MANITOBA CLEAN ENVIRONMENT COMMISSION	Page 483
MANITOBA-MINNESOTA TRANSMISSION PROJECT	
VOLUME 3	
* * * * * * * * * * * * * * * * * * *	

CLEAN ENVIRONMENT COMMISSION Serge Scrafield - Chairman

Laurie Streich - Commissioner

Reg Nepinak - Commissioner

Ian Gillies - Commissioner

Cathy Johnson - Commission Secretary

Cheyenne Halcrow - Administrative Assistant

Mike Green - Counsel

DEPARTMENT OF SUSTAINABLE DEVELOPMENT

Elise Dagdick Tracey Braun

MANITOBA HYDRO

Doug Bedford - Counsel - Counsel Janet Mayor

Shannon Johnson Maggie Bratland Glen Penner Shane Mailey Jennifer Moroz

PARTICIPANTS

CONSUMERS ASSOCIATION OF CANADA (Manitoba chapter)

Gloria DeSorcy - Executive Director

Joelle Pastora Sala - Counsel

Max Griffin-Rill

SOUTHERN CHIEFS' ORGANIZATION

James Beddome - Counsel

Grand Chief Daniels

PEGUIS FIRST NATION

Jared Whelan Wade Sutherland

Den Valdron - Counsel

MANITOBA METIS FEDERATION

Jason Madden - Counsel

Megan Strachan

Marci Riel

MANITOBA WILDLANDS Gaile Whelan Enns

PARTICIPANTS

SOUTHEAST STAKEHOLDERS COALITION
Kevin Toyne - Counsel
Monique Bedard
Jim Teleglow

DAKOTA PLAINS WAHPETON OYATE Warren Mills John Stockwell Craig Blacksmith

INDEX OF PROCEEDINGS	Page 486
Hydro Routing Panel presentation: Ms. M. Bratland Mr. J. Glasgow Mr. J. Matthewson Mr. D. Block	490
Questions by Mr. Valdron Questions by Ms. Strachan Questions by Mr. Toyne	622 655 668

	INDEX OF EXHIBITS		Page 487
МН-26	First part of Hydro Routing Presentation	732	
MH-27	Second part of Hydro Routing Presentation	732	
MH-28	Meeting notes on SIL	732	
MH-29	Undertaking responses	732	
MH-30	Informal questions that were replied to	732	
МН-31	Weather study	732	

	INDEX	OF	UNDERTAKINGS	Page 488
NO UNDERTAKINO	SS			

- 1 WEDNESDAY, MAY 10, 2017
- 2 UPON COMMENCING AT 9:30 A.M.

3

- THE CHAIRMAN: Good morning, everyone,
- 5 welcome to the third day of our hearings into the
- 6 Manitoba-Minnesota Transmission Project.
- 7 At the request of Manitoba Hydro,
- 8 we're going to make a slight change to the
- 9 schedule this morning. Hydro's presentation is in
- 10 three parts, so we will take a short break, 10
- 11 minute break after the first part and after the
- 12 second part, in order to give them time to set up
- 13 for the next section. That will probably run us a
- 14 bit longer, maybe closer to 1:00 o'clock. But
- 15 that way we'll get through the whole presentation
- 16 this morning. And then the questioning will
- 17 commence after lunch.
- Okay. Thank you very much, and I'll
- 19 turn it over to Manitoba Hydro.
- MS. JOHNSON: Could you please state
- 21 your names for the record?
- MS. BRATLAND: My name is Maggie
- 23 Bratland.
- MR. MATTHEWSON: James Matthewson.
- MR. BLOCK: Dave Block.

- 1 MR. GLASGOW: Jesse Glasgow.
- 2 (Routing Panel Sworn)
- 3 MS. BRATLAND: Thank you. Good
- 4 morning, everyone. I want to welcome the
- 5 Commission, participants and members of the public
- 6 to today, our third day of presentations on the
- 7 topic of the Manitoba-Minnesota Transmission
- 8 Project. As noted, my name is Maggie Bratland and
- 9 I have the pleasure of presenting our panel to you
- 10 today. We will be discussing with you the topic
- 11 of transmission line routing, and specifically the
- 12 application of the routing methodology and the
- 13 decisions made in selecting the final preferred
- 14 route.
- To my right is Mr. James Matthewson.
- 16 He is a senior environmental assessment officer
- 17 with Licensing and Assessment for Manitoba Hydro.
- 18 Mr. Matthewson lead the route planning portion of
- 19 the process.
- To his right is Mr. Block. Mr. Block
- 21 will not be participating as part of the front
- 22 panel. He's sitting here today because he's
- 23 helping us navigate through the slides today, but
- 24 he is an important member of the routing team and
- 25 is an environmental specialist with Manitoba

- 1 Hydro.
- To his right is Mr. Jesse Glasgow.
- 3 Jesse Glasgow is a principal with Team Spatial.
- 4 He helped develop the EPRI-GTC methodology for the
- 5 project and has implemented the EPRI-GTC
- 6 methodology on numerous projects across North
- 7 America.
- 8 And finally, me, I'm Maggie Bratland.
- 9 I'm a senior environmental specialist with
- 10 Licensing and Environmental Assessment at Manitoba
- 11 Hydro. And I lead the coordination of engagement
- 12 feedback into the transmission line routing
- 13 process, and lead the facilitation of the route
- 14 evaluation process.
- 15 For those of you that will be hearing
- 16 this for the first time, I wanted to go over the
- 17 scope of this presentation and put it into
- 18 context. We covered a number of items in a
- 19 previous presentation delivered on January 19th at
- 20 the routing workshop. In this presentation, we
- 21 covered routing methodology, how weightings and
- 22 criteria were determined, and how feedback from
- 23 engagement was incorporated into the models that
- 24 make up the methodology.
- In today's presentation, we will be

- 1 talking about the results and reasons for
- 2 decisions that were taken. I will be going
- 3 through route comparisons and why one was selected
- 4 over the other.
- 5 It's a good thing that we broke these
- 6 into two pieces because we would be here for five
- 7 hours if we tried to cover all of that today.
- By way of outline, today's
- 9 presentation is going to cover the following
- 10 topics: We'll go through some background and an
- 11 overview and review of some key elements of the
- 12 approach. Then we'll move into the decisions
- 13 taken in each round of transmission line routing.
- 14 We'll go through Round 1, where we selected a
- 15 border crossing; Round 2, where we selected a
- 16 preferred route to the border crossing; and then
- 17 Round 3 where we selected our final preferred
- 18 route. We'll go through a summary of this final
- 19 preferred route and then make some concluding
- 20 statements.
- I'm going to stand up now and test out
- this mobile mic thing, because I want to get you
- 23 oriented to the two screens that we'll be using
- 24 today. And I'll stand in between them so I don't
- 25 blind myself.

- 1 To the right-hand screen will be the
- 2 powerpoint deck. You should have two handouts in
- 3 front of you. The one is the slides I'll be going
- 4 through to my right-hand side. The other are the
- 5 visuals that are on the left-hand side. In
- 6 transmission line routing, the things we talk
- 7 about are very spatially oriented and visual in
- 8 nature. So throughout this presentation we'll be
- 9 referring to those visual elements, and those will
- 10 be primarily on the left-hand side of the screen.
- 11 We'll be going back and forth between both
- 12 screens, and we promise to do our very best in
- 13 making sure that we can all follow along.
- I want to point out a couple of items
- on the map on the left-hand side, because we'll be
- 16 using some terminology consistently throughout the
- 17 presentation. We have all had some presentations
- 18 already about the general project features, but
- 19 I'm just going to point you to a couple of them
- 20 today. And I'm going to try and reach -- and
- 21 someone's got a laser pointer so that's good.
- 22 This element of the project in the orange colour
- 23 is what we refer to as the south loop transmission
- 24 corridor. It's a corridor around southern
- 25 Winnipeg that will host multiple transmission

- 1 lines and is a fixed portion of this project. The
- 2 colour in sort of lemon yellow is what we refer to
- 3 as the Riel/Vivian transmission corridor. The
- 4 line in blue is what we refer to as the new
- 5 right-of-way. And then this orange blob here is
- 6 put on the map as a landmark, because we'll refer
- 7 to it over and over again as we talk about
- 8 different routes and where they are in the project
- 9 area. That is the Watson P. Davidson Wildlife
- 10 Management Area. And then we will be discussing
- 11 elements along the border as well.
- 12 Okay, next slide. Thank you.
- So by way of review, the goals of
- 14 transmission line routing: The goal is to
- 15 determine a preferred route for a high voltage
- 16 transmission line. This is a complex iterative
- 17 process and it has been designed to combine the
- 18 interests and concerns from multiple perspectives,
- 19 and in doing so limit the overall effect of the
- 20 transmission line development on all of the
- 21 different environments we consider.
- 22 Earlier you heard about public
- 23 engagement and First Nation-Metis engagement
- 24 processes for the project. The routing process
- 25 was designed with these processes, specifically to

- 1 integrate feedback from these processes into
- 2 decisions and decision-making factors. The
- 3 engagement team worked with the routing team and
- 4 the assessment teams to capture information at key
- 5 stages and to provide context to help these teams
- 6 with their consideration of the preferences and
- 7 feedback of the groups and individuals that
- 8 participated in the engagement processes.
- 9 You have heard us all speak about the
- 10 learnings from past projects, and routing is no
- 11 different. We had the opportunity to learn much
- 12 from our past experiences. The routing process
- 13 used at Manitoba Hydro is similar to the approach
- 14 used on past projects and in other jurisdictions,
- in that it starts with an understanding of
- 16 constraints and opportunities on the landscape,
- 17 and incorporates information about the various
- 18 land uses and features of the landscape. In
- 19 designing the routing process, our teams carefully
- 20 considered feedback received during regulatory
- 21 processes on recent projects and advice received
- 22 from the Clean Environment Commission hearing on
- 23 Bipole III.
- 24 There were two key recommendations
- 25 that I'd like to highlight today. The first is

- 1 non-licensing recommendation 7.1. This
- 2 recommendation states that Manitoba Hydro develop
- 3 a more streamlined, open and transparent approach
- 4 to route selection, making more use of
- 5 quantitative data.
- 6 The second recommendation,
- 7 recommendation 7.2. This recommendation states
- 8 that Manitoba Hydro in future should invite
- 9 potentially affected public and communities,
- 10 including the First Nations and Manitoba Metis
- 11 Federation, to participate in the selection of
- 12 alternative routes and route selection criteria.
- 13 Adopting and applying the EPRI-GTC routing
- 14 methodology and integrating it with our engagement
- 15 processes is in direct consideration of these
- 16 recommendations.
- 17 I'm now going to turn it over to
- 18 Mr. Jesse Glasgow, who will provide further
- 19 background in the EPRI-GTC methodology.
- 20 MR. GLASGOW: My name is Jesse Glasgow
- 21 and I've been involved with transmission siting
- 22 projects since 1999. I started working with
- 23 Georgia Transmission Corporation, or GTC, to help
- them leverage geo-spatial technology to implement
- 25 a more standardized, consistent, objective and

- 1 defensible siting process. While we were
- 2 impressed with the benefits of using computers to
- 3 analyze geographic information for transmission
- 4 siting, there was an opportunity for improvement
- 5 in how we integrated this technology into the
- 6 overall siting process. In 2003 the Electric
- 7 Power Research Institute and GTC co-sponsored a
- 8 research project to develop a standardized method
- 9 for siting transmission lines based on the work
- 10 that we were doing at GTC.
- 11 EPRI is an international non-profit
- 12 industry organization that provides thought
- 13 leadership, industry expertise and collaborative
- 14 value to help the electricity sector identify
- issues, technology gaps, and broader needs that
- 16 can be addressed through effective research and
- 17 development programs for the benefit of society.
- 18 The research team for this project was
- 19 made up of four leading academics, an
- 20 environmental attorney, a land rights attorney,
- 21 several siting practitioners and technical
- 22 experts, and included input from industry and
- 23 external stakeholders through a series of
- 24 workshops over two years. I was the technical
- 25 team leader on the team that developed this

- 1 methodology. And this research project resulted
- 2 in the EPRI-GTC Overhead Electric Transmission
- 3 Line Siting Methodolgy which was described in a
- 4 report published by EPRI in 2006. Since then this
- 5 methodology has been widely used across a wide
- 6 range of jurisdictions and has been calibrated for
- 7 local concerns. I have personally been involved
- 8 in a couple of hundred projects across seven
- 9 states and provinces.
- 10 I began working with Manitoba Hydro on
- 11 this project, on the MMTP project in March of
- 12 2013. I consulted with Hydro on the use of the
- 13 EPRI-GTC Siting Methodology, and my team helped
- 14 implement this methodology on this project by
- 15 facilitating model building workshops and
- 16 implementing these models to identify corridors
- 17 and evaluate routes.
- The 2006 EPRI report documented the
- 19 "state of the art" methodology at the time. Since
- 20 that time the methodology has been applied in
- 21 other jurisdictions within a variety of physical
- 22 and social environments. Because the differences
- 23 between physical and social environments, the
- 24 methodology has also often been enhanced in those
- other jurisdictions. As with many standard

- 1 processes, it has been refined over the years.
- 2 The implementation of methodology varies from one
- 3 jurisdiction to the other.
- 4 The MMTP project was among the most
- 5 rigorous and transparent implementations of the
- 6 methodology to date. It included as extensive
- 7 public engagement and transparent documentation of
- 8 any project with which I have been involved. I
- 9 was especially impressed by Manitoba Hydro's grasp
- 10 of the technical concepts and their application to
- 11 a siting process.
- 12 So, you know, to save you from reading
- 13 the EPRI report from 2006, I have kind of hit on
- 14 some of the common themes of the EPRI methodology.
- 15 Number one, projects that use this methodology use
- 16 a data driven and objective process. Projects
- 17 leverage external stakeholder input from
- 18 representative organizations to help calibrate the
- 19 Alternative Corridor model using the Analytical
- 20 Hierarchy and the Modified Delphi processes.
- 21 Projects rely on routing experts to identify
- 22 alternate routes using the Alternate Corridors as
- 23 a quide. Projects leverage internal experts to
- 24 calibrate the Alternate Route Evaluation Model.
- 25 We use the Alternate Route Evaluation Model to

- 1 help identify the top routes. And finally, we
- 2 leverage internal expert judgment to calibrate the
- 3 Preference Determination Model, also known as the
- 4 Expert Judgment Model in the EPRI report.
- 5 So the methodology is analogous to a
- 6 funnel in which we process information. Into the
- 7 funnel goes geographic information, which is
- 8 calibrated with community concerns, natural
- 9 concerns and engineering considerations. Each
- 10 phase of the process is like a filter in the
- 11 funnel which is used to reduce the area of
- 12 consideration. As the area of focus is reduced,
- 13 we're able to invest more effort into studying the
- 14 area at a greater level of detail. For example,
- 15 it's common to use 30 metre satellite imagery at
- 16 the macro corridor analysis phase, aerial
- 17 photography based analysis on five metre
- 18 resolution for alternate corridors, and very
- 19 detailed one metre engineering survey data to
- 20 refine the final route. We can also collect more
- 21 detailed information as we proceed through the
- 22 funnel leveraging external engagement and field
- 23 studies. The bottom of the funnel results in a
- 24 preferred route for the transmission line.
- There are opportunities for

- 1 stakeholder engagement through the process. It's
- 2 common to calibrate the Alternate Corridor Model
- 3 with external stakeholder input through a
- 4 workshop. When facilitating the workshop to
- 5 calibrate the Southern Manitoba Corridor Model, we
- 6 leveraged tools and techniques developed in the
- 7 EPRI project and refined through implementations
- 8 in other jurisdictions.
- 9 Thirty participants representing
- 10 different stakeholders took part in a workshop
- 11 that occurred over three days. After reviewing
- 12 the methodology, the participants refined the
- 13 siting criteria within their area of expertise.
- 14 Once the criteria were identified, the
- 15 stakeholders provided quantitative input processed
- 16 through multiple rounds of discussion and
- 17 consensus building. The stakeholders who
- 18 participated in this workshop defined the
- 19 criteria, the relative suitability of areas to
- 20 host a transmission line, and the relative
- 21 importance of the criteria. This model was then
- 22 used to identify alternate corridors.
- The project team identified routes
- 24 within the alternate corridors and then used the
- 25 Alternate Route Evaluation Model to filter out the

- 1 top routes for further consideration. Finally,
- 2 the Preference Determination Model was used by the
- 3 project team to select the preferred route. This
- 4 resulted in documentation of the characteristics
- 5 of the route alternatives and the rationale for
- 6 the preferred route.
- 7 No two transmission siting projects
- 8 are the same. A basic transmission project goes
- 9 from one point to another point. More interesting
- 10 transmission projects go from a line to a point.
- 11 And the most interesting projects go from multiple
- 12 potential starting points to multiple potential
- 13 end points. MMTP is an example of one of those
- 14 most interesting projects. We have options to
- 15 start the new right-of-way from a point along the
- 16 Riel to Vivian corridor, that Maggie pointed out
- 17 that was shown in yellow. And our destination is
- 18 somewhere along the U.S. border and ultimately
- 19 into the U.S. This is the Minnesota portion of
- 20 the project that's outside of our routing scope
- 21 which is in the U.S.
- The variety of potential endpoints
- 23 resulted in iterative siting studies. These
- 24 studies used an elimination process to reach the
- 25 preferred route. We were able to leverage the

- 1 EPRI methodology to assist with this process.
- 2 One of the first tasks was to identify
- 3 a border crossing so we could focus our efforts on
- 4 finding the preferred route to that crossing. We
- 5 chose to work through the funnel toward each of
- 6 three border crossings so that we could evaluate
- 7 them with consideration of the impact of the
- 8 crossing location to the entire route. In doing
- 9 so, we were able to identify representative routes
- 10 to each crossing and then compare those
- 11 representative routes. This is how we evaluated
- 12 the border crossings, by comparing the
- 13 representative routes to those crossings.
- 14 After the border crossing was
- 15 selected, we were then able to back up and seek
- 16 additional input and refine the route
- 17 alternatives. We performed this over two more
- 18 iterations, each time receiving input from the
- 19 public and making adjustments accordingly. In the
- 20 end, we produced a preferred route which balances
- 21 impacts to people with the natural environment and
- 22 engineering concerns.
- Now I'll hand it back over to Maggie.
- 24 MS. BRATLAND: So as Jessie mentioned,
- 25 the EPRI methodology makes use of a number of

- 1 models, which we covered in detail in the
- 2 presentation on January 19th. These models are
- 3 tools that provide a structured and transparent
- 4 way to represent the trade-offs between
- 5 stakeholder interests and land uses, along with
- 6 the decision factors, that guide the transmission
- 7 line routing process.
- 8 Each step in the funnel is informed by
- 9 models that use criteria and associated
- 10 weightings. I like to group these two models into
- 11 two categories, the first category is Planning and
- 12 the second is Evaluation. The Planning Model, the
- 13 Macro Corridor Model, and the Alternative Corridor
- 14 Model, describe the relative suitability of
- 15 features on the landscape to co-exist with the
- 16 transmission line.
- 17 The Evaluation Model, known as the
- 18 Alternate Route Evaluation Model and the
- 19 Preference Determination Model, are used to
- 20 measure features of routes. They enable an apples
- 21 to apples comparison of large number of routes,
- 22 and then finally help us to select a preferred
- 23 route from a smaller subset of routes. These
- 24 tools help structure quantitative information
- 25 which inform the decisions on the project. And

- 1 like all tools, it's people that use them.
- 2 This brings me to the topic of the
- 3 teams that participated in our route planning and
- 4 evaluation processes. So as I noted, the teams
- 5 used the tools in the EPRI-GTC methodology to
- 6 inform decision-making. This brings together a
- 7 large amount of data and information about the
- 8 landscape and interests on the lands, and
- 9 additional information developed and received
- 10 through engagement feedback and discipline
- 11 specialist study, to help us in leveraging the
- 12 expertise and knowledge and make decisions in a
- 13 project team environment.
- 14 These tools bring together the
- 15 collective knowledge of a team of professionals in
- 16 making transparent decisions when determining a
- 17 route. We had a number of teams that functioned
- 18 on this project.
- 19 I'll start with the management team
- 20 because you have already met one of them. The
- 21 management team consisted of the transmission
- 22 business unit senior managers. This team
- 23 developed the criteria and weights of the
- 24 preference determination model that we'll be
- 25 talking more about.

- 1 The routing consultant, Mr. Glasgow
- 2 and his team, guided the design and implementation
- 3 of the EPRI-GTC process. They facilitated route
- 4 evaluation workshops and analyzed geo-spatial data
- 5 in developing metrics and statistics.
- 6 The routing team. The routing team
- 7 developed alternative routes and mitigative
- 8 segments and helped to coordinate the routing
- 9 process.
- 10 Discipline specialists, also known as
- 11 subject matter experts, conducted field studies
- 12 and assessed the valued components of the project.
- 13 They formed the members of the perspectives within
- 14 the project team, and this also included our
- 15 technical engineering specialists.
- Our engagement teams, which you would
- 17 have heard from yesterday, coordinated the
- 18 gathering of input from the public engagement
- 19 process, and the First Nation and Metis engagement
- 20 processes, and participated in the route
- 21 evaluation workshop.
- Which brings me finally to the project
- 23 team. The project team consists of representation
- 24 of the teams noted, and participated in
- 25 decision-making using the models and determining

- 1 the final preferred route. The project team at
- 2 any given time consisted of roughly 25 to 40
- 3 members.
- 4 In total, roughly 60 people were
- 5 directly involved in route planning and
- 6 decision-making, and more than 100 were involved
- 7 in assessments and analysis that fed into this
- 8 process.
- 9 I apologize for the tiny print. This
- 10 is merely to remind us all of a document that's in
- 11 chapter 5, I like to call it the napkin. It's the
- 12 overall representation of the steps in routing.
- 13 It's the overall routing at a glance.
- 14 And I want to run you through this
- 15 primarily to help us follow through on the
- 16 left-hand screen. Because what we're going to do
- is show you visually what happens from the start
- 18 of the routing process to the very end of the
- 19 routing process. It's going to go fairly quickly.
- 20 I'm not going to give you a lot of detail, but I
- 21 wanted to give the visual of the story that we're
- 22 going to follow through for the rest of this,
- 23 hopefully, not too boring presentation.
- 24 Okay. So routing is broken into three
- 25 routes. So on our screen here we have Round 1,

- 1 Round 2 and Round 3. Each round has an objective
- 2 to narrow the area under consideration, because we
- 3 are taking a broad geographic area and trying to
- 4 find the place for an 80 to 100 metre wide
- 5 right-of-way for a preferred route.
- 6 As Jessie mentioned, often
- 7 transmission line routing starts with a defined
- 8 start point and one defined endpoint. On this
- 9 project that was not the case. Manitoba Hydro
- 10 decided to apply the EPRI-GTC methodology to help
- 11 inform the process of selecting a border crossing.
- 12 So now on the visual, on the second
- 13 slide of the screen, I'm going to walk us through
- 14 the steps of the methodology that lead us to that
- 15 visually.
- So we're starting with planning model.
- 17 So our first planning model was the macro corridor
- 18 model. We developed macro corridors on the
- 19 landscape to the border crossing that helped us in
- 20 delineating a route planning area. This black box
- 21 is the route planning area, and those three black
- 22 boxes are the border crossings under
- 23 consideration. So throughout the presentation
- 24 I'll refer to these border crossings, they are
- 25 Gardenton, Piney West, Piney East.

