ecosystem to the east that	
14	includes Conawapa. Second, the ways that the	
15	regional study areas are used for the cumulative	
16	effects assessments provide full consideration of	
17	any effects that arise from any project or	
18	activity located outside of a VEC's regional study	
19	area.	
20	When speaking to slide 20, I gave an	
21	example of how traffic from projects located	
22	outside of the regional study areas was considered	
23	in the assessments. In other words, the	
24	assessment approach considers the terrestrial	
25	effects of all projects on the Keeyask regional	

		Page 1554
1	ecosystem and the Keeyask VEC populations no	
2	matter where the other projects are physically	
3	located.	
4	Now, a few words on how the	
5	assessments were conducted prior to summarizing	
б	project and cumulative effects on VECs.	
7	The assessment of potential project	
8	effects and recommendations for reducing adverse	
9	effects started very early on in the assessment	
10	process and has continued on an ongoing basis.	
11	Major reductions in potential project	
12	effects on terrestrial ecosystems and wildlife	
13	species were achieved through a highly	
14	interactive, collaborative, project design process	
15	involving Manitoba Hydro engineers and	
16	environmental specialists, the KCNs, and technical	
17	experts.	
18	Examples of outcomes are a low head	
19	option that considerably reduced terrestrial	
20	flooding. North and south access road routes that	
21	minimized effects on species and sensitive sites.	
22	Borrow area and excavated material placement area	
23	locations that minimize effects on species and	
24	sensitive sites. In fact, the project design	
25	process eliminated the need for additional	

		Page 1555
1	mitigation for many terrestrial issues of concern.	0
2	I will now turn to terrestrial	
3	ecosystems, habitat and plants. The presentation	
4	begins with an overview of the Keeyask regional	
5	ecosystem, which is followed by an overview of	
6	project studies conducted to support the	
7	assessments. Finally, I will talk about project	
8	and cumulative effects on terrestrial ecosystems,	
9	habitats and plants, as demonstrated through the	
10	VECs and supporting topics.	
11	The Keeyask regional ecosystem is	
12	characterized by, firstly, a relatively harsh	
13	climate. The land surface and soils are dominated	
14	by peat lands. Terrestrial habitat is	
15	predominantly a mixture of black spruce on various	
16	types of peat lands.	
17	Project studies were conducted over 10	
18	years. Data was collected at a large number of	
19	locations. Vegetation, soils, and other	
20	environmental attributes were mapped from large	
21	scale current and historical air photos.	
22	Information was collected on plants,	
23	trees, soils, peat depth, and other environmental	
24	attributes. Plant and soil samples were collected	
25	for lab analysis. Details regarding the range of	

Page 1556

1	studies that were conducted to support the
2	assessments can be found in the terrestrial
3	environment supporting volume.
4	Based on careful consideration, four
5	VECs and four supporting topics were selected to
6	contribute to providing an overall picture of how
7	the project would contribute to cumulative effects
8	on the regional terrestrial ecosystem and
9	ecosystem components such as wildlife species. In
10	the following slides, I will provide an overview
11	of the cumulative effects assessments for
12	terrestrial habitat and the first three of the
13	four VECs. I would be happy to answer questions
14	on all topics following the presentations.
15	In general, I won't be mentioning
16	mitigation. As previously mentioned, the project
17	design process and measures included in the
18	environmental protection plans eliminated the need
19	for additional mitigation for many terrestrial
20	issues of concern.
21	What do we mean by terrestrial
22	habitat? It refers to combinations of vegetation
23	and eco-site types. Eco-site types are
24	ecologically meaningful combinations of soil,
25	groundwater, slope and other environmental

1557

		Page
1	factors. Terrestrial habitat is responsible for	i ugo
2	many important ecological functions such as	
3	converting sunlight into life, producing oxygen,	
4	storing carbon, and providing food and shelter for	
5	wildlife. These are some of the reasons why	
6	terrestrial habitat effects are fundamental to the	
7	overall effects assessments.	
8	This slide now is going to tell us	
9	about project effects on terrestrial habitat. The	
10	maximum expected potential amount of direct and	
11	indirect terrestrial habitat loss and alteration	
12	from project infrastructure, flooding, and other	
13	components is 9,400 hectares. This is the maximum	
14	expected amount of potential effects for several	
15	reasons.	
16	First, some of the potential borrow	
17	areas, excavated material placement areas, and	
18	disturbance areas will not be used. Second,	
19	clearing in the proposed project footprint will be	
20	minimized. Third, the assessment assumes that the	
21	first 50 metres surrounding the entire potential	
22	project footprint is lost, even though evidence	
23	indicates alteration will average about 25 metres.	
24	And fourth, the predictions have not subtracted	
25	the native habitat recovery in temporarily	

Volume 7

		Page 1558
1	disturbed and cleared areas.	
2	The potential significance of these	
3	terrestrial habitat effects was evaluated using	
4	benchmarks. Ms. Cole used this slide in her	
5	environmental assessment approach presentation to	
б	provide the general overview of thresholds and	
7	benchmarks. I'm going to show how this general	
8	approach was applied for the terrestrial VECs	
9	using terrestrial habitat as an example.	
10	We are using the term threshold to	
11	refer to the point or range where the	
12	sustainability of the VEC is threatened.	
13	Regulatory or established thresholds were not	
14	available for the terrestrial VECs and supporting	
15	topics. Consequently, benchmarks that represent a	
16	level below that where significant effects on a	
17	VEC may occur were used.	
18	Turning to total terrestrial habitat	
19	to illustrate this approach, studies indicate that	
20	ecosystem function and biodiversity effects may	
21	occur under some conditions once total terrestrial	
22	habitat loss reaches 20 percent of predevelopment	
23	area. More serious ecosystem effects occur as	
24	terrestrial habitat loss is increased. We don't	
25	need to know where the exact point or range for a	

		Page 1559
1	threshold is if the assessment takes a	
2	precautionary approach by setting a benchmark well	
3	below where this point or range is expected to	
4	occur.	
5	On this basis, the benchmark for when	
6	effects are more seriously considered is set at	
7	10 percent of habitat lost or altered in the case	
8	of total terrestrial habitat. More serious	
9	consideration means the potential for significant	
10	effects, when considered in combination with other	
11	factors, additional mitigation is considered and	
12	more in depth monitoring included. Note that we	
13	are including habitat alteration in addition to	
14	loss when measuring total terrestrial habitat	
15	effects.	
16	Numerous sources were used for these	
17	magnitude benchmarks for the VECs and supporting	
18	topic indicator measures. The primary sources for	
19	the benchmarks can be found in the EIS.	
20	So now I am going to show you how	
21	these benchmarks are used to put Keeyask project	
22	effects on total terrestrial habitat into the	
23	context of cumulative effects. I'm going to spend	
24	some time explaining this chart because you will	
25	be seeing a few of them in this presentation.	

		Page 1560
1	First off, you will notice that the	
2	colours in the chart have been reversed from the	
3	previous figure. The previous figure showed	
4	habitat loss, while this one shows habitat	
5	remaining. In other words, a 10 percent habitat	
6	loss benchmark is the same thing as a 90 percent	
7	habitat remaining benchmark.	
8	When looking at these figures, the key	
9	thing to remember is that green, the green	
10	background shows where there is no risk to the	
11	VEC. Yellow is increasing concern. And orange	
12	means the VEC is no longer sustainable. You'll	
13	also notice that the background colours transition	
14	to reflect the potential effects on the VEC also	
15	are a gradual transition until a threshold is	
16	approached.	
17	This figure considers four time	
18	periods and these will be presented for each VEC.	
19	Predevelopment, which is this first blue bar, is	
20	the first period. Predevelopment refers to the	
21	period prior to industrialized development, which	
22	is basically 1950, except for the railway line.	
23	In study zone five, which is the	
24	regional terrestrial ecosystem, 100 percent of	
25	native terrestrial habitat was remaining in the	
1		

		Page 1561
1	predevelopment period. So that's this first blue	
2	bar you are seeing here.	
3	The next three periods represent	
4	existing cumulative effects, Keeyask combined with	
5	existing cumulative effects, and Keeyask combined	
б	with existing cumulative effects and the effects	
7	of reasonably foreseeable future projects.	
8	Past and current projects have removed	
9	or altered approximately 5 percent of total	
10	terrestrial habitat in study zone five, leaving	
11	95 percent of predevelopment habitat.	
12	Keeyask could remove or alter an	
13	additional 0.7 percent of total terrestrial	
14	habitat, reducing total remaining habitat to	
15	approximately 94 percent of predevelopment area.	
16	Reasonably foreseeable future projects could	
17	remove or alter an additional 0.4 percent of total	
18	terrestrial habitat, which would still leave	
19	approximately 94 percent of predevelopment area.	
20	Using the benchmarks, the conclusion	
21	is that cumulative effects on total terrestrial	
22	habitat with future projects remains within a	
23	regionally acceptable range.	
24	Intactness is the first terrestrial	
25	VEC that I will talk about. What is intactness?	

		Page 1562
1	It is essentially asking how much has the regional	
2	ecosystem been altered by human impacts.	
3	Intactness was selected as a VEC because it's an	
4	umbrella indicator for many ecosystem effects.	
5	The intactness VEC is used as the habitat	
6	intactness indicator for most wildlife species.	
7	Caribou is a more sensitive species, so in the	
8	mammal presentation you will hear about how	
9	habitat intactness was measured for caribou.	
10	The indicator measures used for	
11	intactness are, the total length of roads, rail	
12	lines, and other human linear features per square	
13	kilometre. This is called total linear feature	
14	density.	
15	Because some features such as roads	
16	have much higher ecological effects compared with	
17	other linear features, several groupings of linear	
18	feature types are measured.	
19	Core area is the second intactness	
20	indicator measure. Core areas are the areas that	
21	are left after removing places that are inside or	
22	close to human features.	
23	This map shows existing linear and	
24	other human features in study zone five. The	
25	green shows all of the core areas that are larger	

1		Page 1563
1	than a thousand hectares after removing human	
2	features, including cut lines and a buffer around	
3	them. Cut lines are narrow trails usually cleared	
4	to provide access to areas for various types of	
5	exploration activities.	
б	So going back to a cumulative effects	
7	chart, the green is at the bottom again in this	
8	chart, because having less or fewer linear	
9	features is better than having more. This chart	
10	shows the progression of cumulative linear density	
11	from the predevelopment period forward to the	
12	existing environment.	
13	In the predevelopment period, which is	
14	shown here, linear feature density was zero for	
15	all indicator measures. Past and current projects	
16	have produced a total linear feature density of	
17	0.45 kilometres per square kilometre in study zone	
18	five. This is a worst case scenario because it	
19	includes all cut lines, 35 percent of which are	
20	regenerating naturally. Total linear feature	
21	density without cut lines is 0.15 kilometres per	
22	square kilometre. And transportation density, so	
23	that would be road and rail lines, is only 0.07	
24	kilometres per square kilometre. And all of these	
25	densities are well below the benchmark for modern	

_		age 1564
1	magnitude effects, and two of them are well below	
2	the low magnitude benchmark.	
3	The Keeyask project would reduce total	
4	linear feature density. Now, this may sound	
5	counterintuitive. It happens because flooding and	
б	borrow areas remove some of the existing linear	
7	features. And this is one of the reasons that	
8	core area was also used as an intactness indicator	
9	measure, so that the effects of flooding and	
10	borrow areas on intactness are captured.	
11	Future projects would increase total	
12	linear feature density from 0.44 kilometres per	
13	square kilometre to 0.48 kilometres per square	
14	kilometre. And boy, this must be exciting stuff.	
15	But this is a very important ecosystem indicator,	
16	so I must go through this.	
17	THE CHAIRMAN: We trust you.	
18	DR. EHNES: Thank you.	
19	Future transmission projects are	
20	responsible for this increase.	
21	Turning now to the core area indicator	
22	measure. Core area is larger than a thousand	
23	hectares, accounted for 99 percent of the land	
24	area in the predevelopment period. Core area has	
25	been reduced to approximately 83 percent of land	

	Page 1565
1	area by past and current projects. Keeyask would
2	further reduce core area to approximately
3	82 percent of land area, while reasonably
4	foreseeable future projects would further reduce
5	core area to approximately 81 percent of land
6	area.
7	And again, this is the worst case
8	scenario estimate of core area loss, because it
9	includes all cut lines, 35 percent of which had
10	good regrowth when surveyed in 2011.
11	Regionally, total human disturbance is
12	relatively low based on linear feature density and
13	core area remaining. The conclusion is for
14	intactness, cumulative effects are within a
15	regionally acceptable range.
16	THE CHAIRMAN: Help me a little bit
17	with some of my confusion. You said early on that
18	20 percent was sort of a crossing line. And once
19	it got above 20 percent damage, then it's a
20	problem. So is that why when we get to slide 47,
21	81 percent is okay?
22	DR. EHNES: The 20 percent was not the
23	crossing or the tipping point. That was the level
24	of habitat lost where effects on the ecosystem are
25	becoming visible. That tipping point would be a

Volume 7

		Page 1566
1	much higher level of habitat loss. So that	Tuge Tooo
2	benchmark of 10 percent is set well below the	
3	20 percent, where we think the effects are	
4	starting to occur. That benchmark was for a total	
5	terrestrial habitat. The benchmarks for core area	
6	are set based on what is important for core area	
7	for animals. So because core areas are the	
8	interior areas, or the areas that are away from	
9	human disturbance, the benchmarks are different	
10	for core area.	
11	THE CHAIRMAN: So the 90 percent	
12	benchmark just applied to the terrestrial habitat	
13	as a whole?	
14	DR. EHNES: Yes.	
15	THE CHAIRMAN: And now the benchmark	
16	for this particular VEC, intactness, is	
17	40 percent? Is that on slide 47?	
18	DR. EHNES: Yes, I'm just going to	
19	that slide.	
20	THE CHAIRMAN: There.	
21	DR. EHNES: Yes.	
22	THE CHAIRMAN: So the benchmark is 40	
23	now for this particular?	
24	DR. EHNES: Yeah. The level of core	
25	area loss, which is a much smaller component of	

1	total habitat, the low magnitude benchmark would	Page 1567
2		
	be 35 percent and the moderate magnitude benchmark	
3	would be 60 percent.	
4	THE CHAIRMAN: Okay.	
5	DR. EHNES: Now, this is at core area,	
6	not total terrestrial habitat, so they are very	
7	different. If I go back to the previous slide or	
8	set of charts for linear feature density, they are	
9	expressed in terms of kilometres per square	
10	kilometre. So each VEC or supporting topic, the	
11	benchmark is selected as a value that's relevant	
12	for that indicator measure.	
13	THE CHAIRMAN: Okay. It will clear up	
14	as we move along, but that was helpful. Thank	
15	you.	
16	DR. EHNES: Yeah.	
17	The next VEC is ecosystem diversity.	
18	Ecosystem diversity is the variety of ecosystems	
19	in the region. Ecosystem diversity was selected	
20	as a VEC because it is an umbrella indicator for	
21	many ecosystem effects, and because maintaining	
22	biodiversity and ecosystem diversity is a	
23	fundamental goal for land use planning and many	
24	government policies. The overall goal is to	
25	maintain a natural mixture of ecosystem types. In	

		Page 1568
1	practical terms, ecosystem types are mapped and	
2	measured as the various habitat types.	
3	The key indicator measures used for	
4	ecosystem diversity are percentages of land area	
5	occupied by each of the native habitat types and	
6	the amounts of the priority habitat types. A	
7	priority habitat type is a habitat type of	
8	particular interest for ecological and/or social	
9	reasons. Examples are rare habitat types, or	
10	habitat types that may include many plant species.	
11	This pie chart shows the habitat	
12	composition of the Keeyask regional ecosystem.	
13	And you'll see on the right-hand side here the	
14	three black spruce peat land types dominate the	
15	existing habitat composition of the Keeyask	
16	regional ecosystem, accounting for two-thirds of	
17	total terrestrial habitat.	
18	Forty-three priority habitat types,	
19	shown in this area, account for approximately	
20	29 percent of total terrestrial habitat. The	
21	remaining non native habitat types account for	
22	about 2 percent of terrestrial habitat.	
23	The project will not eliminate any	
24	native habitat types, so none of them will be	
25	completely removed. Neither will it substantially	

		Page 1569
1	change the proportions of any native habitat	Tage 1003
2	types. So if we go back to this pie chart, the	
3	project would not change the size of the slices,	
4	or the pie slices in this chart.	
5	The vegetation rehabilitation plan,	
6	and this is one point where I'll talk about	
7	mitigation measures, will give preference to	
8	rehabilitating the most affected priority habitat	
9	types, which will reduce reported effects for some	
10	types. So in other words, when I talk about	
11	project effects, they don't take into	
12	consideration the vegetation rehabilitation	
13	measures.	
14	Cumulative effects on priority habitat	
15	types with existing projects, the Keeyask project,	
16	and reasonably foreseeable future projects, will	
17	vary by priority habitat type.	
18	Cumulative effects range from	
19	5 percent to 8.8 percent of the estimated	
20	predevelopment area for 39 of the priority habitat	
21	types.	
22	Cumulative effects would increase to	
23	9.9 percent of the estimated predevelopment area	
24	for one balsam poplar type, and the project will	
25	not affect three of the priority habitat types.	

_		Page 1570
1	Now, these effects are overestimated	
2	for many types for the reasons I described for	
3	total terrestrial habitat, because we have taken a	
4	precautionary approach to including the entire	
5	possible footprint and the zone of indirect	
6	effects. As well, the vegetation rehabilitation	
7	plan will give preference to rehabilitating the	
8	most affected priority habitat types.	
9	So the conclusion for ecosystem	
10	diversity is that cumulative effects are within a	
11	regionally acceptable range.	
12	I'll now turn to the wetland function	
13	VEC. Wetland functions are the natural properties	
14	or processes that are associated with wetlands,	
15	but stating them in ways that describe what they	
16	do for the ecosystem.	
17	Some wetland types such as marshes	
18	make high contributions to overall ecosystem	
19	function. Marshes are high quality habitat for	
20	muskrat, moose, waterfowl, and some song birds,	
21	and marshes are pretty much the only place where	
22	some plant species are found.	
23	In this map, the orange shows upland	
24	areas while the green shows wetlands. Most of the	
25	region is covered by wetlands. Since most of the	

		Page 1571
1	region is covered by wetlands, the total	
2	terrestrial habitat and ecosystem diversity	
3	results that I have already presented evaluate	
4	effects for most wetland types. The wetland	
5	function assessment in the terrestrial environment	
6	supporting volume goes into a detailed analysis of	
7	the various types. This chart shows the	
8	cumulative effects going all the way through to	
9	future projects on total wetland area. And what	
10	you see in this chart is true for most of the	
11	wetland types in the region.	
12	An exception is Nelson River marsh.	
13	All of the native marsh has been removed by past	
14	and current projects. It is noted that the total	
15	amount of marsh in these reaches of the Nelson	
16	River was quite low prior to hydroelectric	
17	development.	
18	So since most of the region is covered	
19	by wetlands and the terrestrial habitat, and	
20	ecosystem diversity analysis accounted for effects	
21	on most wetland types, the indicator measures used	
22	for wetland function were effects on the	
23	particularly important wetland types in the	
24	Keeyask region. The particularly important	
25	wetland types were wetland sites identified as	

		Page 1572
1	being globally, nationally, or provincially	-
2	significant by Ramsar, the North American	
3	Waterfowl Management plan, Ducks Unlimited, or the	
4	Manitoba Heritage Marsh Program.	
5	The other particularly important	
6	wetland type was marsh in off-system lakes and	
7	waterways.	
8	Wetland sites identified as being	
9	globally, nationally, or provincially significant	
10	do not occur in the region.	
11	The project will affect approximately	
12	12 hectares of marsh in off-system lakes and	
13	waterways. Mitigation includes developing	
14	12 hectares of off-system marsh. So with the	
15	mitigation, the conclusion for wetland function is	
16	that effects are within a regionally acceptable	
17	range.	
18	Effects on terrestrial habitat,	
19	ecosystems, plants, will be monitored through an	
20	integrated terrestrial effects monitoring plan.	
21	The terrestrial effects monitoring plan will	
22	monitor implementation of EIS commitments,	
23	including mitigation, the effectiveness of	
24	mitigation. The terrestrial effects monitoring	
25	plan also includes a process to respond to effects	
1		

24

Page 1573 being more adverse than anticipated. And the 1 benchmarks used for the adaptive management 2 3 triggers will generally be the same as the ones that are used for the regulatory significance 4 5 assessment. Some of the terrestrial ecosystems б habitat and plant components that will be 7 monitored by the terrestrial effects monitoring 8 plan will include terrestrial habitat loss and 9 indirect alteration, success of the vegetation 10 rehabilitation plan, marsh mitigation, including 11 12 how the marshes are used by wildlife, effects on 13 the VECs, fire regime effects, since this is a key driver for terrestrial ecosystems. And I'll note 14 that there are no expected project effects on the 15 fire regime, rather this is a risk to be managed, 16 for example, accidental fire starts. And finally, 17 invasive plants. 18 19 Before handing the microphone over to Ms. Wyenberg, I'd like to summarize how the 20 21 information provided in this presentation provides context for the wildlife assessments. 22 23 The terrestrial habitat and ecosystem

25 point for cumulative losses. It was possible to

VECs use predevelopment areas as the reference

		Page 1574
1	estimate these values for the terrestrial habitat	0
2	and ecosystem VECs. This is not so easily done	
3	for wildlife habitat. Detailed historical mapping	
4	is needed to quantify available habitat for some	
5	wildlife VECs. This is because some elements of	
6	wildlife habitat are based on spatial attributes,	
7	such as how much forest edge is available, or the	
8	amount of certain kinds of vegetation close to a	
9	shoreline.	
10	And these amounts cannot be estimated	
11	by simply extrapolating habitat proportions.	
12	The limited cumulative effects on	
13	terrestrial habitat and intactness provide the	
14	context for wildlife change evaluations. This is	
15	the primary basis for using changes from current	
16	available, as the reference point for project and	
17	other future changes to available wildlife	
18	habitat.	
19	Thank you for your time.	
20	THE CHAIRMAN: Thank you, Dr. Ehnes.	
21	Ms. Wyenberg?	
22	MS. WYENBERG: Good afternoon, panel	
23	members. My name is Leane Wyenberg, and I'm	
24	pleased to present to you two presentations this	
25	afternoon. The first one will be an overview of	

Volume 7

		Page 1575
1	the terrestrial invertebrate, amphibian and bird	
2	assessment, and the second one will be our	
3	assessment that looked at mercury and wildlife.	
4	So I'll begin by giving a brief	
5	overview of our terrestrial invertebrate and	
б	amphibian assessments, but I'll spend most of my	
7	time this afternoon talking about the bird	
8	assessment, going through essentially the topics	
9	or the issues that came up during the information	
10	request process. I'll explain some of the methods	
11	that we used to gather our information. I'll talk	
12	about how we identified the study areas for our	
13	assessment on birds, how we selected our bird	
14	valued environmental components, as well as the	
15	priority birds, what those are. And then I'll get	
16	into a discussion about the benchmarks that we	
17	used for our bird assessment, and then move on to	
18	the results and discussions for some of our bird	
19	VECs, and finish up with some monitoring plans.	
20	We studied terrestrial invertebrates,	
21	which includes your insects, your spiders, your	
22	snails. We studied these because they are at the	
23	base of the food chain, so they are important in	
24	the environment, they are important for other	
25	animals, they are an important food source for	

Page 1576
many birds, but they are also important for plants
as well.
We study amphibians because they are,
too, food for other organisms. They are at the
base of the food chain, and they are sensitive to
changes in wetland habitat.
Northern leopard frog, when most of
our studies focused on the two species that occur
within the region, the wood frog and boreal chorus
frog; however, we did consider the fact that
northern leopard frog has occurred within the
region historically. They are listed, their
western population is listed as special concern.
Historical records come from western science and
ATK that they were once abundant throughout this
region, but suffered from severe die-offs in the
1970s, not just in this area, but in their western
population range.
Here is a map showing you the study
areas that we used for the terrestrial
invertebrates and amphibian assessment. Study
zone four in the blue was identified as the
regional study area for terrestrial invertebrates.
It provides a good representation of the various
habitats that would be used by insects. It was

		Page 1577
1	also used as the regional study area for	
2	amphibians, because it was considered to be large	
3	enough to capture the breeding population of	
4	amphibians along the Nelson River.	
5	And study zone three, in the white,	
6	was identified as the local study area for both	
7	the terrestrial invertebrates and amphibians.	
8	There are no provincially rare or	
9	listed species of terrestrial invertebrate known	
10	to occur within the region, or expected to occur	
11	in the region. And that's due to the fact that	
12	habitat for the listed species is not suitable	
13	within the region.	
14	Our assessment of terrestrial	
15	invertebrates was based on the scientific	
16	literature for boreal invertebrates that would be	
17	comparable to this area of Keeyask.	
18	All of the terrestrial and aquatic	
19	areas, the land and the water, is considered	
20	habitat for terrestrial invertebrates, because	
21	many of these species have a life stage that is	
22	dependent upon water. Mosquitoes would be an	
23	example of that.	
24	Overall, the project is not expected	
25	to affect insects within the region, up to	

1		Page 1578
1	4 percent of their habitats may be altered or lost	
2	due to the project.	
3	Moving on to the amphibian assessment.	
4	Sampling for amphibians began in 2001 and carried	
5	out through to 2011, and continues to today's	
6	date. Sampling occurred throughout the region	
7	with focus on the wetlands or the ponds that would	
8	be used by amphibians for breeding. Boreal chorus	
9	frog and wood frog are the two species, as I	
10	mentioned, that occur within this region. They	
11	are known to breed throughout, favouring the	
12	inland ponds and wetlands that provide suitable	
13	breeding habitat, breeding habitat that is free	
14	from fish predators. That's a key factor for	
15	amphibians.	
16	Up to 3 percent of available habitat	
17	for amphibians would be lost through the project.	
18	This 3 percent is considered a worst case	
19	scenario. We know that new amphibian habitat will	
20	form in areas along new infrastructure. For	
21	example, along the south access road, in the	
22	ditches where water is going to pool or has a	
23	tendency to pool. Also along the dyking systems,	
24	often water will pool in those areas and provide	
25	habitat for amphibians.	