- 1 The next step, once we have our route
- 2 planning area, is to determine alternate
- 3 corridors. These alternate corridors in the
- 4 purple shade are developed with the help of the
- 5 alternate corridor model that Mr. Glasgow
- 6 mentioned was developed with the use of the
- 7 stakeholder feedback. These alternate corridors
- 8 help to map the stakeholder values on the
- 9 landscape, and they inform areas for our route
- 10 planners to then plan routes within.
- 11 Our route planners, with the help of
- 12 these corridors, and additional information that
- 13 we'll get into, develop route segments that
- 14 connect into alternative routes. So these dashed
- 15 blue lines are route segments. Route segments are
- 16 then evaluated, helping us to select a border
- 17 crossing. The border crossing that was selected
- 18 was Piney west.
- 19 We then move into Round 2 of our
- 20 routing process, with the objective to evaluate
- 21 alternative routes to the selective border
- 22 crossing and selective preferred route. These
- 23 were the Round 2 routes that were evaluated in
- 24 making the determination of a preferred route.
- 25 This was the preferred route that was selected in

- 1 Round 2.
- We go out for feedback engagement and
- 3 analysis on the preferred route. We get
- 4 considerable feedback, and we develop additional
- 5 routes for consideration from that feedback.
- 6 These routes are then evaluated again using the
- 7 comparative evaluation tools of the methodology.
- 8 And finally we arrive at a preferred route for our
- 9 project.
- 10 So that's many steps, lots of
- 11 information. We are going to next walk you
- 12 through each stage that occurs in routing. So on
- 13 the top here we have each stage that we have
- 14 broken down. James and I are going to take turns
- 15 walking you through the overall approach to
- 16 planning of routes, the feedback and analysis
- 17 step, and then the comparative evaluation exercise
- 18 that results in decisions.
- 19 I'm now going to hand it over to
- 20 James, who's going to describe the planning and
- 21 feedback steps.
- MR. MATTHEWSON: The objective in
- 23 transmission line routing is to develop a
- 24 preferred route for a proposed transmission line,
- 25 based on the consideration of multiple factors and

- 1 interests, with the overarching goal of minimizing
- 2 the overall effect of the route.
- There are numerous potential effects
- 4 associated with routing new transmission
- 5 facilities. These potential effects are not
- 6 typically mutually exclusive, meaning the
- 7 avoidance of one potential effect will often
- 8 result in a trade-off with another.
- 9 There are three primary considerations
- 10 for how potential effects can be managed. Avoid,
- 11 which is the preference. We'll always need to
- 12 avoid an effect when possible. This is not always
- 13 feasible, particularly in highly developed areas
- 14 like urban environments where multiple effects
- 15 could occur and overlap.
- 16 Mitigate: Mitigating effects involves
- 17 finding ways to minimize the degree the potential
- 18 effects pose when a specific effect cannot be
- 19 avoided.
- 20 Compensate: When an effect cannot be
- 21 avoided or reasonably mitigated, the last option
- is to compensate for the effect or loss caused by
- 23 a project. Compensation can come in many forms
- 24 and is typically developed and balanced through
- 25 discussion with agencies, other affected

- 1 stakeholders, landowners, and the consideration of
- 2 project engineering cost constraints.
- 3 Generally the objective when
- 4 developing routes is to avoid effects that are
- 5 difficult to compensate or mitigate. The more
- 6 complex the mitigation or compensation required,
- 7 the greater the pressure will be to simply avoid
- 8 the potential effect, if possible.
- 9 General siting principles were used as
- 10 high level guidance for overall alternative route
- 11 segment development. These segments were based on
- 12 professional judgment and experience drawn from a
- 13 multi-disciplinary team, including additional
- 14 guidance drawn from previous CEC recommendations,
- 15 historic feedback from regulatory agencies, and
- 16 feedback from public and First Nations and Metis
- 17 engagement processes received during previous
- 18 Manitoba Hydro transmission projects across
- 19 southern Manitoba.
- 20 The siting principles include avoiding
- 21 or limiting effects to residences, avoiding or
- 22 limiting effects to the environment, utilizing
- 23 existing transmission facilities where possible,
- 24 parallel or following existing linear developments
- 25 that are compatible, avoid or limit effects to

- 1 recreational areas, avoid or limit effects to
- 2 agricultural operations, while considering the
- 3 length and cost of proposed facilities. It is
- 4 generally accepted that the shorter the route, the
- 5 lower the potential for effects.
- 6 The alternate route corridor
- 7 composite, which is a merging of all the
- 8 perspectives, the engineering, the natural, the
- 9 built, and the simple average as illustrated on
- 10 the left, form a valuable stakeholder informed
- 11 backdrop for route planning. The development of
- 12 each perspective corridor was discussed on the
- 13 January 19th workshop. The corridors were
- 14 developed from the east side of the Riel/Vivian
- 15 corridor, and to Piney East and Piney West border
- 16 crossings, and it was run from the west side of
- 17 the Riel/Vivian transmission corridor to all
- 18 crossings.
- 19 Alternative route segments were
- 20 developed by Manitoba Hydro routing team and take
- 21 into account a number of considerations. The
- 22 routing team is made up of senior transmission
- 23 technical specialists in both engineering and
- 24 design, and environmental assessment. It's a
- 25 combined experience of over 35 years, and involved

- 1 in routing over 3,000 kilometres of transmission
- 2 lines in Manitoba.
- 3 Planning considerations include the
- 4 same factors that determine the alternate
- 5 corridors, but at a much smaller scale, finer
- 6 level of detail. Along with technical and
- 7 environmental constraints, such as number or type
- 8 of structures, tower structures, in particular the
- 9 need for larger, more costly angle structures,
- 10 land use and environmental features.
- 11 The routing team has participated in
- 12 the public engagement process and the First Nation
- 13 and Metis engagement processes for many projects,
- 14 as well as observed the alternate corridor model
- 15 development with the technical data holders. So
- 16 with the routing team involved in all of those
- 17 different components of the entire siting process,
- 18 they have the benefit of being informed from a
- 19 variety of different stakeholders, and getting the
- 20 breadth of experience of all those different
- 21 experts that are involved, the experts being the
- 22 technical data holders or the landowner, or First
- 23 Nations and Metis that have that local knowledge
- 24 that is key to developing mitigative segments and
- 25 route segments.

- 1 The routing team developed alternative
- 2 route segments instead of complete alternative
- 3 routes, as this provides the maximum number of
- 4 routing possibilities informed by technical
- 5 experience of the team. The alternative route
- 6 segment is simply a portion of the route between
- 7 two intersections. So this route here, that would
- 8 be an intersection, and then it would go to that
- 9 intersection, so that would be considered one
- 10 segment.
- 11 With the siting principles and
- 12 alternative corridors, the next step for Manitoba
- 13 Hydro routing team was to develop alternate route
- 14 segments within the alternate route corridors, to
- 15 the extent possible. The general assumption at
- 16 this stage is that the routing proposed within the
- 17 alternate corridors should theoretically pose
- 18 lower levels of overall impacts relative to the
- 19 routing outside of them. The routing team
- 20 assessed the route planning area for routing
- 21 bottlenecks, which are areas which limit the
- 22 possibilities of route segments. So on the
- 23 left-hand side of the screen here, these are --
- 24 this illustrates the landscape by which we, as you
- 25 can see by the route planning area outlined -- by

- 1 which the route planning segments were developed.
- 2 All the different colours on the map represent
- 3 different levels of constraints. So the
- 4 bottlenecks, as I was referring to, are areas that
- 5 really constrain route development. The yellow
- 6 are really high density residential areas. And
- 7 these more orange are these very large wetland
- 8 complexes -- sorry, the blue are the large wetland
- 9 complexes that exist in this portion of the
- 10 eastern part of the study area. The orange
- 11 represent areas of special interest, as designated
- 12 by Manitoba Sustainable Development. So as you
- 13 can see, the other multitude of different coloured
- 14 dots represent buildings and homes and other
- 15 features on the landscape, agricultural
- 16 operations. The black areas represent the areas,
- 17 additional areas of least preference that are
- 18 prohibited from future development. This is the
- 19 tall grass prairie area. This is that Watson P.
- 20 Davidson Wildlife Management Area that is legally
- 21 protected against any development.
- 22 So once those bottlenecks are
- 23 identified and the route planners are starting to
- 24 draw segments, we try to start on those segments
- and try and find segments that navigate through

- 1 those bottleneck areas. And once we have got
- 2 those segments developed, we start to spread out
- 3 and start joining those segments together to form,
- 4 which could be formed into routes.
- 5 Once we have done all this, typically
- 6 it's on large scale maps so you can kind of see
- 7 the whole area, we take those digitized kind of
- 8 segments, and the very rough lines that we draw on
- 9 these maps, we digitize them into a geographic
- 10 information system, and then we further refine and
- 11 assess them with the full power of the information
- of the numerous geo-spatial data layers, including
- 13 the areas of least preference, the buildings, and
- 14 multiple versions of aerial imagery, and other
- 15 model output that the corridors provide. The
- 16 information reviewed include the additional data
- 17 collected through field surveys of the corridors
- 18 by the project team, which catalogue new
- 19 development, buildings, new homes and structures
- 20 that had developed on the landscape since the
- 21 inventory of the imagery or data was collected.
- 22 So this only represents a very small
- 23 portion of the geo-spatial information. But when
- 24 you are looking at a paper map, you can only layer
- 25 so many pieces of information on top of it before

- 1 you can't see any ground after. So with the power
- of the geographic information system, we can turn
- 3 layers on and off through a variety of the
- 4 information that was collected through the
- 5 alternate corridor workshops. There were
- 6 literally hundreds of different data sets that
- 7 Manitoba Hydro has for this area to inform its
- 8 route planning.
- 9 So the route planning team worked
- 10 collaboratively to develop a series of alternative
- 11 route segments, based on a variety of
- 12 considerations and concerns specific to the
- 13 different disciplines involved related to the
- 14 potential effects and associated layers of
- 15 geographic information. It really starts with
- 16 those considerations of the areas of least
- 17 preference within the route planning area that
- 18 were identified with the stakeholder input from
- 19 the alternate corridor model.
- 20 As a result of the route segments that
- 21 were drawn, we ended up drawing 87 individual
- 22 alternate route segments, developed within the
- 23 route planning area, through the initial route
- 24 planning exercise. And additional mitigative
- 25 segments were identified as we moved through the

- 1 process. When combined, there is approximately
- 2 750,000 potential routes, when you join these
- 3 segments together.
- 4 Now, the network of routes start at a
- 5 single start point in this project, at some point
- 6 along the southern loop corridor, and terminated
- 7 at one of the different border crossing options
- 8 that we have at the bottom. So it's important to
- 9 note that not all of these routes are logical. So
- when we say there's 750,000 routes, they're not
- 11 all logical routes. And the total number of all
- 12 potential mathematical combinations that are
- 13 possible using the number of connective segments.
- 14 So to illustrate what one of those 750,000 routes
- 15 could have been, we could have started here and we
- 16 could have gone like this, and then it would have
- joined and then went like that, then went like
- 18 this, and followed one of those segments to that
- 19 border crossing. An illogical route that would
- 20 have been generated, because we are trying to
- 21 connect and look at every possible route
- 22 combination of segments, this segment could have
- 23 went like this, back up, down, come back to this
- 24 way and looped back around, and came down to the
- 25 right and then went down this way. So there's a

- 1 variety of things and that's where we have a
- 2 variety of tools in the models and the steps of
- 3 the EPRI-GTC methodology to narrow down the
- 4 750,000 routes into something that is manageable
- 5 for evaluation.
- 6 The end result, as I mentioned, is
- 7 this interconnected network of alternate route
- 8 segments is to be presented to Round 1, to the
- 9 public, First Nations, Metis engagement processes,
- 10 for further analysis, and further analysis by
- 11 those subject matter experts, those discipline
- 12 specialists.
- 13 At this stage Manitoba Hydro has
- 14 developed route segments with all of the
- 15 considerations discussed, with the understanding
- 16 that they are ready for the next data feedback
- 17 analysis, which will result in the development of
- 18 mitigative segments that respond to this feedback.
- 19 This can include additions, modifications or
- 20 deletions to the network of route segments.
- 21 That's what we have illustrated here.
- 22 So the feedback analysis step, as I
- 23 mentioned, comes from participants, the discipline
- 24 specialists, and the analysis of information
- 25 gathered from all of those different processes.

- 1 So on the right-hand side of the
- 2 screen, this is an illustration of all the
- 3 different data that was collected through --
- 4 sorry, not data, observations that were collected
- 5 through the field studies. So each one of these
- 6 dots represents something on the landscape that
- 7 either Manitoba Hydro employees saw, or one of the
- 8 routing -- sorry, the project team saw in its
- 9 field studies.
- 10 So as an example, the purple dots are
- 11 residences and buildings that were mapped through
- 12 driving every route in the study area and
- documenting the presence or absence of homes,
- 14 agricultural buildings, all types of buildings.
- 15 We of course first initially had done this using
- 16 aerial imagery, but the imagery is a few years
- 17 old, so we go out and we drive every single road
- 18 and visually confirm what type of buildings are on
- 19 the landscapes, or features. There could be an
- 20 antenna for a cellular tower, there could be a
- 21 grain bin, a variety of different information.
- The various other colours represent
- 23 all the different dots, observations collected
- 24 through field studies from the biophysical team.
- 25 The gold coloured dots represent the observations

- 1 collected through aerial surveys.
- 2 So the intent of this image is to
- 3 illustrate the level of observation, direct
- 4 observation that the project team had on the
- 5 landscape which informed the route development
- 6 process and the route evaluation process.
- 7 The set of alternative route segments
- 8 are presented to the public and to our project
- 9 team for further evaluation. At the same time,
- 10 the public and First Nation and Metis engagement
- 11 processes worked to present alternatives and gain
- 12 feedback from participants, as described in the
- 13 previous presentation by Ms. Coughlin and
- 14 Mr. Joyal. The information from the engagement
- 15 process informs the environmental assessment and
- 16 informs the evaluation of alternative routes. But
- 17 before routes are evaluated, all the feedback is
- 18 gathered, analyzed and developed what we call
- 19 mitigative segments.
- 20 Mitigative segments are developed in
- 21 response to feedback or concerns received through
- 22 research and engagement programs. So the planned
- 23 routes that went out for Round 1 are the purple.
- 24 So those are the routes that Manitoba Hydro drew
- and presented to the public. The blue dashed

- 1 lines represent the mitigative segments that were
- 2 collected in a variety of ways. So they could be
- 3 developed from feedback. So route segment could
- 4 have been developed by the routing engagement
- 5 teams themselves to respond to concerns heard. So
- 6 we may have not got a direct have a look at this
- 7 route, we may have just gotten general concerns
- 8 from the public about more paralleling, more
- 9 avoidance of a particular feature. So we
- 10 developed some mitigative segments, some of which
- 11 are in blue there. The other form that we get are
- 12 direct. So in some cases the route segments are
- 13 proposed directly by participants in the
- 14 engagement process.
- In an open house workshop, as
- 16 Mr. Joyal presented, there are very large maps of
- 17 the entire area. They are very detailed. People
- 18 can see where their homes are, where their
- 19 agricultural operations are, where there are
- 20 forested areas, and areas they go and hunt or do
- 21 traditional practices. They can draw right on
- those maps and say, hey, what about a route here,
- 23 what about a route over here?
- 24 The routing team reviews those
- 25 mitigative segments for viability through three

- 1 main tests. So, is it technically feasible from
- 2 an engineering perspective, what has been drawn?
- 3 Is the movement of a tower to lengthen a span to
- 4 avoid an obstacle possible? So we talked about,
- 5 Mr. Swatek talked about span lengths and angle
- 6 towers. So those towers, there's engineering
- 7 constraints on how far apart they can be and the
- 8 angle by which they can turn. Those have to be
- 9 evaluated for any mitigative segment that's added.
- 10 Is it a net benefit or mutual with respect to
- 11 potential effect? So if the segment is simply
- 12 moving from one property to another, with no
- 13 apparent net benefit, such as shifting effects.
- 14 So if we had a proposed route mitigative segment
- 15 from a landowner that said, well, put it over here
- on this mile road, we would evaluate that and say,
- 17 well, there doesn't appear to be any change in
- 18 effect other than shifting the effect from one
- 19 landowner to another. It didn't seem to mitigate
- 20 any direct concern other than a particular
- 21 person's concern.
- The third test, is it financially
- 23 feasible and responsible to ratepayers? So a
- 24 direct recommendation may be modified. So while
- 25 somebody may have drawn a route that says, well,

- 1 go way out here or go in this way, there may be
- 2 technical reasons, financial reasons, it's just
- 3 excessively long. But what we will do is we'll
- 4 take that mitigative segment and try to modify
- 5 that as route planners, to figure out if there's a
- 6 way to still address their concern but do it in a
- 7 financially responsible manner.
- 8 So these segments are included for
- 9 evaluation alongside the routes developed
- 10 initially by the routing team.
- 11 So once combined together, once we
- 12 take the segments, the blue mitigative segments
- 13 and the purple initial route plan segments, we
- 14 combine them together, we call those segments all
- 15 together. And when we run the models to join them
- 16 into routes, they form evaluation routes.
- 17 So now I'm going to pass the
- 18 presentation back to Maggie who is going to
- 19 discuss the steps of comparing those evaluation
- 20 routes.
- MS. BRATLAND: Thank you, James.
- 22 Once our mitigative segments have been
- 23 added, and feedback and analysis from a round is
- 24 complete, the project team participates in a route
- 25 evaluation workshop. This image here is an image

- 1 from one of those route evaluation workshops. At
- 2 this workshop, the project team comes together,
- 3 armed with the analysis and feedback they have
- 4 received on the specific routes in order to
- 5 conduct their evaluation and make decisions.
- 6 Two of the EPRI-GTC tools are used at
- 7 this stage, the alternate route evaluation model
- 8 and the preference determination model. I will
- 9 likely start using the terminology AREM for the
- 10 Alternate Route Evaluation Model, and PDM for the
- 11 Preference Determination Model, because I'm going
- 12 to say it a lot. So hopefully that won't be too
- 13 confusing.
- 14 These models and how their criteria
- 15 are developed was described in the January 19th
- 16 presentation, and is described in detail in the
- 17 EIS, and was touched on in terms of preference
- 18 determination earlier by Mr. Mailey.
- So today we're going to talk more
- 20 about these workshops and how are these models
- 21 actually used by people to inform decision making?
- Now, remember I said the project team
- 23 represents roughly 20 to 40 people. They come
- 24 together to these workshops and participate in
- 25 discussions and deliberations over the information

- 1 we have received and the routes that are
- 2 considered. These discussions are lead by
- 3 facilitators. The facilitators on this project
- 4 were primarily myself and Mr. Glasgow. We guided
- 5 the project team through an agenda. We guided
- 6 them through consideration of the alternatives and
- 7 the models and the data that was available to
- 8 them. In this setting, we challenged and
- 9 encouraged participants to challenge the positions
- 10 and information represented at the meeting, in
- 11 order to drive the team to a strong common
- 12 understanding, and ultimately consensus
- 13 decision-making at the end.
- 14 So let's start by looking at our
- 15 Alternative Route Evaluation Model. The model
- 16 criteria and weightings are on the right-hand
- 17 screen for your consideration, and I'll be
- 18 speaking to the left-hand slide.
- 19 The first objective of our route
- 20 evaluation workshop is to select a set of
- 21 finalists from a very large set of possible route
- 22 alternatives. As Mr. Matthewson mentioned in
- 23 Round 1, we had roughly 700,000 route alternatives
- 24 to begin. The AREM model is used to calculate
- 25 metrics and statistics for the evaluation routes.

- 1 The statistics are then normalized, distributing
- 2 values along a scale of 0 to 1. This allows the
- 3 criteria with different units, such as miles or
- 4 counts or dollars, to be added and compared, which
- 5 enables an apples to apples route comparison.
- 6 The criteria in the AREM model are
- 7 grouped into the three perspectives that we'll be
- 8 discussing. The statistics are calculated with
- 9 differing levels of emphasis for each perspective
- 10 to emphasize the routes that will be preferred
- 11 from each of the perspectives. Four perspectives
- 12 are calculated and compared: Built, natural,
- 13 engineering, and a simple average which weighs all
- 14 perspectives equally. With consideration of these
- 15 statistics and review of routes from each
- 16 perspective, the team looks at the differences
- 17 between routes, and can be helped to quickly focus
- 18 on the strengths and weaknesses and the attributes
- 19 of routes, and use this information, as well as
- 20 their feedback and analysis, to help screen in a
- 21 subset of finalists.
- This subset of finalists that is
- 23 screened in for further consideration, then moves
- 24 onto the next stage of preference determination.
- So on my right-hand screen, our

- 1 right-hand screen, we have the Preference
- 2 Determination Model criteria and weightings
- 3 developed by the management team.
- 4 Once the set of finalists is selected,
- 5 the Preference Determination Model is used for
- 6 further evaluation. In preference determination,
- 7 the subset of route finalists is compared against
- 8 each other. At this step, this tool allows the
- 9 project team to bring additional important
- 10 information, and information that is not measured
- 11 necessarily in metres or dollars but very
- 12 important to consider, into the route evaluation
- 13 step. More intangible elements, such as community
- 14 feedback and cultural values or interests, or the
- 15 interconnectedness of landscapes features, for
- 16 example, can be better represented through this
- 17 discussion. This helps the team to focus on the
- 18 differences between routes, because this is
- 19 essentially a comparative evaluation. We're
- 20 trying to decide what is different about these
- 21 items and what should drive our choice. It helps
- 22 to evaluate the significance of those differences
- 23 and results in the assignment of a score by the
- 24 project team against each of these criteria. And
- 25 when they assign their score for a criteria -- so

- 1 if we're looking at the criteria of cost, one
- 2 route must receive an assignment of one. One
- 3 indicates most preferred against that criteria.
- 4 And all other levels of preference scoring are
- 5 assigned relative to that.
- 6 So for a criteria such as cost, this
- 7 can be quite straightforward as it is a
- 8 quantitative element. For a criteria such as
- 9 community, this is decidedly more difficult. In
- 10 considering feedback from the public engagement
- 11 processes, and the First Nation and Metis
- 12 engagement processes, the team considers
- 13 preferences, concerns, interests, which vary from
- 14 location to location as the land types, land uses
- 15 and interests vary.
- In scoring of each route, subsets of
- 17 the project team evaluate the cumulative data and
- 18 feedback gathered to date, and then bring that to
- 19 bear in the process, along with their collective
- 20 knowledge, judgment and experience.
- 21 So we have breakout sessions in the
- 22 workshop. Community is initially scored by the
- 23 engagement team. Cost and system reliability are
- 24 initially scored by the engineering team. The
- 25 natural and built criteria are initially scored by

- 1 the relevant team of discipline specialists. And
- 2 then finally, schedule risk is scored by the group
- 3 of all project team members as elements of each of
- 4 those groups are represented under schedule risk.
- 5 In all cases, the preference scores
- 6 that are assigned in a breakout group are then
- 7 brought back to the larger project team
- 8 discussion, presented to the overall project team,
- 9 along with the rationale driving those scores, for
- 10 challenge, discussion, and ultimately a shared
- 11 understanding and consensus decision. So that's a
- 12 little bit behind the background of how these
- 13 workshops generally play out.
- 14 So now that we have walked through
- 15 each of the steps of a round of routing and what
- 16 happens with these tools, we're going to go back
- 17 to Round 1 and walk through the specific
- 18 consideration in each of the stages of a routing.
- 19 So I'm going to turn it back to James who is going
- 20 to start us through the planning stage of Round 1.
- MR. MATTHEWSON: So as Maggie
- 22 described, I had previously described route
- 23 planning at an overall level. Now we're going to
- 24 go into the specifics of each round. So we'll
- 25 begin with Round 1.

- 1 The objective of Round 1, as you heard
- 2 from Mr. Glasgow, was to determine a border
- 3 crossing for the project. The transmission line
- 4 must connect to a point of the border. Therefore
- 5 a process was developed with Minnesota Power to
- 6 allow for a structured approach to negotiating a
- 7 border crossing point that both parties could
- 8 agree was in the best overall interest of the
- 9 project.
- 10 First each party progressed through
- 11 their separate routing and engagement processes to
- 12 gather feedback, evaluate options, and select a
- 13 preferred crossing. Then information was shared,
- 14 and using the overall considerations of length,
- 15 schedule, community, and permitting a decision to
- 16 be made regarding the crossing point in the best
- 17 interest of the project.
- 18 The alternate route segments presented
- 19 in Round 1 were designed to exit the south loop
- 20 corridor and cross a variety of landscapes and
- 21 land uses. Guided by the alternate corridors in a
- 22 technically feasible manner, to each of the border
- 23 crossings, options were provided to solicit
- 24 feedback on the trade-offs between those options.
- 25 As we can illustrate, some of those options were

- 1 within agricultural lands, some of them were
- 2 within forested lands, some on them were within
- 3 wetlands and pasture lands, some of them were on
- 4 various sides of M602F, the existing 500 kV
- 5 transmission line.
- 6 We considered the areas of least
- 7 preference. Of note, the starting point of Dorsey
- 8 and the endpoint of three border crossings were
- 9 planning constraints, along with the 10 kilometre
- 10 separation buffer Mr. Swatek discussed. That
- 11 separation buffer was in place for the Round 1
- 12 route planning. And as we've discussed
- 13 previously, that buffer was subsequently relaxed
- 14 when we moved through evaluation and through the
- 15 route planning process, as we got and received
- 16 further information from other studies and other
- 17 sources of information, such as engagement which
- 18 encouraged the use of corridors as much as
- 19 possible, existing corridors.
- In addition to the meetings, open
- 21 houses and discussions that were part of the
- 22 public engagement, and First Nations and Metis
- 23 engagement processes, there were also specific
- 24 workshops held to gather input into route
- 25 selection criteria. So the AREM criteria that Ms.

- 1 Bratland discussed, as per the CEC recommendation
- 2 about getting input into those.
- 3 Manitoba Hydro invited stakeholder
- 4 groups, First Nations and the MMF to participate
- 5 in these workshops. These workshops were
- 6 opportunities for participants to determine route
- 7 selection criteria, most important to stakeholder
- 8 groups, identify preferences and concerns
- 9 regarding the alternative routes and preferred
- 10 border crossings, and address the route selection
- 11 criteria and suggest modifications.
- 12 At the same time there is a variety of
- 13 studies going on during this round, ongoing
- 14 discipline, specialist research and data
- 15 gathering. The weather study was under way to
- 16 inform our discussion on separation from the
- 17 existing 500 line.
- 18 So on the right-hand side of the
- 19 screen, these are some of the -- so this was an
- 20 example of the windshield survey, some of the
- 21 marsh wetland surveys that were conducted, the
- 22 open houses that were held within the community,
- as well as the development of mitigative segments.
- 24 So each border crossing was evaluated
- 25 separately in this phase, with a set of finalists

- 1 determined for each border crossing.
- 2 So as illustrated on the left, this is
- 3 the Gardenton, the Piney West and the Piney East
- 4 border crossings. We went through alternative
- 5 route evaluation and preference determination and
- 6 selected preferred route to each one of these
- 7 border crossings.
- 8 The next step was to utilize the
- 9 alternate route evaluation process to evaluate
- 10 them. And then the top routes from that process,
- 11 these preferred routes, is then moved to a final
- 12 preference determination step to enable comparison
- 13 of top routes against each other. So this step
- 14 here.
- The final preference determination
- 16 helped to flesh out the strengths and weaknesses
- of the border crossings, as illustrated by
- 18 alternative routes deemed most ideal to reach
- 19 these crossings.
- 20 So now I'll pass it back to
- 21 Ms. Bratland to discuss the evaluation.
- 22 THE CHAIRMAN: This is the Chair,
- 23 Serge Scrafield. I just wanted to ask on timing,
- 24 when we'll be having the first break of the two?
- 25 There was a logical place I think.

- 1 MS. BRATLAND: Yes, we had a little
- 2 mini discussion here to see if we felt like we
- 3 could keep going. So there is a place to break
- 4 right before Round 2.
- 5 THE CHAIRMAN: Okay.
- 6 MS. BRATLAND: If you would like to
- 7 break now, we certainly can.
- 8 THE CHAIRMAN: Is that place to break
- 9 before Round 2, that's one of the two, there will
- 10 be a second one after that as well?
- MS. BRATLAND: Sure. We can break any
- 12 time.
- 13 THE CHAIRMAN: I only raise this,
- 14 because the request from Hydro this morning was
- 15 that there was two logical breaks in the
- 16 presentation, so that's where I'm heading with the
- 17 question. Are there two logical breaks?
- MS. BRATLAND: There are two logical
- 19 breaks, we just passed one of them.
- 20 THE CHAIRMAN: Okay. Then I am going
- 21 to suggest a 10 minute break now, and then we'll
- 22 continue.
- MS. BRATLAND: Sounds good.
- 24 (PROCEEDINGS RECESSED AT 10:34 A.M.
- AND RECONVENED AT 10:45 A.M.)

- 1 THE CHAIRMAN: Welcome back everyone.
- 2 If you can take your seats and we'll recommence
- 3 the hearing where we left off. Thank you.
- 4 Okay, you're good to go when you're
- 5 ready.
- 6 MS. BRATLAND: Okay. I'm going to
- 7 take another moment to get everyone oriented to
- 8 the visuals because we're switching into a very
- 9 visual portion of the presentation.
- 10 The slide here indicates the finalists
- 11 for the border crossing selection stage of Round
- 12 1. In these slides we will be using colour coding
- 13 and labels to help you follow along on the map
- 14 screen. So blue represents route TC. You can see
- 15 route TC here. And route TC travels all the way
- 16 up through there and along the rest of that
- 17 portion of the route.
- 18 Pink represents AQS. AQS is very
- 19 similar, travels west of the Wildlife Management
- 20 Area and then diverges here towards Piney West.
- 21 Yellow is DKT. It's at the north
- 22 there -- sorry, I made it a little bigger so you
- 23 can see it, follow the laser printer down --
- 24 travels the farthest east to the Piney East border
- 25 crossing. And route EEL, which is purple, travels

- 1 to the west of the existing 500 line. Sorry, I'll
- 2 point this out as well. These grey lines
- 3 represent the existing export lines, the one
- 4 farther to the west would be line M602F, and the
- 5 line slightly further in is the 230-kilovolt
- 6 existing line. So, colours, colours.
- 7 As James noted, we determined that
- 8 using the tools of the methodology would help us
- 9 to evaluate the strengths and weaknesses of the
- 10 various ways to get to each border crossing. This
- 11 would help inform our preference for border
- 12 crossing and help us understand the land uses,
- 13 interests, and concerns that lay between the
- 14 starting point and the endpoints of different
- 15 route alternatives.
- 16 We used the metrics and statistics in
- 17 consideration of the land uses in the area to
- 18 screen in routes to each border crossing and
- 19 select preferred routes to each border crossing.
- 20 TC was the most preferred route to the
- 21 Gardenton border crossing, which is the western
- 22 most border crossing. AQS was the most preferred
- 23 route to Piney West. And EEL was the most
- 24 preferred route to Piney East. DKT was added to
- 25 include an additional eastern route for comparison

- 1 purposes.
- 2 Feedback from the public engagement
- 3 process noted that an option using predominantly
- 4 Crown land should be considered to increase the
- 5 distance from the transmission development, from
- 6 built up areas and residential communities and
- 7 agricultural lands. Adding route DKT at this
- 8 stage made sure that an option with this
- 9 consideration was included for further analysis.
- 10 Also, route EEL and route DKT are very different
- 11 routes in terms of the lands they traverse. They
- 12 represent different trade-offs, interests and
- 13 potential mitigations for issues.
- 14 The team decided that both routes
- 15 should go through to this final preference
- 16 determination step and be considered.
- 17 I'm now going to turn you to the
- 18 preference determination table at this stage of
- 19 the decision-making. Again, please note that the
- 20 routes across the top follow that same colour
- 21 coding of the routes on the map.
- So, let's start with cost. As I
- 23 mentioned, cost is scored initially by the
- 24 engineering team, and it's fairly straightforward.
- 25 It just represents the variability in the metrics

- 1 in the costs calculated for each route. In this
- 2 round, the routes vary quite a bit in terms of
- 3 length, which is a driving factor behind cost. So
- 4 you can see that the preference scores for cost
- 5 range from 1, which is always the most preferred,
- 6 to 2.2, to represent that relative difference.
- 7 For the consideration of reliability,
- 8 reliability, the key consideration here would be
- 9 the proximity to the existing 500 line and
- 10 crossing of any existing transmission lines. Any
- 11 point that you are in close distance from an
- 12 existing line of a similar purpose presents a
- 13 reliability concern, as Mr. Swatek would have
- 14 highlighted for you. And any time you cross over
- 15 an existing line introduces a point of possible
- 16 multiple failure.
- 17 Route DKT was assigned a preference
- 18 score of 3 -- 2.5, sorry, I'm trying to read this.
- 19 And all other routes were assigned a preference
- 20 score of 1. This preference scores represents the
- 21 fact that DKT is in closer proximity to the 500
- 22 line that exists and crosses that existing 500
- 23 line.
- 24 From a natural perspective, it's clear
- 25 that these routes are in very different

- 1 landscapes. Route DKT to the far east crosses the
- 2 most amount of intact natural habitat that is
- 3 forested and includes wetland areas. This was
- 4 also in an area noted by NGOs, environmental
- 5 non-government organizations, as an area
- 6 incorporating a high amount of biodiversity, and
- 7 also incorporates, as was previously noted on the
- 8 map that James shared, a number of areas of
- 9 special interest and proposed protected areas as
- 10 highlighted by Manitoba Sustainable Development.
- 11 For this reason, the natural team assigned a
- 12 preference score of 3, which would indicate less
- 13 preferred.
- In contrast, looking at route TC,
- 15 again route TC is the one that travels west the
- 16 furthest when coming out of Watson P. Davidson
- 17 Wildlife Management Area. Route TC has the
- 18 potential to affect the least amount of natural
- 19 habitat, as it travels through the more developed
- 20 area for most of its length. So it was assigned
- 21 the most preferred score of 1.
- Moving to AQS and EEL, which are our
- 23 pink and purple routes. The chief difference
- 24 between these two routes is the alignment that it
- 25 takes on either side of the Watson P. Davidson

- 1 Wildlife Management Area. Route AQS travels west
- 2 of the Wildlife Management Area on more
- 3 agricultural lands in that first western portion.
- 4 Route EEL travels east through a much less
- 5 developed area between the Watson P. Davidson
- 6 Wildlife Management Area and that Pocock Lake
- 7 ecological reserve that's not shown, and that's up
- 8 here. And then travels down through the community
- 9 of Sandilands, and then travels through a
- 10 developed agricultural area down to the border
- 11 crossing.
- 12 These two routes were considered
- 13 slightly less preferred from a natural perspective
- 14 than route TC, which remember we gave a score of
- 15 1, because of the fact that they traverse more
- 16 natural habitats, some additional wetlands and
- 17 forested areas, in comparison.
- 18 Turning to the built criteria, which
- 19 is in this column here. The built team, in their
- 20 breakout discussions, considered the proximity to
- 21 residential developments, the potential effects on
- 22 proposed future developments, and effects to
- 23 agricultural lands, as their primary
- 24 consideration.
- 25 Again, we'll start with route DKT to

- 1 the far east. DKT avoids built up areas
- 2 primarily, with the least amount of private and
- 3 agricultural lands, and is farther from
- 4 residences. So, as you might expect, the built
- 5 team ranked this most preferred and assigned a
- 6 score of 1.
- 7 In contrast, moving to route AQS and
- 8 TC, AQS affects more developed areas than DKT, and
- 9 marginally less than TC, which is reflected in the
- 10 scores that are assigned.
- 11 Route EEL is similar to route AQS, but
- 12 is east of that Wildlife Management Area and
- 13 traverses areas of residential development near
- 14 the Town of Marchand, which is up here. And then
- 15 also affects proximity to the Town of
- 16 Sandilands -- actually, I think they're villages,
- 17 so I will call them villages -- and affects more
- 18 agricultural land than route AQS. So route EEL
- 19 receives a score of 3, of less preferred.
- 20 Turning now to community
- 21 considerations. As I noted, our routes are in a
- 22 fairly broad geographic region, and these
- 23 different regions have very different land tenures
- 24 and land interests and uses. The community team
- 25 considered how well routes balanced concerns, or

- 1 incorporated preferences heard during engagement
- 2 processes. Again, a 1 here will indicate the most
- 3 preferred route based on this feedback. At this
- 4 stage, our First Nations and Metis engagement
- 5 process had some broad feedback to consider, and
- 6 we also had some site specific feedback to
- 7 consider received through public engagement.
- 8 I'm going to summarize those pieces of
- 9 feedback at a fairly high level. It wouldn't be
- 10 reasonable really to go through all of the
- 11 detailed feedback, but I will give my best high
- 12 level summary for you.
- So from the perspective of First
- 14 Nations and Metis engagement processes and what we
- 15 heard, the highest area of concern is represented
- 16 farther east in the route planning area, east of
- 17 the existing 500 line. In this area there is the
- 18 impact to, the potential impact to natural areas,
- 19 which we heard as a concern through our First
- 20 Nation and Metis engagement process, and wildlife
- 21 habitat, which is valued. There is also a high
- 22 potential for burials, gathering areas, and sites
- 23 of cultural importance in this area, with the
- 24 highest concern noted, closest to the border
- 25 crossing near Piney East.

- 1 So this region was a fairly high
- 2 concern, but the highest concern was noted down in
- 3 the far eastern corner of the route planning area,
- 4 close to what is called the Medicine Line at the
- 5 border crossing.
- 6 There are also concerns noted
- 7 regionally on the eastern side of the Watson P.
- 8 Davidson Wildlife Management Area. Again, this
- 9 was an area of high potential for heritage,
- 10 traditional use, and culturally important and
- 11 sacred sites.
- 12 From the public engagement process, we
- 13 heard concerns regarding private land, impact to
- 14 high value agricultural land, impact to
- 15 agricultural operations, and high concern related
- 16 to the proximity to residences and potential to
- 17 impact proposed developments. Proximity to
- 18 residences, the concerns heard were related to
- 19 potential health effects associated with the
- transmission project, concern about the potential
- 21 to impact property value, impact to the visual
- 22 enjoyment of the area. So, as you can see fairly
- 23 plainly on this map, the intensity of residential
- 24 development goes up as you travel west through
- 25 this planning area. We have higher value

- 1 agricultural lands as we approach the City of
- 2 Winnipeg, with larger towns and rural residential
- 3 development associated with those larger towns, so
- 4 a higher chance of proximity to residences over
- 5 here.
- 6 So not surprising, the public
- 7 engagement process provided feedback that routes
- 8 should stay primarily to the east. And the First
- 9 Nations and Metis engagement process feedback
- 10 indicated that route should stay on more developed
- 11 lands farther to the west.
- 12 One thing that those processes had in
- 13 common, however, was a preference, and that
- 14 preference was to incorporate as much paralleling
- 15 as possible. Both of those perspectives agreed
- 16 from that perspective. I think I'm going to say
- 17 perspective a lot in the next couple of days. I
- 18 apologize for overuse of the term.
- 19 So how was that reflected in the
- 20 scores assigned by the community team? The scores
- 21 assigned by community for DKT, TC and AQS were all
- 22 1, indicating these could be preferred from the
- 23 different perspectives, because they offered a
- 24 balancing of various concerns and mitigative
- options. DKT was reviewed favourably through the

- 1 public engagement process because of its distance
- 2 away from residences, and less favourably through
- 3 the First Nation and Metis engagement process
- 4 because of the predominance of Crown lands with a
- 5 high potential for traditional, sacred and
- 6 cultural uses.
- 7 So TC, AQS and EEL, now I just want to
- 8 point out here the commonality between these three
- 9 routes. They all share the same segments from
- 10 this point north.
- 11 Route TC, when it travels south of La
- 12 Broquerie and south of the Wildlife Management
- 13 Area, it does use predominantly private lands.
- 14 However, in this region here there were very few
- 15 concerns brought forward by public engagement
- 16 participants, and there was the use of favourable
- 17 alignments and parallel of the roadway. First
- 18 Nation and Metis engagement process did indicate
- 19 that there could be some areas of harvesting and
- 20 potential heritage sites in the area.
- 21 Route AQS, south of the Wildlife
- 22 Management Area, in this area here, which is the
- 23 primary difference between the three. There were
- 24 limited concerns raised with AQS as it was further
- 25 from residences, and in the southern portion makes

- 1 more use of Crown lands in this area. So from a
- 2 public engagement perspective, that was more
- 3 acceptable.
- 4 One concern from the public engagement
- 5 process for route AQS was proximity to that
- 6 Ridgeland cemetery that you heard about yesterday.
- 7 Route EEL was given the lower
- 8 preference score reflected by the 2, as there were
- 9 concerns from both engagement processes in terms
- 10 of the southern portion of this route due to the
- 11 high likelihood of heritage sites and sites of
- 12 importance from a cultural perspective, the use of
- 13 Crown lands to the east of the Watson P. Davidson
- 14 Wildlife Management Area, as well as concerns
- 15 related to the proximity to Sandilands and
- 16 Marchand. Marchand is up there, Sandilands is
- 17 down here. I wish I had those labelled. So that
- 18 was the rationale driving those community scores.
- 19 Next was a consideration of schedule.
- 20 Schedule which has a 5 per cent ranking. Schedule
- 21 was considered by the entire team and it was
- 22 determined that DKT was the least preferred
- 23 option, because of the prevalence of forested and
- 24 Crown lands. What drove this was the fact that in
- 25 highly forested areas there can be delays,