		Page 1579
1	In some of the decommissioned borrow	i age i ei e
2	areas, there could be deep pits that retain water.	
3	Those areas have also been shown to, over time,	
4	support amphibian populations.	
5	In conclusion, the project is not	
6	expected to affected regional amphibian	
7	populations.	
8	We study birds for a number of	
9	reasons. They are important for a number of	
10	reasons, including ecological importance. Like I	
11	mentioned for invertebrates and frogs, they are	
12	part of the food chain. They are important, they	
13	have their various roles, including seed dispersal	
14	for plants. They are also considered very	
15	important to people. A number of species like	
16	ducks and geese are harvested by local resource	
17	users, including the First Nation communities.	
18	And some bird species are very spiritually valued,	
19	for example, the bald eagle.	
20	And then there's the regulatory	
21	importance. Migratory birds are protected under	
22	the Migratory Bird Convention Act. All birds are	
23	protected under Manitoba's Wildlife Act, and	
24	species at risk are afforded protection under the	
25	Manitoba Species at Risk Act, and/or the Federal	
1		

Page 1580 Species at Risk Act, SARA. 1 2 A considerable amount of data has been 3 gathered on the bird community at Keeyask. We 4 began collecting information in 2001, and carried out a number of surveys throughout this last 10 to 5 12 years. Our surveys have followed standardized 6 7 widely accepted protocols. We have targeted migratory birds, but also included sampling for 8 the resident species like the owls and the grouse. 9 We have used a variety of methods, you can't just 10 use one method to sample the over 178 birds that 11 12 occur within Keeyask. 13 For the wide ranging waterfowl, raptors, we used aerial surveys to get a good 14 understanding for the distribution and abundance 15 of these birds throughout the region. We used 16 boat based surveys to get a more in-depth 17 understanding of what was happening on Gull Lake 18 19 in parts of the Nelson River. We also did a 20 number of point counts in the forest to get information on the forest birds, the breeding 21 birds and the inland areas. 22 23 We targeted the migratory birds like the song birds, which also include Olive-sided 24 Flycatcher, which is a listed species. And we 25

-		Page 1581
1	even did some nocturnal surveys trying to target	
2	the Common Nighthawk which is more active in the	
3	evening, and Yellow Rail as well.	
4	And during this process, we have	
5	worked alongside the First Nation communities and	
6	gathered a lot of local knowledge through that	
7	process.	
8	Part of our approach also included a	
9	review of historical information, including	
10	information from ATK, in order to understand the	
11	effects of past projects.	
12	We have also assessed this project,	
13	Keeyask, in combination of future projects for our	
14	valued environmental components.	
15	So here is our study areas that we	
16	used for the bird assessment. Study zone five is	
17	the large green area. It was used as the regional	
18	study area for Bald Eagle and Canada Goose. This	
19	area was considered large enough to capture a	
20	breeding population of Bald Eagles along the	
21	Nelson River. They are a wide ranging species and	
22	widely distributed throughout.	
23	We felt it was a suitable study area	
24	for Canada Goose because Canada Geese are actually	
25	transient through this area. They are migrating	

		Page 1582
1	through Keeyask on their way to their northern	0
2	breeding grounds. So we felt that zone five was	
3	large enough to capture a representation of that	
4	transient population of geese moving through.	
5	And I want to mention that we	
6	recognized geese would be moving through between	
7	their breeding and wintering grounds, and they	
8	also may be moving along the Nelson River towards	
9	the downstream areas. The Hudson Bay coast is an	
10	attractive spot for Canada Geese. It's an	
11	important staging area for them along that area.	
12	So we recognized that Canada Geese would be moving	
13	through downstream areas and potentially	
14	interacting with future projects in that region.	
15	So even though our study area is zone five, we did	
16	consider that birds are mobile and they are moving	
17	outside of these boundaries that we have	
18	identified.	
19	Zone four was identified as the	
20	regional study area for Mallard and all other	
21	birds. We felt that it would have been	
22	appropriate to use zone five, that it would have	
23	captured a representation of the breeding	
24	populations of these birds. However, we wanted to	
25	be a bit more conservative and felt that we would	

Page 1583

1	go with a zone four as our regional study area,
2	which is used as our assessment area for this
3	project. And zone three is the local study area
4	that was used for all birds.
5	Now we get into the process of how we
6	selected our valued environmental components for
7	birds. Like I mentioned, there is about 178
8	species that we have identified occurring within
9	the Keeyask region. And during the process of
10	identifying which would be VECs, we considered all
11	of them. And we looked at whether or not these
12	birds were potentially affected by this proposed
13	project. And that really helped us to narrow down
14	this large list to about 27 species. And these 27
15	species we called the priority birds, because they
16	were ecologically, socially, or regulatory
17	important.
18	We took this list of 27 and narrowed

We took this list of 27 and narrowed L 8 it down even further. It went through a rigorous 19 process with many meetings and discussions. We 20 had the First Nations' involvement and feedback 21 and discussions with them. And what we initially 22 23 came out of that process with was three migratory birds as our VECs, the Mallard, the Canada Goose 24 and the Bald Eagle. 25

		Page 1584
1	Mallard and Canada Geese are very	J
2	important socially because they are valued by the	
3	First Nation communities. They are used as	
4	subsistence food. They are traditionally	
5	harvested annually, and are considered very	
6	important. The Bald Eagle is spiritually	
7	significant and was treated as a VEC for that	
8	reason.	
9	In response to regulatory concern, we	
10	looked at all of our eight species at risk that	
11	could occur within this region. And taking the	
12	same approach, we identified, or at least	
13	considered which of these eight species would be	
14	affected by this project. And that process	
15	revealed that there is three species of birds that	
16	breed within the area, have breeding habitat that	
17	would potentially be affected by the project.	
18	Those three species became VECs, Common Nighthawk,	
19	Olive-sided Flycatcher, and Rusty Blackbird.	
20	The remaining five species at risk	
21	were not VECs for the following reasons. There	
22	was low potential for project effects, that was	
23	the case for Yellow Rail. We did survey for	
24	Yellow Rail but they were not detected within the	
25	region. Habitat that occurs within the Keeyask	

		Page 1585
1	region is considered marginal for the species.	
2	Their preferred further habitat actually occurs in	
3	areas further east along the Hudson Bay, James Bay	
4	coastal lowland areas, and in areas further south.	
5	The Short-eared Owl is also a species	
6	where we did not see the potential for project	
7	effects. There's no breeding habitat for this	
8	species within our local study area.	
9	Peregrine Falcon and Red Knot are	
10	transient. They are migrating through the region	
11	during the spring and fall migration periods.	
12	Their preferred habitat is in areas further north.	
13	The Horned Grebe is a water bird that	
14	uses habitat that's similar to the Mallard, so we	
15	felt that it was represented by the Mallard VEC.	
16	However, although they were not treated as VECs,	
17	they were treated as priority birds and they were	
18	assessed in full.	
19	Gulls and terns are colonial water	
20	birds. They were treated as a priority bird.	
21	Gulls and terns are dependant upon rare	
22	environmental features for breeding, like the	
23	rocky reefs in the islands in the Nelson River,	
24	like in Gull Rapids and in areas upstream. We	
25	recognize that they are valued by the First Nation	

		Page 1586
1	communities. We know that Gull eggs were	
2	harvested in the past. However, during the	
3	process of identifying our VECs, it was indicated	
4	that they were valued but they weren't as highly	
5	valued as say other species that had become VECs,	
6	the Mallard, the Canada Goose and the Bald Eagle.	
7	However, that said, they were the focus of a	
8	considerable amount of study. And we have put in	
9	a lot of efforts and thoughts and considerations	
10	into potential mitigation measures to offset the	
11	effects of this project on these species.	
12	Moving on to the benchmarks, there are	
13	no defined regulatory thresholds or benchmarks for	
14	birds. So this prompted us to do a review of the	
15	other EIAs to see what they were using for their	
16	benchmarks when they were assessing project	
17	effects on birds.	
18	What that process revealed was that it	
19	was a common approach to use a 25 percent	
20	benchmark for determining whether or not project	
21	effects were of high magnitude. This 25 percent	
22	benchmark measured habitat loss against existing	
23	conditions, and it was also used for all birds,	
24	including species at risk.	
25	We considered that, and we approached	

		Page 1587
1	it with a bit more conservatism. We set a	0
2	20 percent habitat loss benchmark 20 percent	
3	benchmark for habitat loss relative to existing	
4	conditions. We used this for Mallard, Canada	
5	Goose, Bald Eagle and most other birds. However,	
6	we felt that we should be even more conservative	
7	for species at risk because they are less common	
8	on the landscape, and are more sensitive to	
9	disturbance. So we set a 10 percent habitat loss	
10	benchmark, measuring habitat loss relative to	
11	existing conditions.	
12	Now, I just want to point out that the	
13	purpose of setting benchmarks is to alert the	
14	assessor, to alert ourselves of the pressure	
15	that's being exerted on the back of the species	
16	that we are examining, so that if necessary, we	
17	take a critical review to see if there's any other	
18	project effects or influences that might	
19	contributing to the pressure being exerted on our	
20	VEC. It's more of an alert system, it's not	
21	necessarily that once you hit your 10 percent	
22	benchmark you have got a significant effect, it's	
23	really just an alert system, it's a way to inform	
24	ourselves to say that, hey, let's take a closer	
25	look at things.	

		Page 1588
1	So now I'll just give you sort of an	
2	overview of our key results and conclusions for	
3	our bird VECs. So, beginning with Canada Goose,	
4	breeding habitat will not be affected by this	
5	project because areas that are preferred by geese	
6	occur further north and further east of the	
7	project area. However, the regional study area is	
8	used as a stop-over site during the spring and	
9	fall migration periods. It's during these times	
10	that geese are very, become a very important food	
11	source for the First Nations because they are out	
12	on the land hunting them during these spring and	
13	fall migration periods, in particular spring, as	
14	the birds returning from their wintering ground	
15	are apparently the best tasting. So that's an	
16	important time of year for harvest.	
17	Following impoundment, goose use of	
18	the reservoir is anticipated to be minimal.	
19	However, we anticipate that use of the reservoir	
20	by geese will increase as aquatic plants begin to	
21	re-establish.	
22	In conclusion, the project in	
23	combination with future projects is not expected	
24	to affect the sustainability of Canada Goose	
25	populations throughout the region and in areas	

Page 1589

further north. 1 For the Mallard assessment, there's 2 3 two things I want to just point out or draw 4 attention to. The first one is that Mallard in this region breed in the in-land lakes, creeks, 5 and wetlands. These are the areas that we see б Mallards rearing their broods, taking care of 7 their young. Habitats along the Nelson River 8 shoreline area are considered more marginal for 9 this species, not only just because there's 10 fluctuating water levels and marsh habitat is 11 12 really unpredictable in terms of the years that's actually available, depending on high water 13 levels, but also because the Nelson River is a 14 river and has supported, as you know earlier, a 15 lot of fish. And Mallards tend to breed in areas 16 where there's not that many fish, because fish are 17 a key predator of ducklings. 18 19 The second thing I wanted to point out 20 was that during the information request period, we 21 had the opportunity to revise our Mallard assessment. We had new information, more detailed 22

23 mapping of the Mallard aquatic habitats, so we
24 used that to update our assessment. And in order
25 to take a worst case scenario approach, we

Volume 7

Page 1590

1	included those marginal Nelson River shoreline
2	wetland areas in our assessment, and considered
3	that as part of the overall habitat lost.
4	So this updated information revealed
5	that in the EIS, we reported a 3 percent loss of
6	Mallard habitat relative to what's available
7	within the region. The revised IR indicated four
8	and a half percent, approximately 5 percent of
9	habitat affected. This change doesn't change our
10	conclusions that we described in the EIS, and that
11	is that the project, in combination with future
12	projects, is not expected to affect the
13	sustainability of Mallard populations within the
14	region.
15	Bald Eagles are probably one of the

most common raptors that we've seen during our 16 studies. They are highly visible and they occur 17 along the Nelson River where there's the 18 19 attraction to the forage, the fish forage. Bald 20 Eagles do nest along the river. There is approximately six nests between Birthday Rapids 21 22 and Gull Rapids. The highest concentrations of eagles that we see along the Nelson River happens 23 during the July, August time frame, when you get a 24 25 lot of the non-breeders coming into the Nelson

-		Page 1591
1	River to take advantage of the abundance of food.	
2	The project is expected to increase	
3	the availability of nesting and perching habitat,	
4	because as we know, with the creation of the	
5	reservoir, the shoreline area is going to	
6	increase. We also know that with the creation of	
7	the reservoir, there will be land clearing within	
8	the reservoir footprint, and that some of these	
9	nests will be lost as a result of clearing.	
10	However, as you can see in the picture, there's	
11	mitigation planned for that. Any of the nests	
12	that will be lost will be placed with artificial	
13	nesting platforms like the one you have seen here.	
14	These have been proven to be successful. Manitoba	
15	Hydro has had experience with these in the past.	
16	They have put up a number of them for Osprey and	
17	have had that work out really well.	
18	We also expect that with the project,	
19	the distribution of eagles will change in response	
20	to the creation of the reservoir and the tailrace	
21	area below the generating station. We would	
22	expect more eagles to be concentrated in those	
23	areas below the generating station.	
24	In conclusion, the project is not	
25	expected to affect the sustainability of regional	

Page 1592

Bald Eagle populations. 1 2 Common Nighthawk is a species at risk. 3 It's listed as threatened under the Species at Risk Act. It's a migratory bird that prefers dry 4 mineral ground with bare -- basically dry mineral 5 sites that have little vegetation. It likes to 6 nest, as you can see in the picture, just kind of 7 right in the rocks, not a lot of cover. Maybe you 8 can't see it, but it is using itself as its own 9 cover, it's got the camouflage. And that's kind 10 of its tactic to elude predators. But its 11 12 preference is for the dry upland sites that have minimal ground cover. Quite often these areas are 13 rock outcrops, gravelly sites, areas that had been 14 recently burned. Suitable habitat for Common 15 Nighthawk is not considered limiting within the 16 region, or within the borrow region of Manitoba. 17 In fact, it's very widespread and very abundant, 18 19 and it's regenerated by fire. 20 So this is a map showing you the 21 distribution, and it gives you a sense of the abundance of this habitat. What we're showing you 22 23 here in this map is where nesting habitat would occur. Foraging habitat for the species is 24 widespread, and if we mapped foraging habitat, I 25

Volume 7

Page 1593 think we'd map the whole area as suitable foraging 1 2 habitat. 3 We are showing primary and secondary 4 nesting habitat, which is essentially primary, being the most preferred, and secondary being the 5 second most preferred breeding areas. And this is 6 study zone four. I just want to mention that we 7 have mapped the habitat within zone four, but that 8 it doesn't end at that zone. It does continue and 9 extend into the surrounding regions, that there's 10 suitable habitat throughout. 11 12 During the construction period, there will be a short-term gain in Common Nighthawk 13 habitat, and that is largely associated with the 14 land clearing that will happen within the 15 reservoir footprint. 16 Some habitat for Common Nighthawk, 17 however, will be lost due to the construction of 18 19 other project footprints like the roads or the 20 borrow areas. 21 Over the long-term, during operation, we expect that there will be an overall loss of 22 Common Nighthawk habitat, up to about 10 percent. 23 24 This is considered to be the worst case scenario. As habitat loss is based on zone four, which as 25

		Page 1594
1	you might recall, I said was the more conservative	
2	zone, that we could have used zone five but felt	
3	that we'd be more sensitive to effects by using	
4	the smaller regional study area, we're comparing	
5	it to a 10 percent benchmark that we set in order	
6	to be more sensitive to project effects. And the	
7	fact is, new habitat will be created for this	
8	species. New habitat will form in the	
9	decommissioned borrow areas that become inactive.	
10	And by considering the potential for that, we	
11	could see the loss of up to 10 percent decrease to	
12	the loss of just over 5 percent. It's hard to	
13	estimate that at this point because we don't know	
14	how many borrow areas actually will be developed,	
15	but just that there's good potential for this	
16	number to be offset when borrow areas become	
17	decommissioned.	
18	The individual Common Nighthawks that	
19	will be displaced from the actively developed	
20	project footprint areas will use the alternate	
21	areas that are available throughout the region.	
22	Habitat for this species is not a limiting factor.	
23	It's not limiting the species within the region	
24	and it's not limiting their more global	