- 1 construction delays caused by bird timing windows
- 2 or other restrictions related to when you can
- 3 construct in that landscape. It can also be
- 4 difficult to construct in wetland areas in the
- 5 summer months, it's preferred to do that in the
- 6 winter months. There were also considerations
- 7 related to the amount and type of Crown land
- 8 through that area and the additional approvals
- 9 that would be required from Crown agencies in
- 10 order to gain our Environment Act licence.
- In contrast, route TC was most
- 12 preferred. Route TC had less Crown lands, and in
- 13 terms of the private lands crossed, we heard few
- 14 concerns related to the alignment of the route in
- 15 that southern area.
- Route AQS had a higher amount of
- 17 private lands that would require an acquisition
- 18 process, so it was slightly less preferred than
- 19 route TC.
- 20 EEL had more effect on the proposed
- 21 residential developments that we talked about, but
- 22 also a fair amount of Crown land approvals
- 23 associated with it, east of the Wildlife
- 24 Management Area, which could pose a risk to
- 25 schedule, and additional forested area there that

- 1 would have those same bird timing window
- 2 restrictions. So this was considered less
- 3 preferred than AQS and TC, but more preferred than
- 4 DKT, because it had less of a prevalence of
- 5 forested Crown lands that could post timing
- 6 restrictions.
- 7 And that takes us through all the
- 8 numbers in the table, which is so boring and dry,
- 9 I apologize, but I think important to go through
- 10 to understand the rationale.
- 11 So what happens now is once our teams
- 12 has proposed their scores, pretend we're the
- 13 workshop, we have a vigorous discussion about the
- 14 rationale and the underpinning logic, so that the
- 15 entire team can gain an appreciation and
- 16 understanding for what drove those numbers. And
- 17 if there's consideration that there could be some
- 18 faulty logic or some confusing statements behind
- 19 it, we drive down through the heart of those and
- 20 arrive at consensus.
- 21 What results is a rank at the bottom
- 22 here, for each of the routes, with the route
- 23 receiving the lowest score becoming the
- 24 preference. So in this case, Manitoba Hydro
- 25 determined that route TC to Gardenton, in this

- 1 exercise, would be our preferred route. But
- 2 remember, we're not trying to pick a preferred
- 3 route right now, we're using the tools of the
- 4 models and the methodology to help guide our
- 5 understanding of the strengths and weaknesses of
- 6 these different routes and different landscapes,
- 7 to help inform our decision-making about a border
- 8 crossing. Because when you look at the border
- 9 zone, you can't just look at one mile by one mile,
- 10 or a small area, you have to think about how are
- 11 you going to get there? What's going to happen
- 12 between my start point and my endpoint, and what
- 13 are the balance of land uses, interests and
- 14 concerns on my way there? This exercise allowed
- 15 us to do that.
- So, through this exercise, we
- 17 determined that Gardenton was our preferred
- 18 crossing. And although predominantly private
- 19 lands leading to this crossing, there were very
- 20 few concerns heard regarding the southern segment
- 21 of the route, which runs primarily through pasture
- 22 land. The routes to this crossing were generally
- 23 shorter, and it's a fairly logical principle that
- 24 the shorter the route you have, the less potential
- 25 for impact in general you have, because you are

- 1 crossing less total acres of land. It also had
- 2 strong technical attributes, the routes to this
- 3 crossing. They were shorter, cheaper, reliable,
- 4 more favourable from natural perspective and
- 5 considerations, with a low degree of concerns
- 6 through the First Nation and Metis engagement
- 7 process. So Manitoba Hydro felt comfortable
- 8 moving forward to our discussions with Minnesota
- 9 Power, with this in mind.
- 10 As noted, Minnesota Power had
- 11 conducted their own routing exercise and
- 12 determined their own preference in terms of border
- 13 crossing. And prior to coming to this point,
- 14 where we made a determination together about what
- 15 would be a preferred border crossing, we had
- 16 established a process by which we would conduct
- 17 these discussions. And it was agreed that we
- 18 would compare length, potential effect on people,
- 19 potential effect on the environment, regulatory
- 20 agency feedback and consideration of approvals,
- 21 community feedback and schedule, when determining
- 22 a preferred crossing point in the interest of the
- 23 overall project.
- 24 Minnesota Power, through their own
- 25 exercise, indicated that Piney East was their

- 1 preferred crossing and that Piney West was not
- 2 feasible -- not Piney West, sorry, Gardenton was
- 3 not feasible, because it would affect many more
- 4 homes and productive farmland, while at the time
- 5 creating many miles of new corridor for Minnesota
- 6 Power.
- 7 So remember, they're also considering
- 8 the ways in which they can get to these border
- 9 crossings. Gardenton west from Minnesota Power
- 10 required them to go around a number of features
- 11 which would add additional length. They also had
- 12 concerns regarding high levels of biodiversity in
- 13 this region of the project area. So in contrast
- 14 to Manitoba Hydro's concerns, our concerns around
- 15 higher biodiversity and natural paths were towards
- 16 this end.
- 17 So we met together, we shared the
- 18 attributes of our discussions, and we came to the
- 19 conclusion that Piney West offered a compromise
- 20 position and an option that would be in the best
- 21 interest of the overall project, because it
- 22 brought together our considerations of length, our
- 23 considerations of community, and potential impact
- 24 on natural, and schedule.
- 25 So once we had that discussion with

- 1 Minnesota Power, we had determined our border
- 2 crossing of Piney West. So again, I'll just say
- 3 that Piney East was preferred by Minnesota Power,
- 4 Gardenton was preferred by Manitoba Hydro, and
- 5 Piney West was agreed would offer the best option
- 6 in the overall interest of the project.
- 7 That completed our Round 1
- 8 determination. So then we went back to the
- 9 drawing board and we said, now we have an endpoint
- 10 for our project, let's develop some more options
- 11 and see if we can determine a preferred route?
- 12 I'm now going to pass it over to
- 13 James, who is going to walk us through the
- 14 planning and feedback and analysis steps for
- 15 Round 2.
- MR. MATTHEWSON: Okay. So as
- 17 Ms. Bratland mentioned, we started with route AQS,
- 18 so that's the blue line on the map. So why didn't
- 19 we just take this as the preferred route and stop
- 20 there, call it the final preferred route and go no
- 21 further? Because of what we heard in Round 1. So
- 22 Round 1 we heard about a strong preference for the
- 23 use of existing corridors and paralleling existing
- 24 transmission lines. So, route planning, through
- 25 the route planning process we added a few more

- 1 segments. So we started here and we added this
- 2 segment down through here. So this segment, as we
- 3 have discussed previously, is the Riel/Vivian
- 4 transmission corridor. There is room in that
- 5 corridor for additional transmission lines. So it
- 6 was added to the Round 2 routes.
- 7 We also heard about paralleling
- 8 existing. So we also looked at paralleling the
- 9 existing 230 kV transmission line in this area
- 10 right here and down through this area.
- 11 The 10 kilometre buffer that we had in
- 12 Round 1, we had at this point of the routing
- 13 process received more information from the weather
- 14 study, preliminary information. There was more
- 15 discussion about that measured risk with respect
- 16 to paralleling the 500 kV transmission line. So
- 17 that's where we could introduce this paralleling
- 18 option, as well as bring 207 back into the route
- 19 planning scenario, because it is in close
- 20 proximity to 500 transmission line.
- 21 And then the introduction of using the
- 22 Riel/Vivian corridor increased that in the
- 23 west/east direction because of what the
- 24 preliminary results of the weather study
- 25 introduced, as being a lower risk and easy to

- 1 respond to in an emergency situation of a dual
- 2 outage. Again, that's another reason for this
- 3 segment is that it was something that the system
- 4 planners allowed us to introduce into the route
- 5 planning process. They were still studying it, we
- 6 are still studying it. We have discipline experts
- 7 still studying the area. We, of course, have
- 8 public engagement with First Nation and Metis
- 9 engagement processes.
- 10 This one allowed accessibility as well
- 11 to -- in the event of any type of weather event,
- 12 that we could still access this part of the line.
- 13 And this part of the line, it is an accessible
- 14 section, versus areas up here are very isolated in
- 15 the wetland environment.
- So those various segments were added,
- 17 and mitigative segments were added based on some
- 18 of the feedback that we had received through
- 19 Round 1. So this segment down here. So we were
- 20 previously going across that wetland known as the
- 21 Piney bog. We received some comments and concerns
- 22 from Manitoba Sustainable Development about
- 23 directly transecting that bog. So we introduced
- 24 another segment that provided an option to go
- around the bog as much as we could. It's still on

- 1 the top end, but it provided us an option to go
- 2 around to address that concern.
- 3 So these alternatives packaged
- 4 together here were presented to the public and
- 5 feedback and analysis began. And this ran from
- 6 April 2014 to August 2014. So during this
- 7 feedback analysis process, of course, we've got
- 8 all the open houses, and First Nation and Metis
- 9 engagement processes that Sarah and Trevor talked
- 10 about. We have much more environmental field
- 11 studies happening at this point in time, because
- 12 we have narrowed our geographic area to a smaller
- 13 area. So we start doing much more wildlife
- 14 surveys, aerial surveys, we get more information
- 15 from our windshield surveys, through the
- 16 windshield of a helicopter, the windshield of a
- 17 car, about mineral resources and gravel
- 18 activities. This is an airport in the Piney area.
- 19 So we follow the same process, the
- 20 weather study is being more completed. And so
- 21 while the engineers allowed us to parallel, still
- this weather study wasn't 100 percent complete, it
- 23 was still undergoing finalization. Mitigative
- 24 segments were developed, following the same
- 25 process I described previously, were developed by

- 1 Manitoba Hydro, and then they were gathered
- 2 through the public and First Nations and Metis
- 3 engagement processes.
- 4 So I'm going to run you through a few
- of these mitigative segments. So on my left we'll
- 6 have an overarching kind of where we are on the
- 7 route, and this will illustrate a zoomed in view
- 8 of the mitigative segments that have been
- 9 discussed.
- 10 So this area in near Richer, routing
- 11 options were presented in the eastern sections
- 12 from the RM of Tache, where there is less
- 13 agricultural and more marginal lands, and less
- 14 residential development. This was presented by
- 15 landowners based on a review of the landscape.
- 16 The segment would combine to be the only segment
- 17 that would combine to 207, where there was less
- 18 residential development going all the way around.
- 19 So this was developed by the RM. They would have
- 20 drawn a route that kind of goes like this. And
- 21 then as I discussed earlier for the planning, we
- look at the route, we try to now design to
- 23 something that is technically feasible, and we
- look at paralleling options with this area and
- 25 avoidance of homes and all the data that we have

- 1 available to us.
- The next one was, a landowner
- 3 approached us through the public engagement
- 4 program, and the aerial photography didn't show
- 5 any homes in this area when we had drawn the
- 6 route -- up along in this area here, sorry. But
- 7 they were in preliminary phases of construction
- 8 and development. So when the landowners
- 9 approached us through the public engagement
- 10 process, they told us about these homes. We
- 11 developed a mitigative segment that allowed the
- 12 transmission line to follow the eastern boundary
- of their parcel. So we weren't moving it on to
- 14 another landowner, but we moved it back away from
- 15 the residential developments in this area, back
- 16 into the eastern edge of their property.
- 17 This subsequently was accepted as part
- 18 of the final preferred route, as we'll see.
- Moving on, these routes here were
- 20 developed by the routing team. So these were a
- 21 response to landowner and RM concerns. So here we
- 22 have very large gravel resource, actually two --
- 23 this one is owned by the RM -- as well as
- 24 landowner concerns with respect to residential
- 25 proximity. This is the 230 kV transmission line

- 1 right through here. It's called R49R. And you
- 2 could see initially, when we drew the segments for
- 3 public engagement, we went to here and then this
- 4 point, and then we deviated off of it. The reason
- 5 for the deviation is there were homes on this side
- 6 of the line that, if we were to continue to
- 7 parallel, we would get in closer proximity.
- 8 There was also, through the public
- 9 engagement process, more residential development
- 10 in subdivisions potential, as well as a
- 11 conservation easement shared on the, through the
- 12 engagement process. So we developed mitigative
- 13 segments that looked, and tried to go around some
- 14 of those features for evaluation.
- 15 I'm going to pause.
- So this one, segment 353, another
- 17 mitigative segment, parallels an existing
- 18 transmission line and required the purchase of a
- 19 home. So what we heard through the public
- 20 engagement process on this is that there was a
- 21 subdivision development over here, but they had a
- 22 second phase -- sorry, a third phase that they
- 23 were developing over in here. So as we talked
- 24 with that landowner, we needed to look at a better
- 25 option to get through here. So paralleling,

- 1 everybody was certainly talking a bit more about
- 2 paralleling, it's one of those siting principles,
- 3 to parallel what we could. In order for the
- 4 paralleling to work, there was many homes that had
- 5 built up next to R49R since its original
- 6 construction. And this home here was within the
- 7 limits of the right-of-way if we were to parallel
- 8 R49R. So prior to evaluating this route, or going
- 9 to the public with this route, Manitoba Hydro
- 10 approached that homeowner. We said, we are
- 11 looking to planning a route here, would you have
- 12 an interest in selling your parcel of land? If
- 13 the landowner interest did not have an interest in
- 14 selling that parcel of land, this mitigative
- 15 segment may never have been developed. But that
- 16 landowner did. So we developed the parcel, the
- 17 mitigative segment, and ultimately purchased this
- 18 home from the landowner, as well as this home to
- 19 the north. While it wasn't within the
- 20 right-of-way, it was within a close proximity.
- 21 And we approached that landowner to discuss with
- them the possibility if they were interested in
- 23 selling the property as well, which they agreed.
- 24 This final route segment here was
- 25 another suggestion from Manitoba Conservation and

- 1 Wildlife Branch at the time, and now Manitoba
- 2 Sustainable Development. This is one of the first
- 3 Wildlife Management Areas developed, it is the
- 4 first Wildlife Management Area developed in
- 5 Manitoba. It has a legal designation of
- 6 protection to it, so that's why there are no
- 7 routes through it. We had a route segment that
- 8 was adjacent to it, and we were trying to mitigate
- 9 some concerns with the paralleling of the rail in
- 10 that area. There's a lot of induction issues when
- 11 you parallel a transmission line which has energy
- 12 running through conductors, and you have two metal
- 13 pipes on the ground, there's this thing called
- 14 induction, which was discussed in an IR. So they
- 15 did request further separation from that WMA.
- 16 This is common for the branch to request that in
- 17 transmission line siting.
- 18 While we tried to develop this segment
- 19 to address our concerns with the rail as much as
- 20 we could, but we were still in close proximity to
- 21 the rail, but also that Pocock Lake Ecological
- 22 Reserve really forced us, and the Town of
- 23 Sandilands forced us into, constrained us in where
- 24 exactly we could adjust that alignment. So we put
- 25 this as far away from the WMA as we could, while

- 1 recognizing the other constraints on the
- 2 landscape.
- 3 So this one, the border crossing
- 4 adjustment. So, in our story of discussions with
- 5 Minnesota Power and the ongoing engagement that
- 6 they were conducting on their end, and that we
- 7 were conducting on our end, Minnesota Power
- 8 determined that the proposed border crossing,
- 9 right here, was no longer feasible, in part due to
- 10 that combined effect of constraints associated
- 11 with the future expansion of the runway.
- 12 So there is an airport right here,
- 13 it's actually an across the border airport. It
- 14 literally crosses the U.S./Canada border in a
- 15 northwest/southeast direction. But they have
- 16 plans on their airport plan for future expansion
- in an east/west direction. So where Minnesota
- 18 Power was looking at routes coming up from this
- 19 direction here, you could see how that was going
- 20 to cause some potential conflict with the future
- 21 expansion of that airport. Also this area here is
- the Roseau River Wildlife Management Area, so they
- 23 were constrained from the Minnesota DNR about
- 24 encroaching on that Wildlife Management Area,
- 25 similar to the concerns that Manitoba Sustainable

- 1 Development had on the Watson P. Davidson Wildlife
- 2 Management Area in Manitoba.
- 3 So Minnesota Power and Manitoba Hydro
- 4 reached an agreement on a new border crossing,
- 5 which shifted approximately four miles to the east
- 6 of the one previously proposed. Manitoba Hydro
- 7 planned a variety of route segments for inclusion
- 8 in the public engagement of First Nation and
- 9 Metis. So once this information came during the
- 10 Round 2, we had to look at different segments to
- 11 get to that border crossing at this point in time.
- 12 And so once we had looked at some options, as
- 13 illustrated by the purple dashed lines here,
- 14 myself and Mr. Joyal took the opportunity to meet
- 15 with a large landowner in that area. And we
- 16 toured the entire area with the landowner. And he
- 17 explained a whole variety of future expansion
- 18 plans, and the future developments and operations
- 19 that they wanted us to do in this whole area.
- 20 Also through the First Nations and Metis
- 21 engagement process, once these lines were
- 22 identified and shared with them, there was some
- 23 concerns identified with that parcel of wooded
- 24 area.
- 25 So the landowner talked about

- 1 potential UAV operations being conducted for
- 2 monitoring his crop performance, all the
- 3 improvements he was making to improve the quality
- 4 of his agricultural lands, other dairy farm,
- 5 chicken barns, and he explained the whole process
- 6 of separation for bio-security reasons. So we
- 7 developed with that landowner some mitigative
- 8 segments to address the concerns that he had.
- 9 So now I'm going to pass it over to
- 10 Maggie, who is going to walk us through that
- 11 comparative evaluation of those at Round 2.
- MS. BRATLAND: As James noted, we
- develop mitigative segments, we add them to the
- 14 set of segments that we initially present to the
- 15 public and First Nation and Metis engagement
- 16 processes, and then we move into comparative
- 17 evaluation.
- 18 Again, comparative evaluation is when
- 19 we take all of the routes, all of the possible
- 20 combinations of routes, evaluate them and
- 21 determine which will be the preferred route for
- 22 the project, as that was the objective for
- 23 Round 2. This analysis and evaluation was
- 24 conducted in a routing workshop which was held
- 25 November 17th to 18th of 2014.

- 1 Again, we use our colour coding in our
- 2 table to correspond to the routes on the left-hand
- 3 screen. So you'll see that Route AY is the lime
- 4 green colour, which corresponds to this route.
- 5 Route URQ is yellow, which corresponds to this
- 6 route. Route URV, very similar to route URQ, is
- 7 pink. Route SIL is blue. And route SGZ is lemon
- 8 yellow.
- 9 In screening in routes for
- 10 consideration and preference determination, the
- 11 project team used the alternate route evaluation
- 12 statistics and metrics, and considered additional
- 13 knowledge generated during the feedback and
- 14 analysis stage, and held a discussion about the
- 15 route options, and selected routes to carry
- 16 forward based on this discussion. The routes that
- 17 were carried forward were determined to be strong
- 18 options statistically, that represented alternate
- 19 ways that major concerns heard during Round 2
- 20 could be mitigated, and support further analysis
- of these trade-offs with the use of the preference
- 22 determination step.
- 23 And that step again, I'll remind you,
- is when we can bring to bear those things that are
- 25 more intangible and less measured in numbers, and

- 1 can better reflect the feedback and analysis that
- 2 we have done.
- 3 So, how did that screening work? Well
- 4 first let's take a look at these routes and talk
- 5 about the trade-offs and different elements of the
- 6 landscape that they cross. And I'll start in the
- 7 northern portion of our route planning area
- 8 towards the Riel/Vivian transmission corridor.
- 9 So in the northern portion of the
- 10 route planning area, routes URQ and URV are
- 11 identical. They cross over more private lands and
- 12 higher value agricultural lands in this region.
- 13 In this portion, route SIL and SGZ are identical.
- 14 They make use of the Riel/Vivian transmission
- 15 corridor and then travel south through a rural
- 16 residential and forested area. Route AY parallels
- 17 the Riel/Vivian corridor for longer and then
- 18 travels down rural residential areas to the east,
- 19 traversing more Crown lands and forested wetland
- 20 areas. I'll also note that routes URO and URV
- 21 parallel Trans-Canada Highway number 1.
- In the central portion, routes AY and
- 23 SGZ travel to the east of the wildlife Management
- 24 Area. Here there is a greater prevalence of
- 25 forested Crown lands and less private and

- 1 agricultural lands. And we will probably have a
- 2 fair bit of discussion today about segments 207
- 3 and 208. This makes use of segment 207.
- 4 Route URV, URQ and SIL in comparison
- 5 in this region travel west of the Wildlife
- 6 Management Area. And in this area they make a
- 7 greater use of private lands, traverse private
- 8 lands, agricultural lands and have greater
- 9 proximity to some residential areas. That would
- 10 be making use of segment 208.
- 11 Turning to the southern portion of the
- 12 route planning area. All three routes make common
- 13 use of this segment in this area, and then diverge
- 14 in terms of the southern alignment. Route SIL,
- 15 URV and SGZ take a more southerly path through the
- 16 forested wetland area in the south, while Route AY
- 17 and URQ take a more northern path through that
- 18 area.
- 19 So we have three broad regions, each
- 20 region with different trade-offs. So when
- 21 screening in those routes -- I just want to make
- one note on that last slide again, please, on this
- 23 side. Route URV represented the top engineering
- 24 route from the perspective of statistics. Route
- 25 URQ represented the top natural route from the

- 1 perspective of statistics. Route AY was the top
- 2 built route. Route SGZ was the top simple average
- 3 route, with all perspectives considered equally.
- 4 And then route SIL was screened into the process
- 5 by the team because it was considered to mitigate
- 6 a number of concerns, and was the top simple
- 7 average route that was considered to mitigate
- 8 those concerns. So Route SIL is the only route in
- 9 this group that includes the Riel/Vivian
- 10 transmission corridor parallel, as well as the
- 11 western segment, west of the Watson P. Davidson
- 12 Wildlife Management Area. Without including that
- 13 route, we wouldn't have those two mitigative
- 14 features available to evaluate and align route
- 15 option.
- 16 Okay. So now that we have screened in
- 17 our routes for preference determination, our
- 18 breakout groups go to their separate rooms and
- 19 discuss their criteria for their initial
- 20 preference determination scoring exercise. Let me
- 21 turn to our preference determination table which
- 22 represents the outcome of those discussions.
- So again, we begin with the
- 24 consideration of cost. The engineering team
- 25 considers cost and begins with a consideration of

- 1 the alternate route evaluation metrics that
- 2 calculate quantitatively cost.
- Now, in this round, remember I said in
- 4 Round 1 we had a wider variability in terms of
- 5 length, the routes were covering a lot more
- 6 distance. We're now talking about a smaller
- 7 geographic area. We have routes with lengths that
- 8 are not so far apart, which drives the metrics in
- 9 the AREM calculations for cost. The engineering
- 10 team looked at these and realized, you know, our
- 11 costs aren't very variable. Are there other
- 12 elements to cost that we should be considering
- 13 when drilling down on the differences between
- 14 these routes? Other tangible cost factors that we
- 15 should perhaps consider? So the engineering team
- 16 decided to add some additional considerations.
- 17 They included the consideration of private
- 18 property acquisition costs. They also considered
- 19 the use of specialty mitigation, so the use of
- 20 special types of towers that can be quite
- 21 expensive to get around different features such as
- 22 when you are paralleling a highway, going over
- 23 highway interchanges. They also looked at the
- 24 extra cost that could be incurred in terms of
- 25 paralleling rail. James had mentioned that there

- 1 are mitigative costs if we parallel for very long,
- 2 we have to work to help not interfere with
- 3 communication structures through induction issues.
- 4 And we also looked at the potential cost of
- 5 relocating homes.
- 6 The engineers considered this and
- 7 added that to the initial alternate route
- 8 evaluation metrics, and then looked at the
- 9 relative costs. By considering those, the
- 10 relative costs were still fairly small, as you can
- 11 see in the numbers in the top line, 1 is the most
- 12 preferred, so represents the cheapest route with
- 13 all those considerations, and the decimals
- 14 represent the variability from that cost. So we
- 15 have .02, .04 and .06 difference, so not much
- 16 variability.
- 17 What that does when you have low
- 18 variability across routes for something with a 40
- 19 per cent weight is it makes that criteria very --
- 20 not very unimportant, but relatively less
- 21 important than those criteria with a higher
- 22 variability across routes.
- The next consideration was system
- 24 reliability for the engineering breakout team. So
- 25 when they made their determination on system

- 1 reliability, the engineering team took a
- 2 consideration of the routes with respect to
- 3 paralleling and understanding of those preliminary
- 4 results from the weather study. They noted that
- 5 the location with direct paralleling was in the
- 6 Riel/Vivian transmission corridor, and that in
- 7 terms of the broad relative difference, routes URQ
- 8 and URV were definitely farther away. However,
- 9 SIL, AY and SGZ, by making use of that corridor,
- 10 would have a greater risk to system reliability.
- 11 They reflected this in the scores by .5
- 12 difference.
- 13 From a natural perspective, the
- 14 natural team investigated the different route
- 15 segments and determined which segments would cross
- 16 over more natural features and have more potential
- 17 effect. So they looked at measures of forested
- 18 area, wetlands crossed, potential wildlife
- 19 habitat, and measures of intactness of that
- 20 habitat that could support important species.
- 21 From the natural team's perspective,
- 22 route URQ was the most preferred. Route URQ has
- 23 the least amount of natural features affected, and
- 24 in the southern area -- if we could just scroll to
- 25 that, Dave -- takes a better alignment through the

- 1 wetland area and forested area causing less
- 2 fragmentation in that region. Route URV, being
- 3 very similar to route URQ, with this one
- 4 difference, was slightly less preferred, and that
- 5 difference was represented by a margin of .2 in
- 6 that preference score.
- 7 In contrast, routes AY and route SGZ
- 8 had the lower preference because they affected the
- 9 largest amount of natural features. Route AY
- 10 received the lowest preference because -- so the
- 11 difference being this is route SGZ and route AY
- 12 continues north, route AY crossed a larger number
- 13 of natural features, more wetland and forested
- 14 areas, and more intact habitat. So from the
- 15 natural perspective, that's less preferred.
- 16 Turning now to the built
- 17 consideration. The key factors for the built team
- 18 again were proximity to homes, the potential to
- 19 affect high value agricultural lands, and the
- 20 potential to impact proposed developments.
- Route URV and URQ, as you can see,
- 22 travelled through high value agricultural lands
- 23 near Trans-Canada Highway. There was also a high
- 24 number of proposed developments on either side of
- 25 the highway, and have a larger proximity to homes.

- 1 Route SIL was more preferred than
- 2 route URQ and URV, because by making use of that
- 3 existing corridor in the north, it gets out of
- 4 those prime agricultural lands and further away
- 5 from those homes. But it does travel south
- 6 through our rural residential area, near the
- 7 community of Ste. Genevieve.
- 8 Route AY was most preferred from the
- 9 built perspective, as it affects fewer residences,
- 10 has less potential to affect high value farmland,
- 11 and affects less potential development in the
- 12 region than the other options.
- 13 And route SGZ had the next highest
- 14 preference to AY. It affects comparatively fewer
- 15 residences and less high value farmland, but does
- 16 come in proximity to the communities of Marchand
- 17 and Sandilands.
- 18 Turning to community, this is always
- 19 my longest-winded explanation because it is fairly
- 20 involved. The community perspective scores, as
- 21 before, reflect the knowledge and feedback heard
- 22 through the public engagement processes and the
- 23 First Nation and Metis engagement processes to
- 24 this point. Again, the interests, concerns and
- 25 preferences that we heard in these processes were

- 1 often conflicting. The preferences from the First
- 2 Nation and Metis engagement process were to favour
- 3 routes with less Crown land, with less potential
- 4 impact to natural areas, harvesting areas, and in
- 5 particular, they would like avoidance of areas
- 6 with high potential current and historic sacred
- 7 and cultural uses. They had a strong preference
- 8 heard for routes in developed areas to the west of
- 9 the study area.
- 10 Through the public engagement process,
- 11 again, the key concerns were related to proximity
- 12 to homes, and those associated concerns related to
- 13 property value, potential health effects, visual
- 14 impacts, traversing private lands in general, and
- 15 the potential effects to agricultural lands.
- 16 There was also concern raised about affecting
- 17 lands that support habitat and recreational uses.
- 18 So I don't want to give the perspective that while
- 19 these views were in general different, that they
- 20 were completely unsympathetic to the different
- 21 things that were valued. There were individuals
- 22 in the public engagement process that noted the
- 23 value of wildlife habitat, that noted the value of
- 24 recreation and use of those wildlife habitats.
- 25 Just like in the First Nations and Metis

- 1 engagement processes, communities were sensitive
- 2 to concerns about proximity to homes, and they
- 3 understood the concerns that residents would have
- 4 about the potential impact to their property
- 5 values and their health. But there was
- 6 overwhelming difference in terms of the
- 7 overarching perspectives.
- 8 So with these difference in mind, and
- 9 the feedback heard on a specific and regional
- 10 scale, the community team met to discuss what
- 11 preference scores will we assign? We have one
- 12 line in this chart. We have to reflect how do we
- 13 balance the concerns of community from both of
- 14 these perspectives?
- 15 After their discussions about
- 16 site-specific concerns that they shared with each
- other, and the potential mitigations for those
- 18 concerns, the team built a shared understanding of
- 19 how well each of these routes could balance those
- 20 concerns heard.
- 21 So going into the challenge of
- 22 indicating a number of 1 or 3, it was decided that
- 23 routes that were most strongly preferred by each
- 24 perspective would receive a score of 2. Routes
- 25 that were less preferred, but not least preferred,

- 1 would receive a score of 3. And the routes that
- 2 best balance the concerns from both of these
- 3 perspectives, striking a middle ground, would
- 4 receive a score of 1.
- 5 In terms of general comparators again,
- 6 the routes with predominantly private residential
- 7 or agricultural land are on the west, and the
- 8 routes with the predominantly Crown lands are on
- 9 the east.
- 10 So from the First Nation and Metis
- 11 engagement perspective, the top route was URV, as
- 12 it traversed predominantly developed private lands
- 13 and avoided in the south an area identified as a
- 14 harvesting area by First Nations communities.
- 15 However Route URV would be the least preferred
- 16 option from the public perspective.
- 17 The most preferred route, based on
- 18 public feedback, would be AY. It avoids farmland,
- 19 it's more distant from residences, and had strong
- 20 support through the public engagement process and
- 21 it was recommended through that process.
- This was the least preferred route
- 23 from the First Nations and Metis engagement
- 24 perspective. These routes, AY and URV, were given
- 25 a preference rank of 2, as they each represented a

- 1 strongly favoured route from one of the
- 2 perspectives.
- 3 Turning now to route SGZ and URQ.
- 4 These were ranked 3, as they did not represent a
- 5 most preferred option from either the public
- 6 engagement process or the First Nation and Metis
- 7 engagement process. Route SGZ is similar to AY
- 8 from a First Nation and Metis engagement process
- 9 perspective, as it incorporates that segment to
- 10 the east of route SGZ that has a high potential to
- 11 impact heritage, historical, cultural and sacred
- 12 sites, particularly around the Wildlife Management
- 13 Area in this region. This is the area of the
- 14 Pocock Lake ecological reserve. It was slightly
- 15 more preferred because it uses comparatively less
- 16 Crown lands than AY.
- 17 Route SGZ is less preferred than route
- 18 URQ from a public perspective, because while it
- 19 travels over less private farmland, it still has
- 20 the potential to affect the communities of
- 21 Ste. Genevieve in the north, through the blue
- 22 portion of that segment, and the Sandilands and
- 23 Marchand areas.
- 24 Finally, turning to route SIL.
- 25 Route SIL was determined to be most preferred from

- 1 the community perspective because this route
- 2 offered a balance of concerns and preferences
- 3 heard from the public engagement and First Nation
- 4 and Metis engagement perspectives. Where the
- 5 route is in proximity to residences, so where it
- 6 turns south from the use of paralleling in the
- 7 Riel/Vivian corridor, it is in a treed area. This
- 8 treed area acts as a buffer for visual impact on
- 9 nearby homes, in contrast to route URQ and URV,
- 10 which are in a more open, more visual area. This
- 11 route uses the segment that avoids the areas of
- 12 higher Crown land and high potential historical
- 13 and cultural uses to the east and limits the
- 14 potential residential effects on the Sandilands
- 15 area.
- So this route, from the public
- 17 perspective, was felt to most balance the concerns
- 18 and preferences heard through the two processes
- 19 and was scored as most preferred.
- 20 Let's move onto risk to schedule. So
- 21 the project team considers risk to schedule as a
- 22 group. We come back from our breakout sessions
- 23 and we all share our perspectives together from
- 24 the elements that could affect risk to schedule.
- 25 Many considerations are discussed, including

- 1 transmission line crossings, the amount of Crown
- 2 versus private land and associated related
- 3 approvals, and restrictions due to construction
- 4 timing elements related to things like forested
- 5 areas, breeding bird windows and wetlands.
- 6 Considerable discussion was held that
- 7 determined that all of these routes had similar
- 8 levels of risk associated with most of these
- 9 factors, with the exception of the consideration
- 10 of private versus Crown lands and the approvals
- 11 associated with those lands. The experience of
- 12 Manitoba Hydro has been that the length of time
- 13 necessary to gain approvals for the use of Crown
- 14 lands poses a greater risk to schedule with larger
- 15 amounts of Crown lands that support multiple land
- 16 uses. These multiple land uses are a value to
- 17 many parties, including First Nations and Metis
- 18 communities.
- 19 As Crown approvals are required before
- 20 an Environment Act approval can be issued, this
- 21 poses a greater risk to schedule than private land
- 22 acquisition. Our experience on private land
- 23 acquisition has been one that is a shorter
- 24 process, and one that is a fairly more defined
- 25 process for Manitoba Hydro. The team decided that

- 1 with these considerations, that routes with a
- 2 greater proportion of Crown land should be ranked
- 3 as less preferred, because this basis of risk to
- 4 schedule was the key difference between routes.
- 5 All of the other factors were considered as well,
- 6 the transmission line crossings, the prevalence of
- 7 forest land, but the difference is what we're
- 8 trying to highlight here.
- 9 So once the team had put together the
- 10 different scores and the different elements of the
- 11 table, had our vigorous discussion and debate,
- 12 which I can tell you was extremely vigorous in
- 13 this round, our preference scores were assigned,
- 14 the numbers were weighted and added, and the route
- 15 rankings were produced. This resulted in SIL
- 16 being selected as the preferred route from
- 17 Round 2.
- 18 And no, I'm not done yet. So I'm
- 19 going to pause and spend some time here, because
- 20 this is a critical pivotal decision point on the
- 21 project. This is picking the preferred route.
- 22 The central issues and concerns that played out in
- 23 these discussions and debates are very important
- 24 to understand. They were very carefully and
- 25 thoroughly debated by the project team. So I just

- 1 wanted to reiterate and highlight some of those
- 2 things now.
- We've been talking about east versus
- 4 west. We've been talking about the comparators on
- 5 the different sides of the route planning area.
- 6 And what I'm going to pull up for you now is a map
- 7 that compares the route finalists with a couple of
- 8 key features. The turquoise colour is Crown land.
- 9 The beige colour is the high value private
- 10 lands -- I shouldn't say high value, they are
- 11 private lands. They are, of course, of high value
- 12 to those that own them and to those that use them.
- So Round 2 was a key decision point.
- 14 And I want to talk about these east and west
- 15 perspectives a little bit more deeply. The
- 16 potential effects of the project along the more
- 17 western routes -- and when I say western, I mean
- 18 west of that Watson P. Davidson Wildlife
- 19 Management Area -- that were considered in the
- 20 decision-making process included concerns related
- 21 to property value, the proximity to proposed and
- 22 existing homes, and agricultural land use. The
- 23 more eastern routes that make more use of Crown
- 24 lands will travel through an area of relatively
- 25 intact habitat that interconnects protected

- 1 conservation areas and supports a number of valued
- 2 species.
- The eastern routes would also affect
- 4 areas noted for cultural and heritage value that
- 5 is valued as a resource use area by the public,
- 6 First Nations and Metis.
- 7 From a tactical perspective, the
- 8 eastern routes, in contrast to the western routes,
- 9 travel closer to our existing 500-kilovolt
- 10 transmission line, which poses a greater risk to
- 11 system reliability should severe weather happen in
- 12 the region.
- 13 As I've noted, the community
- 14 perspective scores reflected the feedback heard
- 15 through the First Nation and Metis engagement
- 16 process and the public engagement process.
- 17 Because the nature of the interests and the land
- 18 types associated, these perspectives were often
- 19 conflicting. We heard through the First Nation
- 20 and Metis engagement process that participants
- 21 respected concerns of homeowners related to
- 22 residential proximity, but the preference was to
- 23 favour routes with less Crown lands, in particular
- 24 routes that would affect areas with high potential
- 25 current and historic value.

- 1 We heard through the PEP, the Public
- 2 Engagement Process, the concerns about potential
- 3 effect in natural areas in support of wildlife
- 4 habitat areas, but a very strong preference to
- 5 route away from homes, avoid private lands, avoid
- 6 agricultural lands, make more use of those Crown
- 7 lands. These conflicting perspectives related to
- 8 Crown and private land use, and interests were
- 9 central in importance when making our decision
- 10 regarding routing. The project team deliberated
- 11 at length regarding these perspectives, leading up
- 12 to and during our round to route evaluation
- workshops.
- 14 The decision to select SIL as the
- 15 preferred route in Round 2 reflected careful
- 16 consideration, reflected all of the feedback and
- 17 analysis up to this stage, and reflects in our
- 18 opinion a balancing of these perspectives, in
- 19 addition to the consideration of the natural,
- 20 built, and technical factors.
- 21 I'm now going to turn it over to
- 22 James. You're going to feel like you're in
- 23 Groundhog Day here, because we're going to walk
- 24 through Round 3 and all of our four stages of
- 25 routing.

- 1 And Mr. Chair, this could be a good
- 2 time for another break.
- THE CHAIRMAN: Okay. Let's do that.
- 4 Thank you, and we'll take 10 minutes.
- 5 MR. TOYNE: Can I ask a question very
- 6 quickly?
- 7 THE CHAIRMAN: Is this a process
- 8 question or a question about the presentation?
- 9 MR. TOYNE: It's about what's to come
- in the presentation, just so I know if I need --
- 11 THE CHAIRMAN: Go ahead. As long as
- 12 this isn't a matter that's going to be followed up
- 13 in the questions later.
- MR. TOYNE: No, no, no. So I'm just
- 15 wondering if the presentation will include the
- 16 table where SIL was eliminated, because if not,
- 17 then I can print that table off and bring it.
- MS. BRATLAND: I can answer that.
- 19 THE CHAIRMAN: Go ahead.
- 20 MS. BRATLAND: Yes. Thank you for
- 21 that, Mr. Toyne.
- The presentation that you have in
- 23 front of you right now, I don't think we have
- 24 provided it yet, but we have added to the end of
- 25 the presentation the working table and the final

- 1 table from Round 2, and we will cover in depth
- 2 what occurred during those discussions and why it
- 3 appeared that SIL was ranked as third. So that
- 4 will be covered. We will provide those handouts
- 5 to everybody here. So don't worry about printing
- 6 it out, we've got it for you.
- 7 MR. TOYNE: All right. Thank you.
- 8 THE CHAIRMAN: Okay, thanks. And
- 9 we'll take 10 minutes. So we'll be back here at 5
- 10 after 12:00. Thanks.
- 11 (PROCEEDINGS RECESSED AT 11:55 A.M.
- 12 AND RECONVENED AT 12:05 P.M.)
- 13 THE CHAIRMAN: Okay. We're ready to
- 14 start. I wonder if you could all take your seats.
- 15 And as soon as you are ready to go, Manitoba
- 16 Hydro, feel free to start.
- MR. MATTHEWSON: So we're at Round 3.
- 18 The objective of Round 3 is to determine a final
- 19 preferred route, using the feedback that we gained
- 20 through another round of engagement processes and
- 21 additional assessment that's being conducted by
- 22 the discipline specialists. At this stage,
- 23 because the spatial extent of the route is more
- 24 defined, analysis is more detailed, and the
- 25 benefits from the data gathering conducted in

- 1 previous rounds, so we have a lot more information
- 2 about exactly where specific wildlife habitats
- 3 are, where there are other pieces on the landscape
- 4 that were collected through those studies, we have
- 5 much more understanding of that. Of course, as
- 6 well as the First Nations and Metis engagement
- 7 program, at this point in time, the traditional
- 8 knowledge reports are starting to come in. We had
- 9 been hearing all kinds of information as those
- 10 reports had been progressing, but we are starting
- 11 to see some more mapping and detail and specific
- 12 concerns.
- 13 So normally this round would entail
- 14 making small adjustments to the route, within a
- 15 mile wide buffer or so. But because of the level
- of concern received in Round 3 public engagement
- 17 process, were received, the public engagement
- 18 process for this one with respect to the proximity
- 19 of the routes to residential developments near La
- 20 Broquerie, larger deviations were considered than
- 21 normally would typically for Manitoba Hydro.
- For this reason, the exercise of
- 23 finalizing preferred route became more complicated
- 24 and it required rigorous comparison of alternative
- 25 options.

- 1 So in the planning stage of things, we
- 2 took Route SIL selected as the preferred route, as
- 3 Ms. Bratland had illustrated. It was further
- 4 reviewed by the technical team, the engagement
- 5 team, to make sure that the proposed route, so
- 6 making it a preferred route for Round 3 was
- 7 technically feasible, the public input had been
- 8 fully considered, and as a result the route was
- 9 further refined, as I'm going to discuss here.
- 10 The technical review of the preferred route
- 11 included a final scale design, where offsets of
- 12 property lines, existing transmission lines and
- 13 road alignments are all more accurately
- 14 representative. We were zooming in, we're getting
- 15 into a finer scale of detailed information, we're
- 16 measuring precisely our offsets from existing
- 17 lines, measuring precisely the offsets of the
- 18 roads and adjusting the route to those.
- 19 The location of the angle towers, so
- 20 at each one of these angles, we're just
- 21 double-checking our understanding of what the
- 22 landscape or the soil types are from visual
- 23 interpretation, to make sure that we've got that
- 24 angle structure in the best possible place, from
- 25 what we can tell from aerial photography. Because

- 1 as I mentioned, it's that angle structure that is
- 2 a bigger structure and undergoes a lot more forces
- 3 on it because of the change in the direction of
- 4 the line. So it's important that those locations
- 5 are very -- selected with much diligence.
- 6 We're also field validating again that
- 7 there are no new buildings, no new residences that
- 8 have been built or established. In this area
- 9 there are basements going in, like you could see
- 10 basements going in every week in the summer time.
- 11 So we are constantly resurveying the area, being
- 12 aware of what new developments are coming onto the
- 13 landscape.
- 14 So based on the Round 2 feedback,
- 15 several route adjustments were implemented to SIL
- 16 to be shared in this Round 3 engagement. So
- 17 there's a few landowner requests that moved, as I
- 18 mentioned, farther east to place the route on the
- 19 edge of the property. That was one of those
- 20 mitigative segments that we had discussed. We had
- 21 looked at different alignments on either side of
- 22 R49, trying to gain separation from landowners.
- 23 That was up in that area there.
- 24 The route was also adjusted to placing
- 25 corner towers closer to highways to allow

- 1 crossover and clearances, height clearances on the
- 2 highways, so we adjusted that a little bit. There
- 3 was a home that we -- I pointed out during the
- 4 fly-over where there was a clump of trees in an
- 5 agricultural area, it's approximately here, I
- 6 believe -- sorry, approximately there -- where the
- 7 SIL was going through and was going to take out a
- 8 portion of those trees right adjacent to that
- 9 homestead, which was a nice, very large one acre
- 10 area of trees. So we were able to adjust the
- 11 alignment of SIL, the preferred route, adjust it
- 12 so that we wouldn't have to remove any of those
- 13 trees. So there was a slight adjustment there.
- 14 The more visible adjustments were in this area.
- 15 So as I discussed, with Mr. Joyal and
- 16 myself's tour with the landowner there, we talked
- 17 about mitigative segments and we developed some
- 18 new routes with that, in conjunction with the
- 19 landowner, and we ended up adjusting to those
- 20 yellow lines.
- 21 As well as there was some important
- 22 feedback from the First Nations and Metis process
- 23 about a feature within the wetland that we avoided
- 24 with the preferred route change as well.
- 25 So those adjustments that we made to

- 1 the preferred route, they were endeavoured to
- 2 satisfy concerns of individual landowners, to
- 3 review them to make sure that those -- as I
- 4 mentioned the trade-off, that we weren't moving an
- 5 effect from one landowner to another. And if the
- 6 change didn't have a net increase in effect or
- 7 shift the effect to somebody else, then we
- 8 accepted those minor alignment changes.
- 9 So the Round 3 started in January of
- 10 2015 and ended in April of 2015. We have again
- 11 all that data gathering of the full breadth of the
- 12 environmental assessment team, which you'll hear
- 13 about in the socio-economic and panels. They are
- 14 really starting to focus a lot of analysis that's
- 15 going on in this area. We have really narrowed
- 16 down our routes for them to focus their efforts.
- 17 We have, of course, received some more mitigative
- 18 segments. So, as I mentioned, we start deviating.
- 19 Normally we just look at mile alignments and
- 20 moving things around. But as we see in these blue
- 21 routes, these were the mitigative segments that
- 22 were added to address things like residential
- 23 proximity. You can barely see the little
- 24 adjustments up in there, a little tinge of blue
- that's come up, Fire Guard 13.