25 populations. And that we expect individuals will

1	relocate.	Page 1595
2	Overall, the project in combination	
3	with future projects is not expected to affect the	
4	Common Nighthawk populations.	
5	Olive-sided Flycatcher is a species	
6	listed as threatened. It's also a migratory	
7	species. It prefers to nest in the mature spruce	
8	forest that occur along forest edge. So you get	
9	forest openings that are created by fire or	
10	wetlands, beaver flood. Quite often these areas	
11	support dead standing trees which are a very	
12	important factor for Olive-sided Flycatcher, as	
13	they require perches in open areas to sit on when	
14	they are foraging for their flying insect food.	
15	Suitable habitat for this species is	
16	not limiting within the regional study area, or	
17	for that matter in the greater area of the boreal	
18	Manitoba.	
19	Their habitat is regenerated by fire,	
20	like the Common Nighthawk, and it is, and the	
21	species is not using all of their available	
22	habitat. That's sort of the general for all of	
23	these species at risk, their populations are low,	
24	there's more habitat available for them than they	
25	can actually use. And based on some of our data	

		Page 1596
1	that we have collected and based on professional	
2	judgment, the Olive-sided Flycatcher within this	
3	region are not using all of their available	
4	habitat.	
5	So here is a map showing you the	
6	widespread distribution of their preferred	
7	breeding habitat, the primary being the most	
8	preferred, and the secondary habitat being the	
9	second most preferred. And again, this map is	
10	really focused on where suitable nesting habitat	
11	would occur. If I included foraging habitat, that	
12	would definitely take up a lot more of this map.	
13	In the EIS, our assessment was based	
14	on the loss of primary habitat. We concluded that	
15	a loss of up to 5 percent habitat could occur as a	
16	result of the project. We have updated that to	
17	reflect secondary habitat. Secondary habitat was	
18	mapped and modelled in our recent modeling report.	
19	And by including secondary habitat, which is again	
20	not their preferred habitat but second most	
21	preferred habitat, we come up to about 9 percent	
22	habitat loss overall. This is considered the	
23	worst case scenario.	
24	Again, like the Common Nighthawk, we	
25	are basing this loss on the smaller zone four.	

	F	Page 1597
1	We're comparing it to our 10 percent benchmark.	Ū
2	And it also doesn't include new habitat that may	
3	be formed or created or enhanced through	
4	mitigation. Some of our mitigation being	
5	considered, the measures being considered include	
б	putting up perching poles in some of the open	
7	areas along forest edge, as perching poles, as I	
8	mentioned, are a key part of the structure that's	
9	required by Olive-sided Flycatcher.	
10	Because our updated assessment had us	
11	approaching our benchmark, we felt that we should	
12	take a sensitivity analysis and have another	
13	critical review to see if there's any other	
14	project related factors that might be affecting	
15	Olive-sided Flycatcher. So we did. We looked at	
16	whether or not our project would be increasing the	
17	risk of mortality. The answer to that is no.	
18	We're clearing outside of the breeding period. We	
19	are filling the reservoir outside of the breeding	
20	period. These are factors which are going to	
21	avoid any increase or any, you know, effects of	
22	mortality on this species. So in the end, no	
23	influential factors were identified that would	
24	increase the sensitivity to the species.	
25	So understanding that habitat isn't	

		Page 1598
1	limiting for the species, it's abundant, it's not	l ago loco
2	all being used throughout the region, considering	
3	that and the amount of habitat that would be	
4	affected in combination with future projects, we	
5	do not expect that this project and future	
6	projects would affect regional Olive-sided	
7	Flycatcher populations.	
8	Rusty Blackbird is another migratory	
9	bird. It's listed as special concern under the	
10	Species at Risk Act. It breeds in the shrubs and	
11	conifers that occur along the wetland edges, feeds	
12	on aquatic insects, usually aquatic insects from	
13	the shallow pools that occur along creeks and in	
14	some of the wetted areas.	
15	Suitable habitat for this species is	
16	not limiting within this region. It is widespread	
17	throughout the region in boreal Manitoba. And	
18	Rusty Blackbird, like the Olive-sided Flycatcher,	
19	are not using all of the available habitat that is	
20	out there for them.	
21	This is a map showing you the	
22	distribution of their habitat, primary being the	
23	most important habitats and secondary being the	
24	second most. Up to approximately 6 percent of	
25	their breeding habitat will be affected by the	

		Page 1599
1	project. Some of this habitat will be, a loss	-
2	will be minimized through the retention of	
3	riparian buffers along some of the inland lakes	
4	and creeks. Overall, the project in combination	
5	with future projects is not expected to affect the	
6	regional Rusty Blackbird populations.	
7	So we know that gulls and terns breed	
8	on the rocky reefs at Gull Rapids. They also	
9	breed in some of the areas upstream. There is a	
10	number of rocky islands and reefs that are also	
11	being used. Some of these areas will be lost as a	
12	result of the project. We did consider and look	
13	to see whether or not there would be alternate	
14	suitable habitat for these birds following project	
15	development. And we determined that their habitat	
16	is not common in the area. The main goal is to	
17	maintain these colonial waterbird populations	
18	throughout construction and throughout operation.	
19	And because there's some uncertainty as to whether	
20	suitable habitat will form following project	
21	development, or how these birds will take to even	
22	just alternate more marginal areas, because	
23	there's that uncertainty, we have committed to	
24	providing alternate nesting habitat for these	
25	birds.	

		Page 1600
1	So here's a picture of some of those	
2	alternate nesting habitats. We're considering the	
3	use of reef rafts for Common Terns. You can see	
4	there's a reef raft with a load of common terns on	
5	it. This one is taken from the Toronto harbour	
6	where the Canadian Wildlife Service and the City	
7	of Toronto have been involved for a number of	
8	years putting out and replacing habitat for Common	
9	tern, has proven to be very successful, to the	
10	point where they are now considering putting in a	
11	permanent island.	
12	There is also in the top left-hand,	
13	here, this big nesting platform. This is a large	
14	nesting platform that has been put out for terns,	
15	and it has proven to be successful.	
16	There is also consideration of perhaps	
17	enhancing existing islands with riprap or just	
18	making conditions more suitable for gulls and	
19	terns by island enhancements, something similar to	
20	the effect of this picture to get that idea	
21	across.	
22	We're also considering the creation of	
23	artificial islands for gulls, and there's also the	
24	potential of using barges during the operation	
25	phase, as barges have also proven to be very	

		Page 1601
1	successful for supporting colonial waterbirds.	
2	We're confident that any of these measures, or a	
3	combination of these measures will provide	
4	effective habitat for gulls and terns that are	
5	displaced from their traditional nesting grounds.	
6	All of these measures have shown to be very	
7	successful in areas throughout Canada and the	
8	United States.	
9	For the most part, these enhancements	
10	and this level of effort is put out for Common	
11	Terns or other tern species, it's actually rarely	
12	ever put out for gulls, because gulls are very	
13	adaptable and are good at using even marginal	
14	habitats they can be successful on. However, the	
15	partnership is still committed to providing for	
16	these birds as well, to ensure that their	
17	populations continue to be viable within the	
18	region.	
19	So the partnership is currently	
20	working with Environment Canada to finalize the	
21	details about these measures, about what will be	
22	used, where we'll be implementing it. All of	

23 those details will be provided in a terrestrial 24 mitigation implementation plan. We will not only 25 be including all of those details about our

		Dama 44
1	colonial waterbird mitigation, but also for Bald	Page 10
2	Eagle nesting structures, what those will look	
3	like and where those will go. I didn't mention	
4	it, but Mallard nesting tunnels are another	
5	measure that is being considered to improve or	
6	enhance Mallard nesting habitat. Olive-sided	
7	Flycatcher perching poles will be included in that	
8	plan, as well as wetland enhancement creation	
9	planning.	
10	So that gets us into monitoring for	
11	amphibians and bird. We have committed to monitor	
12	for both of these groups, during both the	
13	construction and the operation phases. The	
14	purpose of our monitoring plan is to assess the	
15	effectiveness of our mitigation measures and our	
16	key EIS predictions. We want to understand	
17	whether or not alterations or improvements or	
18	modifications are needed to any of the mitigation	
19	measures that we implement.	
20	Amphibians will be monitored looking	
21	at their breeding activity and existing wetlands,	
22	and wetlands that are formed near infrastructure.	
23	We will also be looking at wetland use by	
24	amphibians in some of the wetland enhancement	
25	areas. We'll be monitoring changes in bird	

		Page 1603
1	abundance and distribution, looking at Bald	
2	Eagles, Mallard, Canada Goose, species at risk,	
3	colonial waterbirds, and other birds like grouse	
4	and songbirds.	
5	We will be examining the use of	
6	alternate nesting habitat that we provide out	
7	there for colonial waterbirds, the effectiveness	
8	of the Bald Eagle and Mallard nesting structures.	
9	We'll be also wanting to understand how the	
10	decommissioned borrow areas are being used by	
11	Common Nighthawk, and the effectiveness of our	
12	perching poles if those are placed out on the	
13	landscape for that species. And the effectiveness	
14	of our wetland marsh enhancement areas, how are	
15	they being used by birds and how effective is	
16	that?	
17	So that brings me to my mercury and	
18	wildlife presentation which, I don't know, it's	
19	3:05 I think.	
20	THE CHAIRMAN: It is. I think we	
21	should take a break now and come back at 3:20.	
22	(Proceedings recessed at 3:05 p.m. and	
23	reconvened at 3:18 p.m.)	
24	THE CHAIRMAN: I would like to	
25	reconvene.	

		Page 1604
1	Okay, Ms. Wyenberg, carry on.	
2	MS. WYENBERG: Thank you.	
3	Okay, so now we will get into an	
4	overview of our mercury and wildlife assessment.	
5	We already heard earlier how mercury is expected	
6	to increase in the aquatic environment during	
7	operation. Dr. Schneider-Vieira discussed how	
8	this is going to, or could affect fish. And now I	
9	will take the next 15 minutes or so to build on	
10	that by explaining the implications of increased	
11	methylmercury on wildlife.	
12	Before I begin, I just want to point	
13	out that this assessment wasn't all done by	
14	myself. I can't take credit for it. Mercury in	
15	mammals was conducted by Mr. Rob Berger and his	
16	team at Wildlife Resource Consulting. And the	
17	bird assessment was conducted by myself and my	
18	team at Stantec.	
19	Secondly, I'm only going to be	
20	presenting how increased mercury can affect	
21	wildlife, I won't be assessing how this could	
22	affect human health through consumption of	
23	wildlife. That's covered by the socio-economic	
24	panel.	
25	So I will begin by giving a brief	

			Page 1605
	1	overview about methylmercury and why it is a	i ago i oco
	2	concern for wildlife, with focus on birds and	
	3	mammals. As well as I will give a summary of our	
	4	approach and how we determined existing levels in	
	5	animals, and how we predicted future levels in	
	6	animals. I will also describe how I used risk	
	7	assessment to understand the exposure risk for	
	8	some species of wildlife. We used the hazard	
	9	quotient analysis, and I will explain that. I	
1	.0	will get into the results and conclusions and	
1	.1	finish up with some monitoring.	
1	.2	In the earlier presentation we heard	
1	.3	about how methylmercury can bio accumulate in the	
1	.4	aquatic food chain. Now I am just going to	
1	.5	summarize it again here, because it is a complex	
1	.6	topic and some of you might have missed it.	
1	.7	Mercury is a naturally occurring	
1	.8	element in soils. When you flood soils, you	
1	.9	release this inorganic mercury into the aquatic	
2	0	environment. Once it is in the aquatic	
2	1	environment, it is inadvertently eaten by bacteria	
2	2	as they are digesting organic material, through	
2	3	their digestion they switch this inorganic mercury	
2	4	into the methylmercury form, which is the form	
2	5	that we are concerned about, because it can affect	

		Dogo
1	the health and well-being of animals. Animals at	Page
2	the bottom of the food chain eat the bacteria,	
3	absorb methylmercury, and pass it on to those	
4	animals that eat them.	
5	As methylmercury is passed up the food	
6	chain, it can bio accumulate and bio magnify. At	
7	high concentrations it has the risk to affect the	
8	health and reproduction of animals. Very rarely	
9	is it ever lethal. More commonly the adverse	
10	effects are related to a decreased ability to	
11	reproduce. With the exception of birds, which can	
12	remove large burdens of mercury from their bodies	
13	through feather loss, for most animals it is a	
14	very slow process in removing mercury from their	
15	body. Fish eating wildlife that are at the top of	
16	the food chain, like river otter, mink, bald eagle	
17	and osprey, are the most at risk to increases in	
18	methylmercury. The animals that are consuming	
19	diets mainly of plants are considered to be the	
20	least at risk, and that's because plants take up	
21	very minute quantities of methylmercury. So the	
22	animals that would be experiencing minimal risk	
23	from increases would include beaver, moose,	
24	caribou, and Canada Goose.	
25	We did an extensive review of	

		Page 1607
1	literature in order to assess and understand the	
2	potential risks or affects of mercury exposure in	
3	birds and mammals.	
4	Background or existing levels of	
5	methylmercury in wildlife was estimated using a	
б	number of approaches. For some species the levels	
7	were based on information that we got from the	
8	scientific literature. Canada Goose would be an	
9	example.	
10	For birds, the existing levels were	
11	estimated using the levels that were reported in	
12	the fish flesh that was sampled from fish taken at	
13	Gull Lake and Stephens Lake. Fish data was	
14	therefore used as an indicator or proxy for the	
15	levels in birds.	
16	Baseline data was collected from	
17	mammals to estimate background or existing levels.	
18	Predicted levels of methylmercury in wildlife was	
19	estimated using the modelled predictions in fish,	
20	we heard about that from Dr. Schneider-Vieira's	
21	presentation earlier. Those modelled estimates	
22	will be used as a proxy or indication of the	
23	levels that would be in birds. We used historic	
24	and recent data from nearby reservoirs to predict	
25	the levels that we expect to see, or could see in	