- So Fire Guard 13, a Fire Guard was a
- 2 trail or a road that was developed many years ago
- 3 by the Government of Manitoba throughout the
- 4 Sandilands Provincial Forest. So this whole area
- 5 here, there's a variety of Fire Guards, and they
- 6 were established for the purposes for
- 7 firefighting. So accessible to the landscape, to
- 8 get access to provide some level of fire break,
- 9 they do provide that a little bit. But they're
- 10 not really wide, they are as wide as the road.
- 11 The primary thing was to allow access to the areas
- 12 for firefighting purposes. So Fire Guard 13, to
- 13 illustrate where it is, this is the community of
- 14 Marchand, Fire Guard 13 starts right here at the
- 15 highway, and goes in a straight fashion following
- 16 our mitigative segment -- sorry, our mitigative
- 17 segment follows Fire Guard 13. And then it
- 18 meanders through the wetlands and all the way up
- 19 to Highway Number 1. So that is what's called
- 20 Fire Guard 13.
- 21 So there was a request for some
- 22 mitigative segments in that area, which is what we
- 23 illustrated there. It would involve some more --
- 24 we developed some mitigative segments to address
- 25 that.

- 1 I'll come back to my proximity to
- 2 buildings in a minute. So advance two slides,
- 3 please?
- 4 So this is the Fire Guard 13 area,
- 5 Wildlife Management Area, it's right at the tip
- 6 there. This was proposed by the RM of La
- 7 Broquerie to address the concerns that they had
- 8 with proximity of the preferred route through the
- 9 R.M. of La Broquerie in this area. So we looked
- 10 at, again, paralleling of the 230 kV transmission
- 11 lines, had a couple difference options there, and
- 12 then coming along Fire Guard 13 down to the
- 13 Marchand area.
- 14 So I'll just go back one slide there,
- 15 please? The proximity concern, so this was an
- 16 example of an area near La Broquerie. So the Town
- 17 of La Broquerie is just over here about a mile and
- 18 a half away. This is a road called Quintro Road.
- 19 It was a stop in the fly-over video that I showed
- 20 you. So we developed, during Round 3 we
- 21 developed, we got some feedback about the
- 22 proximity of the preferred route and we developed
- 23 the mitigative segment that did a couple of
- 24 things. One, it provided us a better crossing of
- 25 the Seine River, as well as further separation

- 1 from Quintro Road and the subdivision. There is a
- 2 subdivision buried in the woods over here that we
- 3 tried to balance and keep equal distance
- 4 separation between the two.
- 5 So in this area there was numerous
- 6 mitigative segments developed, as you can see in
- 7 this area. Where we had livestock operations,
- 8 feedback from the livestock operations, those are
- 9 illustrated here, here, here, throughout the area
- 10 from a variety of large agricultural operations;
- 11 as well as calving grounds, which is represented,
- 12 it's a high point of land in this entire area, so
- 13 it was an important area on which the calving
- 14 operation was focused for one of the landowners.
- 15 We also had a concern on this segment
- 16 here. This is the preferred route in this plan
- 17 right through here. We had developed these
- 18 mitigative segments between those two barns. One
- 19 agricultural operation had a concern about those
- 20 barns are separated for very good reasons, to
- 21 reduce bio-security risks and transfer of
- 22 bio-security concerns between the two barns. So
- 23 they were concerned with a transmission line that
- 24 was in between the two and that the traffic that
- 25 may introduce would introduce some risks to their

- 1 bio-security operations.
- 2 Private recreational land use. So
- 3 also in this area where the preferred route is, we
- 4 had further engagement with some private
- 5 landowners on the recreational land use that they
- 6 were developing and had ongoing in that area. So
- 7 we looked to mitigative segments out here in the
- 8 blue to address those concerns. And also in this
- 9 area right here is Crown land, there's a parcel of
- 10 Crown land in here. But when we had discussed
- 11 with Manitoba Sustainable Development, they gave
- 12 us some feedback that they really preferred us to
- 13 maintain the intactness of that Crown land parcel
- 14 because of the importance of engagements to the
- 15 WMA. So that's part of why there's different
- 16 segments there, mitigative segments there that
- 17 were developed for evaluation.
- 18 This segment here, 475, this segment
- 19 was developed to address concerns raised by a
- 20 landowner concerning the potential effect of the
- 21 transmission line on First Nations traditional and
- 22 cultural land use on a privately held parcel of
- 23 land. I believe that was discussed at the public
- 24 engagement panel, where this landowner, the
- 25 preferred route had gone through here, this

- 1 landowner owned this parcel of land, privately
- 2 held, we heard it through the public engagement
- 3 process, through the landowner, plus through the
- 4 First Nation and Metis engagement process through
- 5 Roseau River. So we developed the mitigative
- 6 segment, trying to balance the concerns from this
- 7 landowner with the residences in this area, and
- 8 the wetland complex in this area. As I mentioned,
- 9 a corner tower, it's integral that it's in very
- 10 stable soil conditions as much as possible because
- 11 of the extra strength and forces placed on that
- 12 tower. So we did a mitigative segment that got as
- 13 far out of this area of interest from the
- 14 landowner as we could, putting it right near the
- 15 corner of the parcel of the wetland area, while
- 16 trying to balance the concerns of the residences
- 17 to the west.
- 18 And I'm going to pass it over to
- 19 Maggie, who is going to talk about the comparative
- 20 evaluation portion of Round 3.
- MS. BRATLAND: Thank you. So now that
- 22 we have our feedback and analysis completed, and
- 23 we have developed mitigative segments to address
- 24 concerns we have heard in the area, we have our
- 25 set of evaluation routes for consideration and

- 1 comparative evaluation.
- 2 At this stage there were over 4,000
- 3 possible routes with various land uses and
- 4 interests. The valuation tools then were used
- 5 again to enable us to compare this many options
- 6 and to guide decision-making and route evaluation
- 7 in a workshop held on April 30th of 2015.
- 8 So in the subsequent slides, I will
- 9 walk you through the decision-making.
- In screening in the routes for this
- 11 round, again, we considered the statistics, the
- 12 discussions around trade-offs and land uses, and
- 13 the ways to mitigate these concerns. And we
- 14 screened forward routes that were strong
- 15 alternatives statistically, that represented
- 16 different balances and trade-offs between the
- 17 natural built and technical variables.
- 18 James walked you through a number of
- 19 mitigative concerns, and now that we're in a
- 20 smaller area of consideration, we're drilling down
- 21 to those parcel specific concerns in a lot of
- 22 ways.
- 23 So what I have done to highlight for
- 24 you what the route finalists have in terms of
- 25 their ability to mitigate these concerns is a

- 1 table with the mitigations that James just listed
- 2 on the right-hand side, the routes that we will
- 3 consider here, and a check mark if they are
- 4 believed to mitigate that concern. And that will
- 5 help us as we walk through here.
- 6 This one gets really complicated
- 7 because of the fact that there's so many B routes,
- 8 so I'll try my best to keep them straight for you
- 9 here as I talk about the different concerns that
- 10 are mitigated.
- 11 So let's start with route BWZ and
- 12 route BXP. So route BWZ uses that yellow segment
- 13 that you see here. It's the yellow route. So it
- 14 makes use of Fire Guard 13, which we understand to
- 15 help mitigate some of those concerns about
- 16 residential proximity in the Town of La Broquerie.
- 17 Unfortunately, by making use of Fire Guard 13,
- 18 this shifts the residential proximity concern from
- 19 the Town of Marchand -- from the Town of La
- 20 Broquerie to the Village of Marchand.
- 21 In our discussions with the RM of La
- 22 Broquerie, when discussing the option of using
- 23 Fire Guard 13, we did point this out to them as a
- 24 concern, and it was a debate held by council
- about, well, are we shifting that effect, like we

- 1 consider when we look at mitigative options, are
- 2 we shifting it from our residents in La Broquerie
- 3 to our residents in Marchand? And there really
- 4 was no clear that's better, that's better. So we
- 5 said, you know what, we will put it in the bucket
- 6 and we will evaluate it based on all of the
- 7 effects we need to consider. So group BWZ gets a
- 8 check-mark for the Town of La Broquerie because it
- 9 mitigates that concern, but not the Town of
- 10 Marchand. Similarly, route BXP, which uses that
- 11 same segment, uses Fire Guard 13.
- 12 Route BXP in this area travels closer
- 13 to the wildlife Management Area. And as James
- 14 indicated, that brings it in close proximity to
- 15 those two barns, which raises bio-security
- 16 concerns from a livestock perspective. It also
- 17 crosses the private recreational land users
- 18 holding. So those are all concerns. So you can
- 19 see route BKP doesn't have a lot of check-marks in
- 20 that table which shows what it mitigates, but it
- 21 was something to consider because it is shorter.
- 22 BWZ makes use of Fire Guard 13, but in order to
- 23 avoid using this segment has to backtrack further,
- 24 which adds length.
- The landowner in the southern area,

- 1 that was a privately held parcel with identified
- 2 First Nation and Metis uses, we refer to that
- 3 landowner in the EIS as landowner D. So in my
- 4 table, that's indicated as landowner D.
- 5 Route BMY, which is our blue route,
- 6 travels west of the Wildlife Management Area, does
- 7 not make use of Fire Guard 13, but does make an
- 8 adjustment in the south for the concerns of
- 9 landowner D.
- 10 So as you can see from the check-marks
- in the table, overall route BMY, which travels
- 12 further to the west to avoid any proximity to the
- 13 Wildlife Management Area, bio-security concerns,
- 14 and mitigates the concerns of landowner D, does a
- 15 fairly good job of mitigating these concerns
- 16 overall.
- 17 So rather than walk us through in
- 18 painful detail, I'm just going to summarize high
- 19 level, if we can turn to that slide here?
- 20 So in the workshop and discussions
- 21 with the team, which were held in the same manner
- 22 as previous workshops, the trade-offs apparent
- 23 between routes were discussed in breakout groups,
- 24 and the scores were presented to the project team
- 25 for further consideration. Again, these were sort

- of a small geographic area, length doesn't vary
- 2 very much, so the cost differences are small, as
- 3 reflected by the values in the table.
- 4 Reliability, routes to the east with more
- 5 proximity to the existing 500 route for longer
- 6 were given a slightly less preference.
- 7 For the natural team, routes further
- 8 away from the Wildlife Management Area were given
- 9 higher preferences because they have less
- 10 proximity to that ecological feature and have less
- 11 fragmentation of features on the landscape.
- 12 All of these interests and concerns
- 13 considered together, and the ability of each route
- 14 in its entirety to balance concerns and offer
- 15 potential mitigation when summed together resulted
- 16 in the selection of BMY.
- So as noted in the previous table --
- 18 and if I can have the next map, please -- more
- 19 concerns were mitigated by route BMY, which also
- 20 offers the best balance of interest and concerns
- 21 from the community perspective when considering
- 22 that table of check-marks. Concerns of landowner
- 23 D could be mitigated through alignment in the
- 24 southern part of the route. Concerns of livestock
- 25 operations near the Wildlife Management Area were

- 1 addressed through this alignment. The route
- 2 resulted in less Crown land fragmentation and
- 3 habitat fragmentation and avoided the parcel of
- 4 private recreational land. And while not making
- 5 use of Fire Guard 13 to mitigate the concerns
- 6 regarding proximity to the Town of La Broquerie,
- 7 the adopted segment increased the separation
- 8 distance from homes on Quintro Road.
- 9 So James showed you that mitigative
- 10 segment that was adjusted, that where we pass
- 11 through the Town of Marchand. We had residential
- 12 development to one side, residential development
- 13 to the other. We shifted that over to be able to
- increase that proximity to hopefully partially
- 15 mitigate the concerns of those homeowners.
- 16 And by not making use of Fire Guard 13, we didn't
- 17 bring the route in closer proximity to the Village
- 18 of Marchand. The other routes have various
- 19 different levels of balance of all these concerns,
- 20 but when considered together, BMY was the
- 21 preferred route.
- 22 So through this process we selected
- 23 our final preferred route, which is presented to
- 24 you here, again with the benefit of the map
- 25 indicating the amount of Crown land and the amount

- 1 of private land.
- 2 So I'm now going to turn it over to
- 3 James, who is going to walk you through a summary
- 4 of this final preferred route and its features.
- 5 MR. MATTHEWSON: So the overall length
- 6 of the final preferred route is 213 kilometres in
- 7 total length, 92 kilometres in existing
- 8 rights-of-way. So that is the use of the existing
- 9 corridors, so the southern loop transmission
- 10 corridor, the Riel/Vivian transmission corridor.
- 11 We have 121 kilometres of new right-of-way. And
- 12 of that new right-of-way, as you saw on the maps
- one slide back, 30 per cent of that right-of-way
- 14 is on Crown owned land, 70 per cent is on private
- 15 land. And approximately 500 hectares of clearing
- 16 are required. 500 sounds like a big number, but
- 17 it is a very small number relative to a project
- 18 like Bipole. One section of Bipole is almost
- 19 double the amount of hectares of clearing, and a
- 20 section of Bipole is approximately 200 kilometres
- 21 in length. 126 private landowners are directly
- 22 affected by the route.
- 23 So I'm going to circle back, and I'd
- 24 like to review for the Commission the route
- 25 planning of the final preferred route.

- 1 So this final preferred route would
- 2 not be possible without the input gathered from
- 3 the public engagement and First Nations and Metis
- 4 engagement processes previously described to you
- 5 by Trevor and Sarah. It is this local knowledge
- 6 that is valuable for informing the process of
- 7 determining a final preferred route.
- I would like to review with you those
- 9 siting principles I talked about in the beginning,
- 10 so the avoided or limited effects to residences.
- 11 So Manitoba Hydro has achieved this siting
- 12 principle as -- strived to achieve the siting
- 13 principle through mitigation such as what you saw
- 14 on Quintro Road. And there's things that we're
- 15 still developing with regards to tower spotting
- 16 and the exact location of the tower in relation to
- 17 residences and their fields of view, and the
- 18 visual quality out of their windows are still
- 19 things that we are working with landowners to
- 20 address.
- 21 The avoidance and limiting the effects
- on intactness, such as on wetlands, such as the
- 23 Caliento bog and the Sundown bogs. You'll hear
- 24 about those in the upcoming presentations -- the
- 25 Caliento bog is in this area, and the Sundown bog

- 1 is a little further south -- about how we skirted
- 2 the edges of those bogs, trying to minimize that
- 3 disruption of intactness and the complex
- 4 environments in those wetlands.
- 5 We utilized the south loop
- 6 transmission corridor and the Riel/Vivian
- 7 transmission corridor. Again, the public
- 8 engagement processes, the strong, or the feedback
- 9 that we got was use existing transmission
- 10 corridors where you can.
- 11 The other feedback we got through the
- 12 public engagement, parallel transmission lines,
- 13 such as what we have done on R49R. So that's this
- 14 230 kV transmission line where we have paralleled
- it there, and we have paralleled it in that
- 16 location.
- 17 You have heard from the engineers the
- 18 challenges with paralleling the 500, and their
- 19 requirements from reliability perspective on the
- 20 separation from the 500 lines.
- 21 We have tried to avoid or limit the
- 22 effects on agriculture through the avoidance of
- 23 use of diagonal transmission line routing across
- 24 cultivated cropland. We follow property
- 25 alignments and road alignments where we can with

- 1 the routing.
- We tried to limit those effects on
- 3 recreational, as we talked about on one of those
- 4 mitigative segments with the recreational land use
- 5 in this area, outside the WMA, and the traditional
- 6 use areas that are on the Crown lands adjacent.
- 7 So as much as we can, we tried to mitigate those
- 8 concerns through avoidance.
- 9 We've gone through numerous efforts to
- 10 understand site specific land uses from landowner
- 11 to landowner conversations that Trevor had talked
- 12 about. We've met with every single landowner on
- 13 this FPR at some point in time, and tried to
- 14 mitigate their concerns through tower spotting,
- 15 through bio-security processes, those things that
- 16 we worked with the landowners to try and mitigate
- 17 their concerns as much as we can.
- 18 It's planned with the technical
- 19 knowledge and that local knowledge, that's what
- 20 planned this final preferred route. There are
- 21 essentially three pillars that are required for
- 22 route planning, in my opinion. These include the
- 23 vast amounts of geo-spatial data that you need to
- 24 do an exercise like this, the huge amounts of
- 25 information that we need. We need public, First

- 1 Nations and Metis engagement processes to
- 2 contribute to the whole process. That's the
- 3 second pillar. The third pillar is that technical
- 4 expertise that the route planners have to try to
- 5 design a line and a route that tries to address
- 6 these concerns.
- 7 Routes cannot be planned from the
- 8 desk. I cannot draw routes solely, a final
- 9 preferred route from a desk top. We certainly
- 10 started the desk top, we draw routes, we go to the
- 11 public, we drive, we scour the entire study area,
- 12 learning it, understanding it as much as we can as
- 13 route planners, but relying heavily on that public
- 14 engagement of First Nations. And it's the
- 15 engagement process that brings that local
- 16 knowledge to us to help come up with a final
- 17 preferred route. It's not something that we can
- 18 just get in a helicopter, fly around, and figure
- 19 out, oh, the route should go there. It's just not
- 20 possible.
- 21 We have taken several years to develop
- 22 this, over three years of extensive public and
- 23 First Nations and Metis engagement processes, as
- 24 described in the previous presentations. It's the
- 25 sum collective knowledge, as Ms. Bratland likes to

- 1 use, this final preferred route is the sum
- 2 collective knowledge of all of our processes,
- 3 whether it be the discipline experts on the
- 4 environmental side, the public engagement, or the
- 5 First Nations and Metis engagement processes, and
- 6 the technical expertise to come up with this final
- 7 preferred route.
- Now, to circle back on the concept of
- 9 corridors. So we started with corridors, we
- 10 started with an alternate corridor. We decided to
- 11 develop the simple average corridor as an
- 12 illustration. So when we talked about those
- 13 corridors, we started in two places with those
- 14 corridors. We started at the end of the
- 15 Riel/Vivian corridor, and we started around the
- 16 south of the loop when we first developed the
- 17 alternate corridors. We started there and we
- 18 started along here. So to kind of circle back to
- 19 what those stakeholders told us, we decided to run
- 20 a corridor model from a start point to an
- 21 endpoint, which would have been the simplest way
- 22 to develop this project perhaps, and to validate
- 23 the final preferred route -- to not necessarily
- 24 validate it, because all of those things I talked
- 25 about with the final preferred route, they've been

- 1 informed by all kinds of knowledge from the public
- 2 and the First Nations, Metis engagement processes,
- 3 that this corridor and these stakeholder models,
- 4 they don't have. But they do have the values of
- 5 the landscape and what's on the land. So we
- 6 looked at this corridor and, say, okay, what would
- 7 the final preferred route look like if we modelled
- 8 the simple average corridor only? So as we
- 9 discussed, there the built perspective, the
- 10 natural perspective, the engineering perspective,
- 11 the simple average. So the one that balances all
- 12 of those concerns equally is the simple average.
- So when we mapped out that corridor
- 14 from a defined start to a defined endpoint, this
- is what we receive. And you can see that the
- 16 final preferred route falls within that simple
- 17 average corridor for much of its length. Where it
- 18 doesn't, is an area where we are paralleling
- 19 existing transmission facilities to gain further
- 20 separation from people, and to provide that
- 21 opportunity that the public told us, use existing
- 22 as much as you can. So that's where we deviated
- 23 outside of the simple average corridor, to avoid
- 24 that higher residential density.
- I'll pass it back to Ms. Bratland to

- 1 summarize everything for you.
- MS. BRATLAND: So in summary, the
- 3 final preferred route proposed by Manitoba Hydro
- 4 is the result of three years of study, in
- 5 consideration of hundreds of thousands of route
- 6 alternatives. Input was sought early and often,
- 7 and informed the development of route selection
- 8 criteria, the routes planned, and the route
- 9 evaluation.
- We engaged with 13 First Nations, 4
- 11 Aboriginal organizations and the MMF, collecting
- 12 input over the course of 90 leadership meetings,
- open houses, workshops, and community events
- 14 initiated in 2013. The public engagement process,
- we had over 1,500 people participate over the
- 16 course of three years. We held 39 open houses and
- 17 landowner information sessions, held in 15
- 18 communities. And efforts are ongoing, including
- 19 the work of the dedicated landowner liaisons who
- 20 will work with landowners that are traversed by
- 21 the final preferred route.
- 22 Data: There was data collection at
- 23 every stage. Data characterizing land uses and
- 24 features were collected across the area under
- 25 consideration through numerous on the ground and