		Page 1608
1	some of the mammal species. We also ran a	
2	screening level analysis to determine the risk of	
3	top predator fish eating species to elevated	
4	levels of methylmercury. So for Bald Eagle,	
5	osprey, river otter and mink, we used a hazard	
6	quotient analysis, which I will describe in a bit	
7	more detail momentarily.	
8	So our review of the literature	
9	identified some research that indicated	
10	similarities between mercury levels in fish and	
11	mercury levels in birds that were eating similar	
12	diets. They are eating the same foods, they are	
13	foraging in the same areas, the mercury levels	
14	were very comparable.	
15	So it was suggested that the local	
16	fish would be a much better indicator of the	
17	levels in birds than trying to use levels of	
18	mercury reported in birds from other areas. And	
19	this is largely due to the fact that methylmercury	
20	levels can be highly variable from one area to the	
21	next, due to just even differences in geology	
22	alone.	
23	Existing levels in birds were	
24	therefore based on mercury levels measured in the	
25	fish sampled at Gull Lake and Stephens Lake. Lake	

		Page 1609
1	whitefish, for example, eat a variable diet, and	
2	let me be specific, mature lake whitefish eat a	
3	variable diet, including small fish, aquatic	
4	insects, insect larvae and snails. Levels in lake	
5	whitefish were used to estimate the levels in some	
6	of the waterfowl species that eat similar foods,	
7	common golden eye, for example, and white-wing	
8	scoter, those are two waterfowl species that eat	
9	almost the same foods.	
10	For species like mallard, we would	
11	expect the levels to be less than that reported in	
12	lake whitefish because mallard are eating a diet	
13	consisting more of the plant and insect based	
14	foods that are at the lower end of the food chain.	
15	For fish-eating birds, we used pike	
16	and walleye to get an understanding of what the	
17	potential levels would be in the bird tissue	
18	because they are eating similar diets. And of	
19	course, for birds that are eating pike and	
20	walleye, like Bald Eagle and osprey, we would	
21	expect that levels would be slightly elevated or	
22	higher than those reported for pike and walleye,	
23	because of the bio accumulative factor from one	
24	trophic level to the next.	
25	Post impoundment levels in birds were	

		Page 1610
1	predicted using the modelled estimates for	
2	methylmercury in reservoir fish and Stephens Lake	
3	fish.	
4	For mammals, existing levels of	
5	mercury, methylmercury was based on information	
6	from the scientific literature, but also from the	
7	baseline data that was recently gathered by the	
8	Keeyask Cree Nation Partners. The KCNs were	
9	involved in the development of a study design that	
10	involved the collection of tissue samples from	
11	beaver, muskrat, mink, otter, moose and caribou.	
12	Moose and caribou were included in this because of	
13	concerns for human health regarding the	
14	consumption of these foods. Samples were gathered	
15	along the Nelson River, but also in comparative	
16	areas that occurred extensively throughout the	
17	inland region.	
18	Post impoundment levels for beaver,	
19	muskrat, mink and otter were estimated using	
20	historical information from other reservoirs, such	
21	as Southern Indian Lake, and from more recent data	
22	that was gathered from nearby reservoirs like the	
23	Stephens Lake area.	
24	So one way to characterize the risk of	
25	increased mercury exposure to wildlife is to	

		Page 1611
1	conduct a hazard quotient analysis, which involves	
2	looking at the ratio between the average	
3	concentration of mercury ingested to a known	
4	concentration where adverse effects could occur.	
5	This risk characterization was developed by the	
6	U.S. Environmental Protection Agency, and it has	
7	been used by other impact assessors to evaluate or	
8	assess the potential effects of mercury on	
9	wildlife. The analysis gives a general sense if	
10	the population is vulnerable to a toxic element.	
11	The result of the analysis is compared	
12	to a benchmark of one. So if your result by	
13	looking at your ratio of what is being ingested to	
14	what could cause an effect, if you look at results	
15	of that and compare it to one, if it is less than	
16	one, then there is low or no potential for adverse	
17	effects on the exposed population. If your value	
18	is greater than one, it is an alert, it's an	
19	indication that there is a potential for adverse	
20	effects on the exposed population and that more	
21	study is warranted.	
22	We ran the analysis for bald eagle,	
23	osprey, river otter and mink, our four indicator	
24	species that are considered to be most at risk to	
25	potential adverse effects due to mercury bio	

	Ρ	age 1612
1	accumulation through the consumption of fish. We	-
2	ran this analysis for osprey, even though osprey	
3	are not considered common within the Keeyask	
4	regional study area.	
5	The analysis was based on a worst case	
6	scenario. There were some big assumptions in	
7	that, for one, we are assuming that all of the	
8	species are eating all of their fish from the	
9	Keeyask reservoir or Stephens Lake, and we know	
10	these species are wide ranging, they are using a	
11	variety of habitats, they are not going to be	
12	exclusively only foraging from the reservoir.	
13	However, we assumed that they were, and we assumed	
14	that the fish they are eating contained the	
15	highest modelled methylmercury levels.	
16	Dr. Schneider-Vieria showed that there is a number	
17	of model outputs. We used the highest outputs	
18	from those models to run this assessment.	
19	So the results and conclusions for	
20	birds indicate that there will be minimal exposure	
21	for birds during the operation phase, and that's	
22	largely due to the fact that use of the reservoir	
23	by birds will be minimal, and as well for Stephens	
24	Lake. So the exposure, the amount and number of	
25	birds feeding off methylmercury, foods containing	

Page 1613

methylmercury would be low. 1 2 Levels in Canada Geese are not 3 expected to change, and that's because Canada 4 Geese are plant eaters and plants take up very small quantities of mercury. Levels that are 5 predicted in mallard are well below the levels 6 shown to affect reproduction. And for bald eagle 7 and osprey, our hazard quotient analysis came out 8 under one, which indicates minimal risk for 9 10 adverse effects on these populations. We know that methylmercury levels will increase, but it is 11 12 not expected to affect the population. 13 And for gulls and terns, gulls eat a varied diet, they are very opportunistic, eating a 14 variable food source, including some small fish. 15 The effects are expected to be negligible because 16 of this. And as well as for terns, mainly because 17 they are eating the small fish. 18 19 In conclusion, there is no measurable 20 adverse effect expected on the health of the 21 regional bird populations. For mammals, background methylmercury 22 23 levels for the plant eating species are not expected to change, so things will stay the same 24 for beaver and moose and caribou. Background 25

		Dogo
1	levels will increase for river otter and mink.	Page
2	However, the hazard quotient analysis indicated	
3	that there is a low potential for adverse effects.	
4	The result of our analysis was less than the	
5	benchmark of one. However, there is potential for	
6	localized adverse effects on some individual otter	
7	that forage exclusively within the reservoir of	
8	Stephens Lake.	
9	That said, the overall conclusion is	
10	that there is no measurable effects on the health	
11	of the regional mammal populations.	
12	Part of our mercury and wildlife	
13	monitoring plans include the monitoring of bird	
14	populations, or the abundance and distribution of	
15	birds and mammal, including bald eagle, osprey,	
16	waterfowl, other water birds, otter, mink, muskrat	
17	and beaver.	
18	Methylmercury levels in fish will be	
19	monitored and those will provide a good indication	
20	of the levels in birds. Monitoring of mercury	
21	levels in wild game samples will occur on a	
22	voluntary basis, and they will be provided by the	
23	local resource users.	
24	Thank you.	
25	THE CHAIRMAN: Thank you,	

1	Ms. Wyenberg. Mr.Berger?	Page 1615
_		
2	MR. BERGER: If we can take a moment	
3	while I can shuffle around?	
4	THE CHAIRMAN: Certainly.	
5	While this shuffling is going on, I	
6	would just like to point out, or note to the	
7	participants as they are preparing for	
8	cross-examination, there are three distinct	
9	presentations here with different page numbering.	
10	So when you come up to ask your questions	
11	tomorrow, please be clear as to which, either	
12	which panel or which presentation you are	
13	referring to so that it is relatively easier for	
14	them to find the proper slides to show.	
15	MR. BERGER: I just need another	
16	moment to set up the presentation.	
17	Good afternoon Mr. Chairman and	
18	Commissioners, participants, and members of the	
19	public. My name is Robert Berger, as Dr. Ehnes	
20	had introduced me, and I'm here to present an	
21	overview on the materials concerning the effects	
22	to mammals with respect to the Keeyask Generation	
23	project.	
24	Just sorting out the bugs.	
25	I will begin the presentation this	

		Page 1616
1	afternoon with reiterating some of the things that	
2	Dr. Ehnes said about an ecosystem approach which	
3	also included the mammals. And I will then	
4	briefly review the valued environmental	
5	components, and the selections, study areas and	
6	field studies, and I won't spend too much time on	
7	that. But then I will move on to discussing the	
8	effects predominantly on caribou and moose, and a	
9	brief overview of the monitoring program. With	
10	time constraints, the presentation I think will	
11	mainly focus on caribou and moose, but I would be	
12	happy to answer any questions that the Commission	
13	and the participants have on any of the species in	
14	the area.	
15	Now, as Dr. Ehnes described earlier,	

the approach to mammals was an ecosystem based 16 approach. So when we start, we ask ourselves two 17 key questions. You may have heard these key 18 19 questions before, Dr. Schneider-Vieira also used 20 them in her fish presentation, is how do we approach an assessment and how do we determine 21 22 what to study? 23 You have all seen this diagram before

24 and I'm sure you are very familiar with it. So
25 the ecosystem based approach follows those

Volume 7

		Page 1617
1	pathways that include connections to the	
2	environment. The measures of these connections	
3	consider things from habitat such as food cover,	
4	space, which the Keeyask area provides for up to	
5	about 40 or so mammal species in the study area.	
6	Now, the linkages amongst the	
7	environmental components are often complex, and	
8	changes in some of these elements can actually	
9	affect more than just a single species. So here,	
10	for example, I will find my pointer, let's follow	
11	this particular pathway with moose browse, and	
12	let's say this is a pile of willow, and here is	
13	the moose and this is the food web and, of course,	
14	the moose is browsing on the willow. And its	
15	energy is taken up, it grows. And of course, if	
16	you follow this pathway, there is it's primary	
17	predator, which is a wolf. We also consider	
18	secondary linkages and pathways, because once	
19	moose and wolves are in the system, then of course	
20	you get some pressure on caribou, which is the	
21	well known connection that we know.	
22	However, we can't study everything	
23	when we do an environmental assessment. And often	
24	we tend to measure changes by looking at what we	
25	classified as the most influential drivers that	

	Page 1618
affect a population.	
And of course, when we start these	
types of considerations, we have to think about	
how the environment will be changed by the	
project. And we get this information from the	
project description and from the physical	
environment. And of course, here we can see our	
Keeyask dam. And we see the new road that goes	
through the area to Gillam. And of course, you	
know, there is things like construction and	
operations. So how do these pathways affect the	
most influential drivers?	
Now, the most influential drivers that	
we used, and that were the pathways essentially	
that influenced populations the most, were studied	
and measured as part of the environmental	
assessment. And those included key things here	
that you see, like habitat, predators, harvest,	
human features and disturbance, which is the	
well-established linkage to fragmentation effects	
that we know so well, and we hear a lot about.	
As Dr. Ehnes described earlier, here	
is fire, which is that example of the natural	
disturbance regime that's driving the boreal	
forest. It is the predominant driver, and fire is	
	<pre>types of considerations, we have to think about how the environment will be changed by the project. And we get this information from the project description and from the physical environment. And of course, here we can see our Keeyask dam. And we see the new road that goes through the area to Gillam. And of course, you know, there is things like construction and operations. So how do these pathways affect the most influential drivers? Now, the most influential drivers that we used, and that were the pathways essentially that influenced populations the most, were studied and measured as part of the environmental assessment. And those included key things here that you see, like habitat, predators, harvest, human features and disturbance, which is the well-established linkage to fragmentation effects that we know so well, and we hear a lot about. As Dr. Ehnes described earlier, here is fire, which is that example of the natural disturbance regime that's driving the boreal</pre>

		D
1	often, and was considered in the mammals effects	Page
2	assessment.	
3	So for moose, for example, they prefer	
4	those younger habitats. And of course with	
5	caribou, they usually require those older	
6	habitats.	
7	Now, at one point I would like to make	
8	out that here on the map that is being	
9	demonstrated, which was the same map that	
10	Dr. Ehnes used, here we see the burn categories	
11	from 1953 up to today. And at this scale, it	
12	appears coarse and there is a lot of the area that	
13	is certainly burned in the Keeyask region. But if	
14	you look at it at a finer scale, maybe such as the	
15	stand or the site level, the burns, the burns at	
16	that scale can be less, and here is why. And	
17	there are such things in the boreal forest called	
18	skips, which are areas that don't burn at all. So	
19	there are, there is habitat left in the landscape,	
20	but at a finer scale. And here you can see the	
21	green areas left over, and often they are wet	
22	areas such as this one. Some of these wet areas	
23	that I can describe later are well connected to	
24	caribou. So sometimes they are left untouched.	
25	There is a lot of factors, of course, that affect	

		Page 16
1	this skip distribution, such as the fire	Tage R
2	intensity, soil, moisture, precipitation, et	
3	cetera.	
4	Moving on to the valued environmental	
5	components. So the valued environmental	
6	components selected for the project are caribou,	
7	moose and beaver. And generally the main	
8	supporting topics was the effects of mercury, but	
9	as part of this process we also described priority	
10	mammal groups, including small animals, fur	
11	bearers, large carnivores. But moving back and	
12	taking a step back to caribou, it was selected	
13	because there is certainly a potential for	
14	substantial project effects. They are important	
15	to people, it was emphasized whoever I spoke to.	
16	The availability of suitable information	
17	influenced the selection of the VEC. And of	
18	course, there is regulatory concerns with caribou.	
19	But in principle, they can also be used to	
20	represent other species that require mature	
21	coniferous forest environments, or older aged	
22	environments. And certainly we do know that they	
23	are sensitive to fragmentation.	
24	Now, moose were selected for the	
25	similar reasons, they are important to people,	