- 1 aerial surveys conducted by a wide range of
- 2 disciplined specialists.
- 3 The decisions regarding the route
- 4 selection were guided by a streamlined framework
- 5 and made by a multi-disciplinary team, leveraging
- 6 the experience and expertise of the collective
- 7 knowledge, which I like to say of more than 60
- 8 professionals, making use of quantitative data at
- 9 every step. The result is a route that Manitoba
- 10 Hydro confidently proposes as the final proposed
- 11 route.
- 12 I'd like to take us back to the
- 13 recommendations made by this Commission on Bipole
- 14 III, represented in this table.
- 15 It was recommended that we have an
- 16 open process. Our open process included
- 17 opportunities for participation at multiple
- 18 stages.
- 19 It was recommended that we be more
- 20 quantitative. We have quantitative input, that
- 21 can be very difficult to measure even, included in
- the decision making process, alongside those more
- 23 quantitative factors such as cost.
- We were recommended to be more
- 25 transparent. We have attempted to accomplish

- 1 that. We have made the weightings and the
- 2 judgments, and essentially all of the trade-offs
- 3 made in making those judgments, transparent and
- 4 are shared in our documents and our models.
- 5 You said that we should be more
- 6 streamlined. We have used consistent steps and
- 7 processes, and have used whole route comparisons
- 8 throughout.
- 9 It was indicated that we should have
- 10 participation in the selection of routing
- 11 criteria. This was accomplished through the use
- of routing workshops, both at the Alternate
- 13 Corridor Model stage and the Alternate Route
- 14 Evaluation Model stage.
- 15 And it was indicated to us that we
- 16 should allow participation in route selection. We
- 17 feel that we accomplished this through the
- 18 development of mitigative segments through the
- 19 feedback and analysis stage of routing and in the
- 20 evaluation criteria.
- 21 So let's circle back finally to our
- 22 objectives. The objectives, again, were to
- 23 determine a route for a transmission line by
- 24 balancing multiple perspectives, and by doing so,
- 25 limiting the overall effect of the transmission

- 1 line. The transmission line routing process is
- 2 essentially a land use planning process, for a
- 3 piece of linear infrastructure that necessarily
- 4 affects the preferred land uses and interests of
- 5 many parties. Manitoba Hydro conducted a balanced
- 6 and comprehensive study of alternatives in this
- 7 exercise. Options with various balances of land
- 8 uses and associated interests were evaluated
- 9 multiple times, at increasingly detailed levels of
- 10 information collection and geographic scale. The
- 11 central issues and competing perspectives
- 12 associated with private versus Crown lands, and
- 13 land uses they support, were examined at every
- 14 stage in every round.
- 15 We want to acknowledge that those that
- 16 are affected by this transmission project may not
- 17 accept this as their preferred route, and that's
- 18 completely understandable. But I want you to know
- 19 that our team interacted directly with those
- 20 potentially affected individuals and communities
- 21 and landowners. We were a part of all of those
- 22 conversations. And we have dedicated our time and
- 23 our energy over the last five years to carefully
- 24 plan, engage and assess, with the aim of limiting
- 25 the effects of the transmission line on people and

- 1 the environment.
- 2 In the presentations that follow, you
- 3 will hear from our construction teams, our
- 4 property teams, our socio-economic and biophysical
- 5 panels, who will all share with you how we will
- 6 work to limit the effects of this transmission
- 7 line. And we look forward to addressing your
- 8 questions and comments on this topic.
- 9 So now that was going to be the end of
- 10 my presentation. But as we discussed earlier, and
- 11 as Mr. Toyne raised some very important questions
- 12 yesterday, we'd like to address those before
- 13 concluding and passing it over to the question
- 14 period.
- So the two specific things that I
- 16 would like to address further, one was the
- 17 question about screening in of SIL and the fact
- 18 that it was felt that this was eliminated and then
- 19 brought back into the process inappropriately. So
- 20 I will further discuss that. Although I do
- 21 believe I have addressed it in the presentation,
- 22 but we'll talk about it again. And then we'll
- 23 talk about the context behind the working tables
- 24 that appear in the notes in the EIS, where it
- 25 appears that SIL ranked third, and I'll describe

- 1 the work and discussion that happened around that
- 2 process.
- I want to talk about the SIL screening
- 4 process, so if we could go back to the Round 2
- 5 finalist map? And you could go back to the slide
- 6 on this one with the finalist table.
- 7 Okay. So, as I noted in my
- 8 presentation, in the comparative evaluation stage,
- 9 the first step is to take a large number of
- 10 routes. In the Round 2 case, I believe there was
- 11 approximately 15,000 routes, that we needed to
- 12 identify a small subset to screen further, forward
- in, for further consideration in preference
- 14 determination. So these were the routes that
- 15 ended up being screened in.
- 16 So when the team starts the workshop
- in the meeting, we have an overview of the team in
- 18 terms of what our challenge is today, what tools
- 19 we will have, and what we will discuss. And we
- 20 talk about the challenge of screening routes
- 21 forward. We have the understanding that we have a
- 22 number of tools and measures that we can use to
- 23 inform the decisions of what to screen forward.
- 24 Those include the metrics and statistics
- 25 calculated from the alternate route evaluation

- 1 model. That helps us to evaluate strengths and
- 2 weaknesses of routes very quickly, to see what are
- 3 more preferred from different perspectives, based
- 4 on just the knowledge of those metrics. Then we
- 5 consider all the segments that make up these
- 6 potential routes. So we will look visually, as a
- 7 team, at the different routes. And all along
- 8 we're always talking about what are we losing or
- 9 what are we missing? Because when you go from
- 10 15,000 to 5, you're getting rid of a lot of stuff.
- 11 So at this point we want to make sure that we
- 12 retain for further conversation those important
- 13 trade-offs that need to be understood and
- 14 evaluated further with the benefit of the
- 15 preference determination model.
- 16 And remember that model and that tool
- is a way for the project team to bring to bear
- 18 community feedback, further detailed analysis
- 19 around landscape features, intactness, and things
- 20 that aren't measured or represented in the
- 21 metrics. We bring that expert judgment to bear
- 22 here.
- 23 So in discussion of the different
- 24 segments, it was noted that when we looked at
- 25 the -- can I have the table before this, please --

- 1 when we looked at the top routes from the
- 2 different perspectives, we clearly had something
- 3 that paralleled the Trans-Canada Highway, we had
- 4 options that planned the Riel/Vivian corridor, we
- 5 had options that went east and west to the
- 6 Wildlife Management Area, and in the south.
- 7 So we got to the end of the meeting
- 8 and I said to everyone, okay, we need to adjourn,
- 9 we're coming back tomorrow. Consider before we
- 10 get back in the room whether we feel like we have
- 11 all the important trade-offs represented, and
- 12 we'll start the day tomorrow by finalizing what
- 13 our set will be in preference determination.
- 14 After the session for that day -- and
- 15 Mr. Toyne, I remember who made that recommendation
- 16 and I'll share that with you today. Ms. Johnson
- 17 approached me after the workshop and indicated a
- 18 question. She said, was there any route that came
- 19 forward that incorporated the Riel/Vivian
- 20 transmission corridor paralleling and went west of
- 21 the Wildlife Management Area? So I reflected on
- 22 that. I looked at the routes that had been
- 23 screened forward, as the facilitator for this
- 24 process, and I noted that there wasn't a route
- 25 that had that.

- 1 So when we began the workshop the next
- 2 day, I approached the team with that same
- 3 question. Would it be important to consider a
- 4 route option that included these two elements, the
- 5 Riel/Vivian transmission corridor paralleling, as
- 6 well as west of the Wildlife Management Area?
- 7 The team discussed that. We looked at
- 8 the visual of the routes, the different regional
- 9 trade-offs that needed to be evaluated, and it was
- 10 agreed that we should consider a route that
- 11 incorporated those segments, those segments
- 12 specifically because of those trade-offs that
- 13 could be represented. But what route to consider?
- 14 So we turned again to our metrics and our
- 15 statistics and queried those. We asked our data
- 16 team to look at those metrics and tell us, using
- 17 those two segments, which is the top route from
- 18 the simple average perspective that uses those two
- 19 segments?
- 20 So they were able to look into the
- 21 metrics and tell us that the top route that uses
- the segment in the north with the Riel/Vivian, and
- 23 a segment to the west of the Wildlife Management
- 24 Area, was Route SIL. So this is how Route SIL
- 25 came to be screened in for the final step in

- 1 preference determination. I hope that addresses
- 2 that question.
- 3 Next let's turn to the question of the
- 4 working tables. So I have pulled up on the screen
- 5 what you have in your handouts, and these come
- from the route evaluation workshop related to
- 7 Round 2. So what's on what side here?
- 8 So on my right is what I will refer to
- 9 as the working table, and on my left is what I
- 10 will refer to as the preference determination
- 11 table. When I indicated how these sessions work,
- 12 so the engineering team and the natural team, they
- 13 will go out into a breakout session. They will go
- 14 through each of the criteria that they are charged
- 15 with determining a ranking for, and then they will
- 16 come back and propose those preference rankings to
- 17 the team. This working table was the working
- 18 table that captured that first discussion. So the
- 19 engineering team came back and indicated that they
- 20 had evaluated cost and applied a certain logic to
- 21 how they assigned the rank of 1 and 2.
- So in applying this rank of 1 and 2,
- 23 the engineers determined that they would take an
- 24 average of the cost between the routes and
- 25 anything within 5 per cent of this average would

- 1 get a 1. Anything over this would get a 2.
- 2 So what you see here in cost is a
- 3 series of 1's and 2's, and in that -- you can't
- 4 really make it out but it's highlighted -- it
- 5 says, we took average of all costs, consideration
- 6 of costs from the metrics and adding those factors
- 7 that I've highlighted. And if actual within 5
- 8 per cent of average, then 1 if it's greater, then
- 9 10 over 2.
- 10 So this was how they stated the
- 11 relative difference between the routes and the
- 12 working table that they presented back to the
- 13 project team as a whole.
- 14 As I mentioned, as the facilitator of
- 15 the process, I challenge, when people put forward
- 16 an assumption, to make sure they have provided a
- 17 rationale to the group. And other members of the
- 18 project team will also challenge those rationales
- 19 and underpinning assumptions and logic.
- 20 So this was something that was
- 21 challenged. Other members of the project team
- 22 indicated that they felt that this approach
- 23 overstated the differences between routes on the
- 24 basis of cost.
- So through that discussion, we

- 1 determined that it was more representative to use
- 2 a relative difference of cost to represent the
- 3 difference between the routes on that basis.
- 4 So what you see in the cost category here, the 1's
- 5 and 2's, was then changed to what you see here,
- 6 which represents the relative difference, which is
- 7 achieved by taking the cost for a route, dividing
- 8 it by the lowest cost route value. So you get
- 9 basically a range of percentages. The 1 is the
- 10 preferred, .03 would be 3 per cent more expensive
- 11 than the cheapest route, which was SGZ in that
- 12 case.
- So while it appeared that SIL was
- 14 determined to be not preferred, this was a working
- 15 table that was part of a discussion that lead to
- 16 the outcome and the decision supported by the
- 17 project team represented by the final preference
- 18 determination table.
- 19 So I hope that that helps to clear up
- 20 that question, and I look forward to the rest of
- 21 the questions for the rest of the session. Thank
- 22 you so much for your time and patience. I
- 23 understand that was a long presentation. Thank
- 24 you.
- 25 THE CHAIRMAN: So thank you very much,

- 1 Manitoba Hydro, for that presentation. And we
- 2 will reconvene at -- why don't we make it a little
- 3 bit shorter, so let's say quarter to 2:00. It
- 4 gives you just around 45 minutes, and we'll start
- 5 questioning at that time. Thank you.
- 6 (PROCEEDINGS RECESSED AT 12:53 P.M.
- 7 AND RECONVENED AT 1:45 P.M.)
- THE CHAIRMAN: Okay, welcome back,
- 9 everyone. We are about to start. I just got the
- 10 high sign that my mic is working now, so hopefully
- 11 we are good to go.
- 12 All right. So we are going to start
- 13 the questioning. Every day, for those of you who
- 14 maybe aren't familiar with the process, every day
- 15 we start at a different point in the order. So
- 16 today we will be starting with number 3, and that
- 17 will be Peguis First Nation. So take it away.
- 18 MR. VALDRON: Once again, for the
- 19 monitor, my name is Den Valdron, representing
- 20 Peguis First Nation. Once again I offer greeting
- 21 to the Commission and a big hello to Manitoba
- 22 Hydro.
- 23 And I guess to start out, I would like
- 24 to thank you for the very exhaustive, brutally
- 25 detailed panel this morning. Without being

- 1 sarcastic, I was rapt through the whole thing, and
- 2 I found it very helpful and informative, and it
- 3 really brought home to me just how much work and
- 4 how much dedication that you've brought to this
- 5 and committed to this.
- 6 And so before I get into the nuts and
- 7 bolts of the cross-examination, which I think you
- 8 will find as gentle and welcome as a summer's
- 9 breeze, I have got to say first, look: Cut a guy
- 10 a break, please. No, seriously. You have these
- 11 beautiful, wonderful PowerPoint presentations, and
- 12 then when we get the sheets, they are like this
- 13 tiny size. Okay. It is like -- I don't have a
- 14 magnifying glass to break them down.
- 15 I'm not really complaining about that,
- 16 per se. But you know, you have all of these maps,
- 17 you have these charts, you have these wonderful
- 18 coloured flow thingies. Okay, fine. Very good.
- 19 No complaints about that. But what I will ask you
- 20 to do in the future is that if you are putting up
- 21 a chart or table or a map that's also included in
- 22 your EIS report, just point us to it.
- 23 You know, if you look around, a whole
- 24 bunch of people have brought binders and binders
- 25 here; they can actually look up the physical

- 1 document if they need to. I brought a laptop.
- 2 Several other people have laptops. Two clicks on
- 3 the mouse, and I can look at this on my computer
- 4 and expand it to fill the frame.
- 5 So, as you were doing this, where I
- 6 would find myself getting lost is that you would
- 7 have one of these tables up, and sometimes I could
- 8 find it, you know, Table F2, or Table F3, and that
- 9 made it so much easier to follow along. But there
- 10 was no concordance, no quidance, either on the
- 11 PowerPoint presentation itself or in the sheets
- 12 that you handed out. So I would be hunting a lot,
- 13 and sometimes, as I was hunting, I would fall half
- 14 a dozen tables behind.
- 15 I'm not saying just redo everything,
- 16 but when you are putting these things up, it might
- 17 help a little bit to go -- "Oh, and by the way,
- 18 this is Table 5.2 in chapter 5 of the EIS, " so we
- 19 can find it easy. It would make it so much easier
- 20 for all of us.
- Now, we might stare at a piece of
- 22 paper, or at a screen on the laptop rather than up
- 23 there, but trust me, we are still listening to
- 24 you. We are still committed. So help a guy out.
- I'm seeing nods.

- 1 MR. MATTHEWSON: Duly noted.
- 2 MR. VALDRON: All right. So here we
- 3 are. So as I understand it -- and you will excuse
- 4 me, because I'm not -- I'm just a simple young
- 5 lawyer.
- 6 This is a EPRI-GTC; have I pronounced
- 7 that right? Great. An EPRI-GTC methodology, and
- 8 it is modified, correct?
- 9 MS. BRATLAND: The EPRI-GTC
- 10 methodology was modified in its application --
- 11 MR. VALDRON: Beautiful.
- 12 MS. BRATLAND: -- on this project.
- MR. VALDRON: Okay. So can you tell
- 14 me what the principal modifications were? How
- does this differ from the usual EPRI-GTC?
- 16 MS. BRATLAND: We have a number of IRs
- 17 on that topic. I'm just going to pull them and
- 18 reference you to them. One moment.
- 19 MR. VALDRON: Okay. Terrific.
- MS. BRATLAND: Okay. So as
- 21 Mr. Glasgow mentioned in his presentation, it is
- 22 typical, when the EPRI-GTC methodology is applied
- 23 in any new jurisdiction, to calibrate that model
- 24 and to use the models in a custom application in
- 25 any given setting. Responses to SSC IR 013 and

- 1 015 go into more detail about the elements of the
- 2 application that were modified.
- 3 MR. VALDRON: All right. Thank you
- 4 very much. And perhaps this is also in the IRs:
- 5 Can you tell me why the EPRI-GTC was selected?
- 6 Were there other Canadian models that were
- 7 available? What made this model stand out for
- 8 you? What was special about this one?
- 9 MS. BRATLAND: I'm going to begin by
- 10 answering that, and then I will pass that to my
- 11 colleague, Mr. Matthewson.
- 12 As I noted in my presentation, the
- 13 EPRI-GTC methodology was selected because it
- 14 afforded the opportunity for early input from
- 15 stakeholders in terms of developing criteria for
- 16 the alternate corridor model, and we were able to
- integrate it with our public engagement processes
- 18 and our First Nation-Metis engagement processes in
- 19 order to incorporate as much feedback as possible.
- 20 MR. MATTHEWSON: So the EPRI-GTC
- 21 methodology, when Manitoba Hydro was investigating
- 22 alternate routing methodologies through a variety
- 23 of mechanisms, through discussions with utilities
- 24 in adjacent jurisdictions and across Canada and
- 25 across the U.S., we looked at different options

- 1 that were available. We also conducted a request
- 2 for proposals, which was across Canada, across
- 3 North America, request for different routing
- 4 methodologies. And we, through our evaluation,
- 5 determined that the EPRI-GTC methodology was the
- 6 most compatible with the recommendations from the
- 7 Clean Environment Commission and our desire to
- 8 include as much stakeholder feedback as possible
- 9 at various steps in the decision-making process.
- 10 MR. VALDRON: Okay, thank you.
- I think I heard you say this was the
- 12 first time that the EPRI-GTC model was used in
- 13 Canada; did I get that wrong?
- 14 MS. BRATLAND: This would have been
- 15 the second time for Manitoba Hydro's application
- of the model on a project. The first time that we
- 17 used it, we used it on the St. Vital-to-Letellier
- 18 transmission project, and then this was the second
- 19 application of the framework.
- 20 MR. VALDRON: Okay. And when did you
- 21 use it on the St. Vital-Letellier?
- MS. BRATLAND: I don't have the date
- 23 off the top of my head.
- MR. VALDRON: Just ballpark it.
- MS. BRATLAND: That project was in

- 1 2013.
- 2 MR. VALDRON: All right.
- In terms of the EPRI-GTC down in the
- 4 States, I quess, has it been used for situations
- 5 involving tribal lands or tribal interests?
- 6 MR. GLASGOW: So the EPRI methodology
- 7 has been used on a variety of projects. I can
- 8 only speak to the ones that I have been involved
- 9 with, and I don't recall tribal interests in those
- 10 projects.
- 11 MR. VALDRON: Okay. Fair enough. I
- 12 asked that, of course, because this situation here
- 13 involves First Nations' interests, which is equal
- 14 to tribal in the U.S.
- 15 Now, I believe you referred to using
- 16 baseline studies when feeding into or setting up
- 17 the EPRI. Can you tell us if any baseline studies
- 18 were identified by First Nations that you
- 19 incorporated in terms of developing your model?
- 20 MS. BRATLAND: There were no specific
- 21 baseline studies that were incorporated into the
- 22 stages of alternate corridor model criteria
- 23 development, if that's what you are referring to.
- 24 The process of calibrating that and subsequent
- 25 models reflected on feedback from past projects

- 1 and started from that point.
- 2 MR. VALDRON: Past projects; so this
- 3 would include projects like Bipole or the
- 4 St. Vital that you just mentioned?
- 5 MS. BRATLAND: Yes.
- 6 MR. VALDRON: Okay. Were any of these
- 7 past projects particularly significant in terms of
- 8 calibrating?
- 9 MS. BRATLAND: No, I would say that
- 10 our collective experience from those past projects
- 11 helped us understand past issues, concerns
- 12 associated with various land uses.
- MR. VALDRON: So you didn't use any
- 14 past experiences; the baseline was just general?
- 15 MS. BRATLAND: Just general knowledge.
- MR. VALDRON: Okay.
- Now, this may be answered in an IR,
- 18 but if so, I didn't run across it; maybe that's my
- 19 fault. But in terms of the criteria that was
- 20 added to the methodology, did any of these
- 21 criteria come from or relate to First Nations?
- 22 Like, when you were customizing the EPRI-GTC?
- Is "customizing" the right word? Is
- 24 that a word that you are okay with?
- MS. BRATLAND: Sorry, "customize"?

- 1 MR. VALDRON: Yes.
- MS. BRATLAND: I think we use
- 3 "customize" in terms of calibration, so --
- 4 MR. VALDRON: Yeah, when you were
- 5 adapting or calibrating.
- 6 MS. BRATLAND: Yeah.
- 7 Just one second. I took the words
- 8 right out of his mouth.
- 9 MR. VALDRON: Okay.
- 10 MS. BRATLAND: So I'm going to assume
- 11 that you are referring to the alternate corridor
- 12 model.
- MR. VALDRON: Um-hum.
- MS. BRATLAND: Which is that first
- 15 stage of developing alternate corridors on the
- 16 landscape with stakeholder values.
- MR. VALDRON: Yes.
- MS. BRATLAND: As we noted in a couple
- 19 of IR responses, we did not have indigenous
- 20 communities participating in this workshop.
- 21 However, the features and categories that are
- 22 represented in the model -- in particular, under
- 23 the "Natural" category -- we understand to
- 24 represent a number of the land features and land
- 25 uses that are valued by First Nations communities,

- 1 based on the feedback we've received from past
- 2 projects.
- For example -- I'll just take a couple
- 4 of examples out of here.
- 5 Under "Wildlife Habitat," we would
- 6 understand that harvesting, hunting for waterfowl
- 7 and wildlife would be a valued activity, and we
- 8 included that land type in this category. Also
- 9 the types of habitat that support important plants
- 10 would be represented under the "Natural" category
- 11 as well.
- MR. VALDRON: Yes, yes, and we will
- 13 come back to the "Natural" category.
- With respect to the EPRI-GTC -- I
- 15 think I pronounced that right -- was this version
- 16 particularly supported by U.S. interests, by the
- 17 U.S. regulators or by your U.S. partners? Was
- 18 that one of the reasons that you considered or
- 19 went with this particular model?
- MS. BRATLAND: No.
- 21 MR. VALDRON: No. I like that; that's
- 22 very definite. Okay.
- 23 Apart from use by Hydro, I think it
- 24 has only been used once in Canada, and that was by
- 25 you guys, so ...