		Page 1621
1	information availability, and so on. It is more	
2	of a generalist than caribou, it uses a lot of	
3	different habitat types. And it is very well	
4	associated with forest, and burns in particular.	
5	Of course, they love wetlands and riparian habitat	
6	as well.	
7	For beaver, it is similar for	
8	selection reasons but, you know, beaver is also a	
9	keystone species, it creates habitat and	
10	environment for other species. And hence there is	
11	a connection and a value to beaver for flooding	
12	where other species can use it. But it also needs	
13	water and it prefers the deciduous forest and	
14	willow.	
15	Now, you've also seen this map before.	
16	The mammal study areas usually corresponded to the	
17	ecosystem based approach. Now each zone that was	
18	selected for a particular species was selected	
19	because it was large enough to sustain a	
20	population in the order of hundreds of animals,	
21	which was discussed in the EIS. And it provided	
22	context also for a minimum viable population size.	
23	Now, just as a quick reference, and I	
24	would like you to remember for later on in this	
25	presentation, the local study area for moose and	

1		Page 1622
1	caribou was this yellow region here, which is zone	
2	four. And zone five in green, which extends all	
3	the way to Thompson, that was the regional study	
4	area for moose. It was also selected as the	
5	regional study area for a potential or	
6	hypothetical boreal woodland caribou population.	
7	And zone six in the purple was used for all	
8	caribou.	
9	Now, there were additional study areas	
10	that were selected for the Environmental Impact	
11	Statement. Mammals for wide ranging species are	
12	not necessarily limited to ecosystem boundaries,	
13	they do cross boundaries. But, for example, for	
14	the adverse effects agreement, which has the	
15	offsetting programs, which are distributed	
16	throughout the Split Lake resource management	
17	area, and you can see the pink outline on the map	
18	which is the Split Lake RMA, just to get	
19	yourselves oriented. And here is the study zone	
20	five, which is the regional boundary for the moose	
21	population. But some of the studies, of course,	
22	were conducted beyond the regional study area to	
23	provide context or to provide context for future	
24	management considerations.	
25	Now, the existing information that we	

1623

		Dogo
1	used, as noted in the EIS and the supporting	Page
2	documentation and in some of the information	
3	requests that came through, was captured by	
4	publications, there was limited aerial surveys	
5	that were historic or considered to be historic,	
6	but we really relied on the Aboriginal traditional	
7	knowledge that were offered by our project	
8	partners.	
9	Other information included local	
10	knowledge, and some of that information came from	
11	the mammals working group. Other data included	
12	consideration of a caribou radio collaring from	
13	Manitoba Conservation and Water Stewardship. Now,	
14	I didn't use a lot of that in the EIS, but I	
15	certainly had considered that information. I had	
16	draft access to that information, so certainly did	
17	consider and write about it in the EIS, and used	
18	it to improve the request for information	
19	responses, to give you proper context about what	
20	we know about this general area.	
21	I won't go through this in detail, but	
22	we looked at a number of species using a variety	
23	of scientific techniques. Moose and caribou	
24	studies ranged from ungulate surveys to	
25	specialized habitat surveys, and we used genetic	

		Page 1624
1	studies as well.	
2	Now, we've arrived at the main part of	
3	the presentation. And as a reminder, we are going	
4	to look at the two focal species of interest,	
5	including caribou and moose. And first we will	
6	talk about caribou.	
7	Now, before discussing the	
8	environmental effects, this particular subject	
9	matter can be complex, since caribou behaviour and	
10	range are often used to define populations. So	
11	I'm going to give you a little bit of background	
12	and refresher on the types of animals found in the	
13	region before proceeding.	
14	Now, the Keeyask region is a mixing	
15	area for several populations. We do have boreal	
16	woodland caribou, which is defined by the	
17	Provincial and Federal Governments as a threatened	
18	species at risk. We also have the forest tundra	
19	eco-types defined by the Federal Government in	
20	that manner, which the Province calls coastal	
21	caribou. And if we call them coastal caribou,	
22	there are two groups that are generally named	
23	after where they calve, and that's the Pen Islands	
24	coastal and the Cape Churchill animals. Finally	
25	we have barren ground caribou, Beverly	

		Page 1625
1	Qamanirjuaq, which I will reduce to Qamanirjuaq.	
2	We have created a table to help	
3	describe some of the similarities and differences	
4	amongst the caribou types in the region. So on	
5	this top you will see, here is boreal woodland the	
6	coastal, the barren ground, and some of the	
7	context down this column. I will talk about	
8	migration distances and range behaviour, calving	
9	behaviour, a little bit about genetics.	
10	And to start, for boreal woodland	
11	caribou, migration distances in general and for	
12	most populations, especially if we consider more	
13	southern populations, they are in the order of	
14	hundreds of kilometres. So we will call that	
15	migration distance short. Whereas the barren	
16	ground and the coastal caribou tend to have longer	
17	migration distances in the order of usually	
18	hundreds to thousands of kilometres. Similarly,	
19	range size is in the order of thousands of square	
20	kilometres for boreal woodland caribou, there are	
21	exceptions, whereas the coastal and barren ground	
22	caribou are generally in the order of tens of	
23	thousands of square kilometres.	
24	Another major difference is calving	
25	behaviour. So when we look at the boreal woodland	

		Page 1626
1	caribou, they calve solitary, and I will talk	
2	about that later, whereas the coastal caribou as	
3	defined usually calve en masse, which simply means	
4	that they calve together in large groups. They	
5	kind of walk in the tundra area, they walk and	
6	they drop their calves in very large groups, and	
7	then they just keep on walking, whereas the boreal	
8	woodland caribou tend to stay in one spot. And	
9	there are different behaviour strategies to try	
10	and minimize predation risks. And also, sorry,	
11	the barren ground caribou calve en masse.	
12	Genetically, and what we know so far,	
13	and there is always continued research on	
14	genetics, is the most similar types that we know,	
15	the boreal woodland caribou are genetically	
16	similar to the coastal caribou, whereas the barren	
17	ground caribou are less similar.	
18	Now, here is an exception and a	
19	confounding factor, when all of these animals get	
20	together and mix in a region, that's this little	
21	red dot here, where some of the coastal animals,	
22	where some of the either two things can happen,	
23	some of the woodland caribou types, the more	
24	sedentary types can actually get swallowed up by a	
25	bigger population that comes through, like the	

		Page 1627
1	traditional Pen Islands coastal animals, and	J
2	disappear. There is also that behavioral	
3	possibility of animals coming back and calving in	
4	a solitary manner. So there is some confounding	
5	factors to consider when we look at the Keeyask	
6	region.	
7	Now, this is to deal with the	
8	complexity of behaviour and the range changes over	
9	time. In the EIS we identified the fourth	
10	grouping of caribou called summer resident	
11	caribou. This was the precautionary approach that	
12	basically bridges the gap between what we	
13	understand to be regulatory for the system, and	
14	what the Aboriginal traditional knowledge says,	
15	and what science is saying. And by definition, we	
16	call the summer resident group, it can either be	
17	woodland, coastal, or both, as a precautionary	
18	measure when we looked at the EIS.	
19	Now, given the unknowns could not be	
20	resolved over the research period, this approach	
21	looks at the groupings of animals from different	
22	perspectives to give you a better context for what	
23	is happening in that region. And we want to	
24	ensure that no inappropriate assumptions are made	
25	about the caribou.	

18

Page 1628 On this map, which you haven't seen 1 before, there are four, here are the four ranges. 2 3 The bright orange up on top is the Qamanirjuaq animals coming down. This is about as far as they 4 come, but they also have a tendency that they 5 could push further, infrequently, and that's the 6 orange colour. In the hatched over here we have 7 the Cape Churchill coastal caribou. They don't 8 usually come into the regional study area, which 9 is bounded by this gray line, and the regional 10 study area being zone six, but they have the 11 12 possibility of pushing into, or closer to the 13 Keeyask project. 14 Here in green, the most common types, we will have the Pen Islands coastal caribou. And 15 here is the delimited distance used for the 16 northeastern part of the regulated boreal caribou 17

Now, the key points -- and of course
these ranges, all of them, extend way off the map,
and that's one thing that you do have to keep in
mind. They are not just restricted to this map.
And they are mixing. This is probably one of the
more complex areas in Manitoba that we, in fact,
can consider, because the animals are mixing.

range, so it just comes into zones five and six.

		Page 1629
1	In the following slides I will give	
2	you very brief discussion of the four populations	
3	in turn, and then I will be providing you with	
4	more details about the summer resident caribou.	
5	Now, this map shows the threatened	
6	boreal woodland caribou range in the southwestern	
7	fringe of our study area. Here you see zone five	
8	which is used for that, the hypothetical boreal	
9	woodland caribou range, which I will talk about in	
10	a little bit. Here is the caribou zone six, and	
11	the known boreal woodland caribou ranges that are	
12	recognized currently by Environment Canada and by	
13	the Province of Manitoba are the Wapisu range, and	
14	that is in the hatched purple area over here, so	
15	it occurs west of Thompson. And it can even get	
16	maybe a little more complicated than that once you	
17	start putting collars on animals, there is range	
18	splitting. In Bipole, for example, they talked	
19	about the Harding Lake population, and it was	
20	regrouped, this lower part into the Wimipedi	
21	Wapisu range. So as soon as you start putting on	
22	a lot of collars, you get a lot of complex	
23	changes. But you have got to remember, when you	
24	put collars on animals, you keep them on long	
25	enough, that range will change over time, and it	

630

1	will often be reflected within the larger range of	Page 1
2	a stable eco-region. So, certainly there are	
3	several ways of looking at and assessing the	
4	potential effects on caribou and all of the other	
5	animals that we did in this environmental	
6	assessment.	
7	This green line here is from I believe	
8	Environment Canada's north/east range extension.	
9	This blue line, I will call it an uncollared	
10	boreal woodland caribou range, and that's called	
11	Manitoba North by Environment Canada.	
12	In the Wapisu herd, we have got about	
13	125 animals. They are listed as threatened by	
14	SARA and MESA, and they are considered	
15	self-sustaining. The Manitoba North has an	
16	unknown number. They also have a very large range	
17	currently.	
18	So for the boreal, the true regulated	
19	boreal woodland caribou assessment, what we	
20	anticipated and what I clarified in the	
21	information requests is what we are really looking	
22	at is an increased traffic through the Thompson	
23	area. That's the connection. So, you know, there	
24	is certainly a possibility of potential caribou	
25	vehicle collisions, which I also provided further	

		Page 1631
1	context for, but any connecting traffic that may	r uge roor
2	be coming through Winnipeg and going through the	
3	Wapisu range, that's the limit of what the impact	
4	is on the actual regulated boreal woodland	
5	caribou. And we can not discern what those types	
б	of effects can be.	
7	When we try and we take a look at some	
8	of the benchmarks in the literature, you know, we	
9	look at intactness, predators and habitat loss,	
10	and at that scale, for just a little bit of	
11	increased traffic, which I believe is about two	
12	vehicles per hour during the peak construction	
13	period. You won't be able to discern an effect	
14	with that.	
15	So for the regulated boreal woodland	
16	caribou assessment, there is no adverse effects on	
17	the population.	
18	Now, moving in that counter clockwise	
19	direction, moving from Thompson and now moving	
20	north, we are going to talk just a bit about	
21	barren ground caribou.	
22	Now, historically, these animals in	
23	the Keeyask region, and especially based on the	
24	Aboriginal traditional knowledge, were frequently	
25	found up to Split Lake, and south on occasion of	

		Page 1632
1	Split Lake, up until about the 1950s, did coincide	0
2	with hydroelectric development. And they have	
3	disappeared for some time. And in the last 12	
4	years, the substantial numbers, of which there are	
5	upwards of 348,000 in what they are describing,	
6	that's the population, only about 10,000 of those	
7	animals actually get near the Keeyask area. So	
8	that's the general context of what we do, we look	
9	at, when we are looking at the barren ground	
10	caribou.	
11	They arrived once on the north side of	
12	the river. I had the pleasure to see them from a	
13	vehicle on highway 280, and there were a lot of	
14	caribou. The numbers estimated by photographic	
15	counts on the calving grounds near Thelon game	
16	sanctuary were estimated to be in the	
17	neighbourhood of 348,000 at that time.	
18	Now, for the barren ground caribou	
19	assessment, historically looking at the	
20	population as a whole, habitat loss is generally	
21	just a tiny fraction of the entire range. It is	
22	much, much less than one per cent, of course. But	
23	looking at it more critically, when they do come	
24	into our area, the winter habitat loss for the	
25	barren ground caribou would be described, and that	

	Page 1633
1	would be physical habitat loss only, would be less
2	than 1 per cent.
3	Now, if the animals do arrive during
4	construction, or if they happen to arrive during
5	construction, there may be expected local altered
б	movements with the disturbances, with the people,
7	the machinery, the blasting. You could expect
8	potential effects if there is increased access
9	like occasional harvest. So this is the type of
10	thing that you can expect, if the barren ground
11	caribou do arrive.
12	Now, the Cape Churchill animals, if
13	you will, now we are continuing clockwise, is in
14	the northeastern portion of the study area. And
15	their distribution is really limited winter use
16	possibly of the Keeyask region. We had
17	hypothesized earlier on, and we have been working
18	at this since 2001, that maybe the Cape Churchill
19	animals do come into the study area. With radio
20	collaring, as you can see on this map, and this is
21	directly from the Bipole product, here you can see
22	the Hudson Bay, Nelson River down over here. And
23	then of course once you get the collars on the
24	animals, I believe this map was from about 20
25	collared animals between 2010 and 2011, so each

	Page 1634	4
1	one of these dots is a fix. And if you put a	
2	boundary around all of these dots, you can	
3	basically see the range extent, and that range	
4	extent actually agrees very closely with the map	
5	that we had incorporated into the Environmental	
6	Impact Statement.	
7	Now, their abundance is increasing	
8	since about the 1960s. There is estimated to be	
9	about 3,500 animals to 5,000 animals today.	
10	Cumulatively, there is only overlap with region	
11	six. So the effects may be limited to some	
12	harvest by workers that may come into the area,	
13	and if they do go north, may encounter them. Of	
14	course, there is a limited number of licences that	
15	are associated with the Cape Churchill herd, I	
16	think there is 10 licences, but you can question	
17	the socio-economic folks in the next panel.	
18	And of course, no adverse effect as a	
19	result is certainly expected with these numbers	
20	and animals, and potential harvest associated with	
21	the Keeyask project.	
22	Now, Pen Islands animals are	
23	definitely the ones that are in the main areas of	
24	interest. They are the most common group. Their	
25	range occurs from Ontario to Manitoba, and they	

		Page 1635
1	occur in summer and in winter.	0
2	Now, traditionally this is the group	
3	of animals that calve en masse along the Hudson	
4	Bay coastline. But there have been recent	
5	discussions in the literature including, Thompson	
6	and Abrams, about these animals moving inland,	
7	away from the coast.	
8	Similarly, here you can see numbers of	
9	fixes with radio collared animals, what their	
10	general distribution is. Some of the animals	
11	cross the Nelson River, very few, but some	
12	definitely do, and they come into our area of	
13	interest. And I don't know if you can see very	
14	well, but where my cursor is, that's where	
15	Stephens Lake is. And that would give you some	
16	context of where these collared animals are	
17	actually ending up.	
18	The Pen Islands caribou population	
19	trends that we know of from western science, and	
20	that's since 1979, have increased from about 2,300	
21	animals, and of the photographic counts that they	
22	had just last year, there were 16,600 animals. So	
23	the trends are increasing.	
24	In the study area itself there is a	
25	large variation in numbers that we have witnessed	

	Page 1636
1	between since I first hit the ground running in
2	2001, even to this year, and we even had a
3	supplementary filing. So we have measured the
4	variation of the Pen Islands animals that have
5	come into the area from zero in winter to about
6	14,000 animals this past February.
7	Now, as indicated, and similarly for
8	the barren ground caribou, the potential project
9	effects with spatial and temporal overlaps with
10	the project, there are during construction and
11	operation, and that's what is discussed, with
12	physical habitat losses and effective winter
13	habitat losses, we are looking at less than one
14	per cent of the region.
15	Now, similarly, we have to consider
16	altered movements during the construction with the
17	noises and the people and the machinery. And if
18	access, of course, is increased, and that's with
19	the addition of the road, as we are familiar with,
20	through from Gillam, crossing the dam and
21	connecting with the Keeyask infrastructure
22	project, or north access road, in that area there
23	is certainly going to be now a drivable area
24	between connecting highway 280, which I would
25	consider increased access. However, there is an

		Page 1637
1	existing trail system there, and certainly people	
2	are using that trail now to access their	
3	traditional lands, and to practice and harvest	
4	animals. But there is increased access as soon as	
5	you put in that road and it is drivable.	
6	Finally, as you may recall, is this	
7	summer resident grouping, and it's defined	
8	basically as woodland caribou, coastal caribou or	
9	both. Now, what is common to both of these	
10	animals is that they occur in summer, at least	
11	with respect to the collared Pen Islands coastal	
12	animals, and that these animals calve by	
13	themselves, at least for now. That's what we know	
14	about their behaviour.	
15	Now, if we think about what potential	
16	size is for summer residents, there would be about	
17	20 to 50 animals in the local study area. I	
18	believe that the Fox Lake environmental evaluation	
19	report also suggests 50 animals. I'm a little	
20	unclear as to what the area of reference to that	
21	is, but they are saying 50 animals. But if you	
22	start looking at the region and what there might	
23	be for the potential for more animals, I believe	
24	it would go up to 73 to 150, at least if we	
25	consider zone five.	

1	Now, for assessment purposes, when we	Page 1638
2	are considering summer residents as a woodland	
3	caribou population in zone five, I think that zone	
4	five, as is suggested in the literature, you want	
5	to keep that range smaller. So definitely it is	
6	smaller than what was selected for the regional	
7	assessment for all caribou in zone six. And what	
8	we have to consider also is that for the Pen	
9	Islands caribou, with some of the potential	
10	behavioral changes that may be occurring, their	
11	zone moves outside and east of our extended study	
12	area.	
13	Now, for what the caribou use and what	
14	is common to the animals in the region are these	
15	nice photos that I was able to find, and these are	
16	what is important for the calving and rearing.	
17	Many islands are used, and the numbers do tend to	
18	vary. We have a range of about 10 to 50 per cent	
19	over the years of study, but we also have to	
20	remember that peat land complexes are important	
21	for calving. So here at the bottom photo we are	
22	seeing an island in the lake. And you can imagine	
23	that caribou move out, either they can move out	
24	ice on or ice off, it is cutting it close, but	
25	that's when they go. And they will end up on this	

	Page 1639
1	island and they are protected from predators. If
2	you envision a peat land complex such as this as
3	being that island in the lower picture, it is
4	surrounded by this really wet peat land, and you
5	can imagine this almost being water, you can even
6	see bits of water here. That also affords the
7	protection to the caribou, affords protection to
8	caribou because it protects them from predators
9	and the wolves that may cross from dryer areas
10	such as this to try and get them. So that's what
11	this complex is, a number of islands within a
12	large area that is surrounded by really, really
13	wet.
14	This map is in the Environmental
15	Impact Statement. Calving habitat distribution,
16	there certainly are fewer islands overall in
17	region five. There is a lot more peat land
18	complexes in regions five and six, they extend
19	well off in the eco region. And when there was
20	actually a net increase of the island habitat that
21	was formed by Stephens Lake when Kettle Generating
22	Station was formed, of about 10 square kilometres.
23	Now, that does not account for the peat land
24	complexes that may have been flooded, but in terms
25	of island suitability, the number of islands,

		Page 1640
1	actually the total number of islands went down.	Tage To+0
2	And the area of the islands went up by about 10	
3	square kilometres.	
4	Stephens Lake was used as the proxy	
5	for understanding what is going to be considered	
6	when the Keeyask reservoir floods. It is a	
7	project when the project goes ahead.	
8	Now, this is what it looks like, the	
9	caribou islands post reservoir. This is a map	
10	that you have also seen in the Environmental	
11	Impact Statement, just coloured a little bit	
12	different. I wanted to pop the colours a little	
13	bit. Here in green, these are the islands that	
14	are created by the reservoir. The orange colour,	
15	that's the flooded portion of what are the	
16	existing islands. And the impoundment period of	
17	reservoir at year 30 is represented by the dark	
18	blue.	
19	There will end up being more islands	
20	in total, they are probably going to be slightly	
21	smaller than average size.	
22	Now, based on what occurred at	
23	Stephens Lake reservoir, it is likely that the	
24	islands, as shown in green, are in fact going to	
25	be used by caribou. Here is Caribou Island, its	

going to be a substantial sized island, and it is highly likely going to be used by caribou into the future. Now, here is an example of how peat land calving habitat is used relative to other generating stations. I just wanted to touch on this. When we did our tracking studies, where we were working with our First Nations, we were working with our partners, and we would go out to these spots which are really, really wet. We would wade through the water at times up to our chest to get on some of these calving islands, and we would be doing tracking studies, and we would get a lot of caribou use on these brown coloured islands within this peat land complex. Here is one just north of Long Spruce, and for illustrative purposes, we grabbed one of the collared animals that Conservation has information on, and Manitoba Hydro has information on. Just for demonstration purposes, in spring 2011, if you can see my cursor down here, it	1		Page 1641
 highly likely going to be used by caribou into the future. Now, here is an example of how peat land calving habitat is used relative to other generating stations. I just wanted to touch on this. When we did our tracking studies, where we were working with our Pirst Nations, we were working with our partners, and we would go out to these spots which are really, really wet. We would wade through the water at times up to our chest to get on some of these calving islands, and we would be doing tracking studies, and we would get a lot of caribou use on these brown coloured islands within this peat land complex. Here is one just north of Long Spruce, and for illustrative purposes, we grabbed one of the collared animals that Conservation has information on, and Manitoba Hydro has information on. Just for demonstration purposes, in spring 2011, if you can see my cursor down here, it 	1	core area does get reduced. However, it is still	
 future. Now, here is an example of how peat land calving habitat is used relative to other generating stations. I just wanted to touch on this. When we did our tracking studies, where we were working with our First Nations, we were working with our partners, and we would go out to these spots which are really, really wet. We would wade through the water at times up to our chest to get on some of these calving islands, and we would be doing tracking studies, and we would get a lot of caribou use on these brown coloured islands within this peat land complex. Here is one just north of Long Spruce, and for illustrative purposes, we grabbed one of the collared animals that Conservation has information on, and Manitoba Hydro has information on. Just for demonstration purposes, in spring 2011, if you can see my cursor down here, it 	2	going to be a substantial sized island, and it is	
5Now, here is an example of how peat6land calving habitat is used relative to other7generating stations. I just wanted to touch on8this. When we did our tracking studies, where we9were working with our First Nations, we were10working with our partners, and we would go out to11these spots which are really, really wet. We12would wade through the water at times up to our13chest to get on some of these calving islands, and14we would be doing tracking studies, and we would15get a lot of caribou use on these brown coloured16islands within this peat land complex.17Here is one just north of Long Spruce,18and for illustrative purposes, we grabbed one of19the collared animals that Conservation has20information on, and Manitoba Hydro has information21on. Just for demonstration purposes, in spring222011, if you can see my cursor down here, it23started off south between the into the Long	3	highly likely going to be used by caribou into the	
 land calving habitat is used relative to other generating stations. I just wanted to touch on this. When we did our tracking studies, where we were working with our First Nations, we were working with our partners, and we would go out to these spots which are really, really wet. We would wade through the water at times up to our chest to get on some of these calving islands, and we would be doing tracking studies, and we would get a lot of caribou use on these brown coloured islands within this peat land complex. Here is one just north of Long Spruce, and for illustrative purposes, we grabbed one of the collared animals that Conservation has information on, and Manitoba Hydro has information on. Just for demonstration purposes, in spring 2011, if you can see my cursor down here, it started off south between the into the Long 	4	future.	
generating stations. I just wanted to touch on this. When we did our tracking studies, where we were working with our First Nations, we were working with our partners, and we would go out to these spots which are really, really wet. We would wade through the water at times up to our chest to get on some of these calving islands, and we would be doing tracking studies, and we would get a lot of caribou use on these brown coloured islands within this peat land complex. Here is one just north of Long Spruce, and for illustrative purposes, we grabbed one of the collared animals that Conservation has information on, and Manitoba Hydro has information on. Just for demonstration purposes, in spring 2011, if you can see my cursor down here, it started off south between the into the Long	5	Now, here is an example of how peat	
8 this. When we did our tracking studies, where we 9 were working with our First Nations, we were 10 working with our partners, and we would go out to 11 these spots which are really, really wet. We 12 would wade through the water at times up to our 13 chest to get on some of these calving islands, and 14 we would be doing tracking studies, and we would 15 get a lot of caribou use on these brown coloured 16 islands within this peat land complex. 17 Here is one just north of Long Spruce, 18 and for illustrative purposes, we grabbed one of 19 the collared animals that Conservation has 20 information on, and Manitoba Hydro has information 21, if you can see my cursor down here, it 23 started off south between the into the Long	6	land calving habitat is used relative to other	
 9 were working with our First Nations, we were 10 working with our partners, and we would go out to 11 these spots which are really, really wet. We 12 would wade through the water at times up to our 13 chest to get on some of these calving islands, and 14 we would be doing tracking studies, and we would 15 get a lot of caribou use on these brown coloured 16 islands within this peat land complex. 17 Here is one just north of Long Spruce, 18 and for illustrative purposes, we grabbed one of 19 the collared animals that Conservation has 20 information on, and Manitoba Hydro has information 21 on. Just for demonstration purposes, in spring 22 2011, if you can see my cursor down here, it 23 started off south between the into the Long 	7	generating stations. I just wanted to touch on	
10 working with our partners, and we would go out to 11 these spots which are really, really wet. We 12 would wade through the water at times up to our 13 chest to get on some of these calving islands, and 14 we would be doing tracking studies, and we would 15 get a lot of caribou use on these brown coloured 16 islands within this peat land complex. 17 Here is one just north of Long Spruce, 18 and for illustrative purposes, we grabbed one of 19 the collared animals that Conservation has 20 information on, and Manitoba Hydro has information 21 on. Just for demonstration purposes, in spring 22 2011, if you can see my cursor down here, it 23 started off south between the into the Long	8	this. When we did our tracking studies, where we	
11 these spots which are really, really wet. We 12 would wade through the water at times up to our 13 chest to get on some of these calving islands, and 14 we would be doing tracking studies, and we would 15 get a lot of caribou use on these brown coloured 16 islands within this peat land complex. 17 Here is one just north of Long Spruce, 18 and for illustrative purposes, we grabbed one of 19 the collared animals that Conservation has 20 information on, and Manitoba Hydro has information 21 on. Just for demonstration purposes, in spring 22 2011, if you can see my cursor down here, it 23 started off south between the into the Long	9	were working with our First Nations, we were	
12 would wade through the water at times up to our 13 chest to get on some of these calving islands, and 14 we would be doing tracking studies, and we would 15 get a lot of caribou use on these brown coloured 16 islands within this peat land complex. 17 Here is one just north of Long Spruce, 18 and for illustrative purposes, we grabbed one of 19 the collared animals that Conservation has 20 information on, and Manitoba Hydro has information 21 on. Just for demonstration purposes, in spring 22 2011, if you can see my cursor down here, it 23 started off south between the into the Long	10	working with our partners, and we would go out to	
13 chest to get on some of these calving islands, and 14 we would be doing tracking studies, and we would 15 get a lot of caribou use on these brown coloured 16 islands within this peat land complex. 17 Here is one just north of Long Spruce, 18 and for illustrative purposes, we grabbed one of 19 the collared animals that Conservation has 20 information on, and Manitoba Hydro has information 21 on. Just for demonstration purposes, in spring 22 2011, if you can see my cursor down here, it 23 started off south between the into the Long	11	these spots which are really, really wet. We	
14 we would be doing tracking studies, and we would 15 get a lot of caribou use on these brown coloured 16 islands within this peat land complex. 17 Here is one just north of Long Spruce, 18 and for illustrative purposes, we grabbed one of 19 the collared animals that Conservation has 20 information on, and Manitoba Hydro has information 21 on. Just for demonstration purposes, in spring 22 2011, if you can see my cursor down here, it 23 started off south between the into the Long	12	would wade through the water at times up to our	
<pre>15 get a lot of caribou use on these brown coloured 16 islands within this peat land complex. 17 Here is one just north of Long Spruce, 18 and for illustrative purposes, we grabbed one of 19 the collared animals that Conservation has 20 information on, and Manitoba Hydro has information 21 on. Just for demonstration purposes, in spring 22 2011, if you can see my cursor down here, it 23 started off south between the into the Long</pre>	13	chest to get on some of these calving islands, and	
 islands within this peat land complex. Here is one just north of Long Spruce, and for illustrative purposes, we grabbed one of the collared animals that Conservation has information on, and Manitoba Hydro has information on. Just for demonstration purposes, in spring 2011, if you can see my cursor down here, it started off south between the into the Long 	14	we would be doing tracking studies, and we would	
17 Here is one just north of Long Spruce, 18 and for illustrative purposes, we grabbed one of 19 the collared animals that Conservation has 20 information on, and Manitoba Hydro has information 21 on. Just for demonstration purposes, in spring 22 2011, if you can see my cursor down here, it 23 started off south between the into the Long	15	get a lot of caribou use on these brown coloured	
18 and for illustrative purposes, we grabbed one of 19 the collared animals that Conservation has 20 information on, and Manitoba Hydro has information 21 on. Just for demonstration purposes, in spring 22 2011, if you can see my cursor down here, it 23 started off south between the into the Long	16	islands within this peat land complex.	
19 the collared animals that Conservation has 20 information on, and Manitoba Hydro has information 21 on. Just for demonstration purposes, in spring 22 2011, if you can see my cursor down here, it 23 started off south between the into the Long	17	Here is one just north of Long Spruce,	
20 information on, and Manitoba Hydro has information 21 on. Just for demonstration purposes, in spring 22 2011, if you can see my cursor down here, it 23 started off south between the into the Long	18	and for illustrative purposes, we grabbed one of	
21 on. Just for demonstration purposes, in spring 22 2011, if you can see my cursor down here, it 23 started off south between the into the Long	19	the collared animals that Conservation has	
22 2011, if you can see my cursor down here, it 23 started off south between the into the Long	20	information on, and Manitoba Hydro has information	
23 started off south between the into the Long	21	on. Just for demonstration purposes, in spring	
	22	2011, if you can see my cursor down here, it	
	23	started off south between the into the Long	
24 Spruce reservoir, and it travelled along, crossed	24	Spruce reservoir, and it travelled along, crossed	
25 the highway, crossed another complex, crossed the	25	the highway, crossed another complex, crossed the	

Volume 7

		Page 1642
1	Limestone reservoir, crossed the highway, and	
2	ended up in one of these peat land complexes	
3	between the highway and the existing railway	
4	tracks, and spent about two months where it	
5	calved. Then it moved off towards the northwest.	
6	Now, what will be some of the key	
7	effects of the project for the summer resident	
8	caribou? Island habitat is expected to develop	
9	and be used by caribou, based on our understanding	
10	of how the Stephens Lake reservoir is, in fact,	
11	used today by caribou. But there will be a small	
12	loss of that caribou habitat in total, both in	
13	terms of islands and with peat land complexes	
14	extending, including future projects. A few large	
15	core areas are going to get smaller, but they	
16	should be large enough to support calving.	
17	Construction disturbances with people and	
18	machinery, that will result in the effective	
19	habitat loss, but these disturbances are expected	
20	to decrease during the operation period. And as	
21	James described, before I get to the benchmarks to	
22	reiterate, linear feature density will not change,	
23	but highway access, as I already described, will	
24	increase.	
0.5		

25

Wherever possible mitigation measures

		Page 1643
1	were recommended to minimize all of the potential	
2	aspects of the project related effects. Here is	
3	just a list of mitigation measures embedded, which	
4	ranged from the project planning process, notably	
5	the first two points, right down to what James	
6	Dr. Ehnes described using fire prevention methods	
7	to minimize the potential habitat loss.	
8	So for the caribou assessment and	
9	interactions with future projects, we did consider	
10	Keeyask, Bipole sorry, Keeyask transmission,	
11	Bipole, Gillam redevelopment, Conawapa, and as	
12	context some of the caribou populations are	
13	increasing or potentially decreasing. The Pen	
14	Islands coastal animals have been increasing over	
15	the past 40 years my apologies, the Beverly	
16	Qamanirjuaq animals have been highly variable, but	
17	they have potential decline over time, but they	
18	are still very plentiful. There have been	
19	historic changes to range and number of animals	
20	overlapping Keeyask, and there is some uncertainty	
21	regarding the population designations that I have	
22	described. But regardless however the caribou are	
23	grouped, the benchmarks used for the effects	
24	assessment include island and winter habitat, wolf	
25	density, linear features and intactness, which I	
1		

Page 1644 will outline next. 1 Now, just in terms of orienting you to 2 3 this particular figure titled Loss of Islands and 4 Peat Land Complexes for Caribou Calving and rearing, here on the left, and you will see 5 variations on what this number is. This is in 6 hectares, along the bottom, starting off with 7 existing cumulative effects. And in the middle 8 you will see plus Keeyask. On the right you will 9 see Keeyask, and existing and future projects. On 10 the right you are going to see the benchmarks 11 12 used, low, moderate, high, less than one, one to ten, ten. Those will change throughout the slides 13 14 that I'm about to show you. 15 So here for example, the loss of the calving and rearing habitat in the region is 16 expected to be much smaller than one per cent of 17 the habitat cumulatively over time, and falls into 18 19 that low benchmark range. 20 Here for the caribou winter habitat, 21 the potential loss of physical winter habitat, that mature coniferous forest, and we are just 22 23 talking physical habitat loss, is about in the one per cent range in zone five, and less than one per 24 cent for our caribou regional study area. 25

1	Page 1645 For wolf density, and remember it is
2	the important association between what could
3	happen and has the potential to substantively
4	affect caribou populations, the first thing I
5	would like to note is that these benchmarks are
6	reversed, so now we are going now from low to
7	high, bottom to top. And we established our
8	benchmark at four wolves per thousand square
9	kilometres. And we believe that the wolf
10	densities throughout are not expected to change
11	because they are predominantly limited by what is
12	available in terms of the moose biomass.
13	And part of that discussion that
14	Dr. Brian Knudsen produced is located in the
15	technical report, the moose harvest sustainability
16	plan and the technical report.
17	The Split Lake resource management
18	area wolf densities are one of the lowest probably
19	anywhere that you can find in the literature. And
20	as such, total wolf predation on caribou should
21	remain low as long as the moose population doesn't
22	go up, or the overall ungulate biomass doesn't go
23	up, or if the linear features substantially
24	increase.
25	Now, neither of those are predicted

		Page 1646
1	cumulatively with present and future projects.	-
2	Here is what the linear feature	
3	density is, and this is actually the same measures	
4	as Dr. Ehnes was using, but we set our benchmark	
5	for linear feature density at .06, which indicates	
6	that this area is still in the low range for	
7	caribou.	
8	And drawing your attention to the	
9	caribou intactness map, Dr. Ehnes also has the	
10	intactness VEC, this one is developed specifically	
11	for our caribou and this is extended over zone	
12	five for woodland caribou population, if there	
13	were animals all throughout this region. And you	
14	will notice it looks different than his map	
15	because of a couple of things. Well, one primary	
16	reason is these purple blobs over here, and those	
17	are fires, and that demonstrates habitat that is	
18	less than 40 years old. Secondly, we have got the	
19	500 metre buffers applied similar to what	
20	Environment Canada does in their modeling process.	
21	Now, if hypothetically a boreal	
22	woodland caribou population were, let's say to be	
23	declared for this area, this would be a population	
24	that would have one of the lowest cumulative	
25	disturbance intactness rankings compared to all of	

		Page 1647
1	our other regulated and recognized listed boreal	
2	woodland caribou herds in Manitoba. And	
3	conversely, throughout this area, it would have	
4	maybe one of the higher or highest, I think it was	
5	one of the top three natural fire disturbance	
б	regimes compared to the real, or the listed SARA	
7	and MESA caribou.	
8	As I mentioned earlier, we did some	
9	exploratory analysis of additional studies with	
10	knowledge of some of the collared animals with	
11	respect to the Pen Islands coastal summer, and	
12	this is one of the maps that was produced from the	
13	Bipole assessment. No changes. There is a	
14	cumulative disturbance across the Pen Islands	
15	evaluation area, and as you can see with the	
16	animals used to produce this understanding of what	
17	the Pen Islands evaluation area was, what we can	
18	see is that it does contain, as Dr. Ehnes also	
19	pointed out, less fire as we go further east. And	
20	that's not surprising as the ecological boundary	
21	changed. But any caribou using this range, and as	
22	they start moving beyond zone five east, would be	
23	measured against an intactness benchmark of up to	
24	8 per cent. So it really goes up once you start	
25	considering movements of animals across what they	

	Page 1648
1	are actually doing in the Keeyask area. So when
2	we examine the Environment Canada intactness
3	benchmark for woodland or coastal caribou, which
4	are the summer residents, here again we have
5	reversed the intactness indicator, up on top in
б	the green you will see the low at less than 65,
7	moderate being 55 to 65, and the high being less
8	than 55 per cent. And looking at it from three
9	different perspectives, what we can see when we
10	consider a smaller range for boreal woodland
11	caribou population, if there would be one there,
12	is study zone five, and it starts off right at
13	that 65 per cent intactness benchmark. That's
14	where we are at. And with Keeyask, it would
15	reduce it slightly more, and with future projects,
16	slightly more, I think that's 63 per cent right
17	there.
18	For zone six which is our regional

For zone six, which is our regional 18 caribou study area, which would be an appropriate 19 size, I believe, to use for all caribou types, and 20 considering the complex range of behaviours that 21 are occurring in there, then considering the size 22 of the fire regime, this brown is the top of the 23 mark, so you can imagine going from blue all the 24 way up to the brown, that's the size of study zone 25

		Page 1649
1	six. And it starts off above that 65 per cent, it	
2	is over 66 per cent with the existing cumulative	
3	effects, and Keeyask would add to that, and with	
4	future projects it does stay above that 65 per	
5	cent.	
б	Now, knowing that there are animals in	
7	our area of interest that do move and use a	
8	totally different range, but they still use part	
9	of our area, the Pen Islands evaluation area, we	
10	are starting off at a much higher benchmark,	
11	upwards of 73 per cent, and it goes down to about	
12	71 per cent.	
13	So lets summarize all of the evidence	
14	that we have looked at. We have four of the five	
15	measurable indicators were in the low range with	
16	respect to cumulative effects, and I don't believe	
17	they are likely near the ecological thresholds	
18	that would truly put a caribou population into	
19	decline. I think the intactness indicator here	
20	suggests that we are close to or exceeding that	
21	actionable benchmark that Environment Canada uses	
22	if there would be a listed boreal woodland caribou	
23	in the area, in the local study area. But we also	
24	know that Environment Canada indicates that that	
25	fire disturbance is to be of a medium level of	

		Page 1650
1	concern and of moderate severity compared to two	
2	things, and that's land use activities and	
3	predators, which are considered to be higher risk	
4	for caribou.	
5	And what we have pointed out earlier	
6	in this presentation is that the total habitat	
7	affected by fire in the landscape appears to be	
8	high, but we consider fire skips, and there could	
9	be some unburnt habitat still left in those areas	
10	of various sizes that wildlife can use.	
11	Now, this intactness benchmark extends	
12	all the way up to Thompson, if this area is	
13	included, but if we don't include the Thompson	
14	area, it gets reduced.	
15	Now, there is some precedent for the	
16	maintenance of these caribou populations over	
17	time, even if this Environment Canada intactness	
18	mark would be exceeded. We have seen persistence,	
19	even though they are prescribed to be between	
20	self-sustaining and not self-sustaining, have	
21	persisted for 30 years or more from some of the	
22	southern ranges that we have looked at.	
23	And finally, we are certain that if	
24	any of the actual portion of the range extends	
25	east, as it does and is demonstrated by the	

Volume 7

		Page 1651
1	collared animals in the area, the intactness	
2	benchmark improves.	
3	So in conclusion for caribou, we can	
4	say with more confidence that Keeyask, in	
5	combination with future projects, is not expected	
6	to substantially affect the caribou regional	
7	populations.	
8	At this time my next slide or I	
9	should say in conclusion, as I had already	
10	described, I have about ten more slides to go, and	
11	possibly up to 20, 25 minutes. Would the	
12	Commission suggest that we break or would you like	
13	to push through to the end?	
14	THE CHAIRMAN: Normally I would say	
15	push through to the end, but I have a commitment	
16	this evening, so I think we will cut it now and	
17	come back in the morning.	
18	MR. BERGER: Thank you. I apologize	
19	for extending it for as long as I did, sir.	
20	THE CHAIRMAN: That's okay. No need	
21	for an apology, we will take the time.	
22	MR. BERGER: Thank you very much.	
23	THE CHAIRMAN: I think we have one	
24	document to be registered.	
25	MS. JOHNSON: Yes, the terrestrial	

		Dogo 1650
1	presentation is KHLP 42.	Page 1652
2	(EXHIBIT KHLP42: Terrestrial	
3	presentation)	
4	THE CHAIRMAN: Thank you. We are	
5	adjourned until 9:30 tomorrow morning.	
6	(Adjourned at 4:36 p.m.)	
7		
8		
9		
10		
11		
12		
13		
14		
15		
16		
17		
18		
19		
20		
21		
22		
23		
24		
25		

Page 1653

OFFICIAL EXAMINER'S CERTIFICATE

Cecelia Reid and Debra Kot, duly appointed Official Examiners in the Province of Manitoba, do hereby certify the foregoing pages are a true and correct transcript of my Stenotype notes as taken by us at the time and place hereinbefore stated to the best of our skill and ability.

Cecelia Reid Official Examiner, Q.B.

Debra Kot

Official Examiner Q.B.

This document was created with Win2PDF available at http://www.win2pdf.com. The unregistered version of Win2PDF is for evaluation or non-commercial use only. This page will not be added after purchasing Win2PDF.