- 1 All right. You talked quite a bit
- 2 about transparency. Can you comment on the level
- 3 of transparency compared to other EPRI-GTC
- 4 projects? I guess that would be for you, and you
- 5 will forgive me if I just go completely blank on
- 6 your name.
- 7 MR. GLASGOW: My name is Jesse.
- 8 MR. VALDRON: I will forget that in
- 9 30 seconds; I'm like a goldfish. But please, go
- 10 on, Jesse.
- MR. GLASGOW: So your question is,
- 12 what is the level of transparency on this project
- 13 relative to other projects of which I've been
- 14 involved?
- MR. VALDRON: Yes.
- MR. GLASGOW: I would say this is
- 17 probably the most transparent project I've ever
- 18 been involved in. For example, the detailed
- 19 meeting minutes have been made available through
- 20 the EIS; every round of evaluation, the numbers
- 21 have been made available. And in general, it is
- 22 very transparent.
- 23 MR. VALDRON: Okay. Thank you very
- 24 much. I appreciate that answer.
- Now, with respect to this methodology,

- 1 I've wondered about the environmental elements
- 2 being assessed, and so I will just leave it to the
- 3 bunch of you. And just so I can get a handle on
- 4 it in terms of comparisons, but can you advise me,
- 5 say, in comparison to Bipole III, as to whether
- 6 more or less valued ecosystem components were
- 7 assessed or identified? I mean, how does this
- 8 compare to, say, Bipole III as a baseline?
- 9 MS. BRATLAND: The number of valued
- 10 components that were assessed is not a question
- 11 for routing. The assessment itself considers the
- 12 value components. The value components in this
- 13 application were linked to the criteria and the
- 14 elements considered.
- 15 In terms of whether there were more
- 16 natural features considered in Bipole, I would say
- 17 without -- well, subject to check, of course, that
- 18 my expectation is that we considered a similar
- 19 number and types of features, and that it was
- 20 different in the way that the framework brought
- 21 those together.
- MR. VALDRON: Okay. Thank you.
- 23 Can you tell me if there was any
- 24 quantitative data that was used in the MMTP
- 25 routing that wasn't used for the routing in the

- 1 St. Vital complex or for Bipole III?
- MR. MATTHEWSON: Sorry, could you
- 3 repeat the question?
- 4 MR. VALDRON: What quantitative data
- 5 was used for the MMTP routing that wasn't used in
- 6 the routing for the St. Vital complex or the
- 7 Bipole III? As I understand this, you've upped
- 8 the game. So what's changed? What is the
- 9 increase, or what sorts of quantitative data?
- 10 MR. MATTHEWSON: I think the amount of
- 11 the windshield surveys certainly is a big thing
- 12 that we did on this project. We did it on the
- 13 St. Vital project as well, but it wasn't done on
- 14 Bipole, where literally we drove every single
- 15 road, every route, mapped every home, business,
- 16 residence, structure.
- Just due to the geographic nature of
- 18 southeast Manitoba, there is a variety of
- 19 different data sets that exist in this area, such
- 20 as tall grass prairie, or -- probably that would
- 21 be the most unique natural feature in this
- 22 landscape. Very similar in the types of data,
- 23 certainly through the alternate corridor
- 24 evaluation model development with the technical
- 25 data holders that we brought together for that,

- 1 they certainly brought together new data sets that
- 2 we weren't aware of on the Bipole III project and
- 3 were incorporated into this project, such as some
- 4 of the waterfowl habitats, the unique ungulate
- 5 habitats, the grouse like areas. There is a
- 6 variety of different features that we were able to
- 7 gather through building -- conducting that
- 8 workshop, and people telling us and making us
- 9 aware of new data sets such as wetlands; in this
- 10 study area there was extensive wetland mapping
- 11 being undertaken by various agencies, and we had
- 12 that available to us throughout the different
- 13 stages of the assessment on routing, which we
- 14 didn't have for a project the scale of Bipole.
- 15 The wetlands are simply just not mapped for the
- 16 province of Manitoba at that scale.
- 17 MR. VALDRON: I take it that there was
- 18 no quantitative data from First Nations in
- 19 Round 1?
- 20 MS. BRATLAND: Ms. Thompson previously
- 21 covered the information that was available in
- 22 Round 1, the information related to regional
- 23 considerations, areas that were valued for
- 24 historical, cultural, and sacred purposes. There
- 25 was some information about some previous

- 1 historical sites as well. So the number and
- 2 location of those might have been considered
- 3 quantitative, but mostly it was more regional.
- 4 MR. VALDRON: Okay. Thank you.
- Now, just before I go on to the next
- 6 phase, I guess one thing I was wondering about was
- 7 how were those three border crossings originally
- 8 selected? I wasn't sure -- maybe I zoned out at
- 9 the moment, but I wasn't sure if I heard that one.
- MS. BRATLAND: We are just going to
- 11 look up an IR for you on that one, because we
- 12 don't have a response.
- MR. MATTHEWSON: Okay. In
- 14 Section 5.3.1 of chapter 5 of the transmission
- 15 line routing, it explains the development of the
- 16 potential border crossings. And it was a process
- 17 conducted using criteria outlined on Table 5-2 to
- 18 understand the constraints and opportunities along
- 19 the border itself.
- 20 So this was an exercise that Manitoba
- 21 Hydro conducted with Minnesota Power to delineate
- 22 areas along the border through a common set of
- 23 factors and constraints, as described in
- 24 Table 5-2, such as Treaty land entitlements,
- 25 existing transmission corridors, water types,

- 1 wetlands, designated historic sites. There was a
- 2 variety of protected areas, proposed protected
- 3 areas, on both sides of the border.
- 4 So where we essentially took those
- 5 data sets together, we mapped each other's
- 6 respective boundaries along the side, looked at
- 7 areas by which we could legally, or -- because
- 8 some of these areas are protected against
- 9 development -- or they are a significant area of
- 10 special interest through Manitoba Sustainable
- 11 Development's Protected Areas Initiative.
- 12 We did that on our side; Minnesota
- 13 Power did it on their side of the border. And
- 14 when we came up, and we shared each other's data,
- 15 we had a meeting, and we delineated the zones, as
- illustrated by the border-crossing boxes. They
- 17 are approximately ten kilometres in length; they
- 18 vary a little bit in width. But they were really
- 19 delineated by constraints on either side of the
- 20 border, as described in Table 5-2.
- 21 MR. VALDRON: Thank you. Thank you
- 22 very much. I appreciate that answer.
- 23 You mentioned TLE, and so I was just
- 24 wondering, were TLE considerations part of the
- 25 first round at all?

- 1 MR. MATTHEWSON: I believe we have an
- 2 IR on that. The nature of the concern was -- or
- 3 TLE interest was with Buffalo Point First Nation,
- 4 I believe. They had an area in close proximity
- 5 to -- or a community interest zone surrounding
- 6 that community by which Manitoba Hydro delineated
- 7 the border crossing up to that point, but not into
- 8 that area, due to the ongoing area of potential
- 9 selection there.
- 10 So there were no defined Treaty Land
- 11 Entitlement selections in there, but it was an
- 12 area of potential selection, as delineated through
- 13 the Treaty Land Entitlement agreements.
- 14 MR. VALDRON: Yes. You are aware that
- 15 Pequis, for instance, has about 165,000 acres in
- 16 outstanding TLE selection, so --
- MR. MATTHEWSON: Yes.
- 18 MR. VALDRON: -- obviously this is a
- 19 concern to us.
- 20 MR. MATTHEWSON: We were also aware of
- 21 the Treaty Land Entitlement that Peguis had
- 22 selected and was in the selection process, which
- 23 was to the east, near the end of the Riel/Vivian
- 24 corridor.
- MR. VALDRON: Okay. So, then, this

- 1 was part of your first round considerations?
- 2 MR. MATTHEWSON: Yes. The TLE
- 3 selections formed an area of least preference in
- 4 route planning, the ones that were selected.
- 5 MR. VALDRON: Okay, good.
- Now, as you went through the rounds, I
- 7 think that there was -- and feel free to
- 8 contradict me, because obviously I'm just -- you
- 9 know, not as technically skilled, so I'm just
- 10 struggling to keep up with you guys.
- But as you went through the rounds, I
- 12 believe that the emphasis was to try and weigh
- 13 everything equally, rather than give particular
- 14 weights preference; is that right? Or did the
- weighting shift from one round to the next?
- MS. BRATLAND: The weightings that
- 17 were established for the different models that are
- 18 used within the framework were applied
- 19 consistently from round to round. The weights
- 20 never changed.
- In your question, you indicated, was
- 22 everything considered equally? So the weightings
- themselves indicate that different things were
- 24 given different levels of consideration in
- 25 decision-making, but those weightings were set at

- 1 the onset of the project and continued through.
- 2 MR. VALDRON: Okay. So the relative
- 3 weights just remained consistent through every
- 4 single round; they didn't change?
- 5 MS. BRATLAND: Correct.
- 6 MR. VALDRON: Okay. That helps, so
- 7 thank you very much for that.
- 8 With respect to Crown lands and
- 9 private lands, were they weighted the same? Were
- 10 they given equal weight?
- 11 MS. BRATLAND: Crown lands and private
- 12 lands were not assigned a weight. They were not a
- 13 criteria in any of the models, but they were a
- 14 consideration that informed decision-making and
- 15 influenced the criteria of schedule risk.
- MR. VALDRON: Right. Were they given
- 17 the same consideration? Were they treated the
- 18 same, or were they differentiated?
- 19 MS. BRATLAND: Crown land and private
- 20 land were considered from the perspective of what
- 21 types of approvals could be required prior to the
- 22 project. In my presentation I discussed, and in
- 23 the EIS it is discussed, that when the only
- 24 difference between a route is the percentage of
- 25 Crown land and private land, the nature and extent

- 1 of the Crown land, and the natural and other uses
- 2 that it supports, is a consideration for the
- 3 potential risk to schedule, and was determined by
- 4 the project team that a higher risk to schedule
- 5 would be assigned to routes with a higher
- 6 proportion of natural Crown lands.
- 7 MR. VALDRON: Okay. Thank you.
- 8 Now, I gather that indigenous
- 9 information -- or First Nations, or ATK, whatever
- 10 phrase you want to use -- wasn't a direct input
- into the rounds, but rather mediated through
- 12 engagement; is that correct?
- MS. BRATLAND: Any information
- 14 received through the First Nation and Metis
- 15 engagement process was incorporated in any
- 16 decision that was going on. So if we had
- 17 information from a preliminary stage of a study
- 18 that was shared with us, the First Nation and
- 19 Metis engagement team brought that forward to the
- 20 project team for consideration in overall
- 21 decision-making.
- 22 So it wasn't only thought about by the
- 23 First Nations and Metis engagement team; it was
- 24 shared by them, communicated to the project team
- 25 from them with context around it, and then

- 1 considered by the whole team.
- 2 MR. VALDRON: Well, I certainly
- 3 appreciate the good work and the efforts of the
- 4 engagement team, and do not misjudge me on that.
- 5 But I think what I was wondering is
- 6 apparently there were direct inputs in the first
- 7 round -- for instance, Ducks Unlimited. But First
- 8 Nations, or First Nation organizations, didn't
- 9 have a chance to input directly.
- 10 MS. BRATLAND: I'm sorry, I would just
- 11 like to clarify in your question: When you say
- 12 "first round," are you referring to the
- 13 development of the alternate corridor model?
- MR. VALDRON: Yes.
- 15 MS. BRATLAND: That would be what we
- 16 consider to be preliminary planning prior to
- 17 Round 1, and there were no First Nation or Metis
- 18 organizations or communities that were
- 19 participating in that process.
- MR. VALDRON: Okay. They weren't
- 21 invited to participate; is that correct?
- MS. BRATLAND: That's correct. There
- 23 is an IR on that. I will just point you to it,
- 24 because it is quite helpful.
- In response to SSC IR 37, we talk

- 1 about the invitations to the workshop that was
- 2 held. And in CEC IR 007, it discusses this
- 3 further, in terms of the definition of technical
- 4 knowledge holders.
- 5 MR. VALDRON: Okay. But among the
- 6 parties that provided input at the early stage
- 7 were Ducks Unlimited; is that correct?
- 8 MS. BRATLAND: Ducks Unlimited was a
- 9 participant, yes.
- 10 MR. VALDRON: On what basis was Ducks
- 11 Unlimited a participant?
- 12 MS. BRATLAND: Ducks Unlimited was a
- 13 participant because they hold regional data about
- 14 wetland and wildlife use of wetlands in Southern
- 15 Manitoba, and they have knowledge about those
- 16 things.
- 17 MR. VALDRON: And I believe that
- 18 Indian Affairs, or AANDC, as they are calling
- 19 themselves now, was also a participant?
- 20 MS. BRATLAND: They were invited, but
- 21 were unable to participate on the day of the
- workshop.
- 23 MR. VALDRON: Not terribly
- 24 surprised -- without being sarcastic at all.
- No, actually I guess that was

- 1 sarcastic; I'm sorry. I will withdraw that
- 2 comment.
- Yeah. Why, for instance, was AANDC
- 4 invited to participate and not, say, Peguis? I'm
- 5 asking this because -- I mean, from our point of
- 6 view, AANDC doesn't usually get involved in Treaty
- 7 or traditional lands issues. I have never seen
- 8 them, for instance, participate in a hunting
- 9 rights case, whereas Peguis has a wide-ranging
- 10 commitment to supporting its population, and to
- 11 being aware of and participating with its
- 12 population in these processes.
- Peguis has been involved in something
- 14 like 30 of these, and not CEC per se, but 30
- 15 different processes at this point. And it has a
- 16 consultation department. So why weren't we at the
- 17 table at that point?
- 18 MS. BRATLAND: As we highlight in the
- 19 response to CEC IR 007, the workshops that were
- 20 conducted in May of 2013 were not a
- 21 project-specific workshop; they were a regional
- 22 workshop, in which technical data holders were
- 23 invited to attend to describe the features that
- they had knowledge of on the landscape and the
- 25 relative suitability of those features to interact

- 1 with transmission lines.
- 2 It was decided to include technical
- 3 data knowledge holders because this model is built
- 4 on the understanding of locations and geospatial
- 5 information, and those people that were invited to
- 6 attend were understood to be holders of that
- 7 information and to be -- determined by their
- 8 organizations to be able to speak on behalf of
- 9 that.
- 10 We have had feedback in the past from
- 11 communities, that they prefer to be engaged on
- 12 specific projects, once a project was known; and
- 13 this was before specific application of the model
- 14 to the project.
- 15 MR. VALDRON: But I would suggest to
- 16 you that with respect to Peguis, Peguis had
- 17 regional knowledge and regional expertise that
- 18 would have been valuable to you.
- 19 MS. BRATLAND: I don't doubt that they
- 20 do.
- 21 MR. VALDRON: But they weren't
- 22 invited.
- MS. BRATLAND: As outlined in the IR,
- 24 they were not.
- MR. VALDRON: Okay. Was there a

- 1 specific reason for that? Was it just an
- 2 oversight? Or you thought about Peguis, and then
- 3 thought, no?
- 4 MS. BRATLAND: I believe I already
- 5 answered that question, and it is outlined in
- 6 the IR, CEC IR 007. I'm just going to find the
- 7 line to read to you here.
- 8 Sorry, I'm just trying to find the
- 9 best reference to point you to here.
- 10 MR. VALDRON: Would it be CEC IR 39?
- 11 Because I was looking at that one.
- 12 MS. BRATLAND: So IR 37 talks about
- 13 the process we went through in terms of
- identifying groups to be invited to the workshop.
- 15 We were advised by the routing consultant that
- 16 these individuals should be technical data
- 17 holders, and that the purpose of the discussions
- 18 were regional-based and consensus-driven.
- 19 The decision was made to not invite
- 20 rural municipalities, members of the public, or
- 21 specific First Nations communities, because of the
- 22 fact that we were looking for more regional input
- 23 from the basis of those technical data holders.
- 24 MR. VALDRON: All right. I would
- 25 suggest to you that in the future, First Nations

- 1 would be relevant as regional data holders, or
- 2 regional -- or holders of regional technical data,
- 3 in ways that individual property owners or a
- 4 particular municipality simply are not.
- 5 A municipality, I mean, is defined by
- 6 its legally mandated boundaries. The private
- 7 property owner simply owns private property, but a
- 8 First Nation, I would suggest to you, is
- 9 fundamentally different, in that it represents or
- 10 contains a group of people or a body of people who
- 11 have rights and undertakings and activities on a
- 12 regional basis that extends well beyond the
- 13 boundaries of the reserve.
- 14 So I'll simply suggest that for future
- 15 processes, that -- you know, you may wish to look
- 16 at it from that point of view.
- MS. BRATLAND: Noted, and thank you.
- 18 MR. VALDRON: No problem. All right.
- 19 And I'll also suggest to you that
- 20 First Nations and First Nations people are much
- 21 more directly connected to lands and environmental
- 22 issues. So if you are looking at a nature
- 23 component, and I think that was part of your
- 24 inputs, in assessing nature -- and I think that's
- 25 terrific, by the way, that -- you know, First

- 1 Nations offer potentially a set of unique insights
- 2 into any assessment of nature.
- 3 You are just smiling at me.
- 4 MS. BRATLAND: Was there a question?
- 5 MR. VALDRON: If you can just
- 6 acknowledge it, I can move on.
- 7 MS. BRATLAND: Acknowledged.
- 8 MR. VALDRON: Great. All right.
- 9 Now, with respect to -- you know,
- 10 First Nations engagement, if there had been
- 11 earlier engagement or direct engagement with
- 12 Peguis or First Nations, do you feel, or -- that
- 13 this could have potentially been helpful?
- MS. BRATLAND: We always like to have
- 15 as much information as possible as early as
- 16 possible in the decision-making process, so we
- 17 would certainly invite the most information
- 18 possible. However, there has been the experience
- 19 of Manitoba Hydro that there is a reluctance for
- 20 communities to share information about specific
- 21 land uses over a broad region of scale that could
- 22 be used on multiple projects, so we were also
- 23 trying to be sensitive to that feedback we had
- 24 received.
- But yes, we always like to have more

- 1 information sooner.
- 2 MR. VALDRON: Yes. Well, I would
- 3 suggest that they can't really venture an opinion
- 4 as to whether or not to participate if you don't
- 5 ask them in the first place. Would that be
- 6 correct?
- 7 MS. BRATLAND: That's correct.
- 8 However, we did engage early with First Nations
- 9 communities, invite them to participate in the
- 10 ways that they felt were meaningful throughout the
- 11 project, and had multiple opportunities for that.
- 12 So I hope that that has allowed a meaningful
- 13 opportunity to affect the decisions and inform the
- 14 assessment.
- MR. VALDRON: That is certainly
- 16 acknowledged, and I believe that Peguis has
- 17 certainly taken advantage of and participated in
- 18 those opportunities.
- Now, with respect to the engagement
- 20 and how it is fed into the rounds, I believe that
- 21 Peguis information started to show up or became
- 22 part of your consideration through the engagement
- 23 process in the second round, or the third round?
- 24 Was it the second round?
- MS. BRATLAND: We had preliminary

Page 650 information in Round 1. 1 2 MR. VALDRON: From Pequis? 3 MS. BRATLAND: Yes. 4 MR. VALDRON: How did you get preliminary information in Round 1 if Peguis 5 wasn't involved? 6 7 MS. BRATLAND: I'm just going to 8 consult with my colleague. MR. VALDRON: Okay. Go right ahead. 9 MS. BRATLAND: I'm advised that in 10 11 Round 1, there were a number of workbooks completed from Peguis that included specific 12 13 feedback about route segments that were provided in Round 1. 14 15 MR. VALDRON: Fascinating. Thank you. 16 MS. BRATLAND: Sorry, I'm advised that that was Round 2. In Round 1, we had general 17 feedback from Peguis. In Round 2, we had the 18 specific segment-based feedback. 19 20 MR. VALDRON: So that answer actually 21 relates to Round 2? 22 MS. BRATLAND: No. We had preliminary 23 feedback in Round 1 --24 MR. VALDRON: In Round 1, from Peguis? 25 MS. BRATLAND: Yes. And in Round 2,

Page 651 we had more specific feedback pertaining to 1 specific segments provided through the use of 3 workbooks. 4 MR. VALDRON: Okay. 5 MS. BRATLAND: Sorry. MR. VALDRON: So the workbooks were in 6 Round 2? 7 8 MS. BRATLAND: Yes. MR. VALDRON: Okay. And Round 3? 9 10 MS. BRATLAND: One moment. 11 We had additional conversations and feedback in Round 3, and the feedback related to 12 13 routing in that round is in chapter 4. MR. VALDRON: Terrific. 14 15 All right. I understand that field 16 work is still going on; is that correct? 17 MS. BRATLAND: Field work pertaining 18 to which? 19 MR. VALDRON: Field work pertaining to 20 First Nations engagement. Is that correct? Field 21 work pertaining to natural -- or the natural environment? 22 23 MR. MATTHEWSON: Can you rephrase, 24 please? 25 MR. VALDRON: I've been informed that

- 1 there is still some continuing field work that's
- 2 being done.
- 3 MS. BRATLAND: By whom?
- 4 MR. VALDRON: By Hydro.
- 5 MR. MATTHEWSON: Yes, there is, as
- 6 outlined in Manitoba Hydro's environmental effects
- 7 monitoring plan, there is pre-construction field
- 8 activities that are occurring currently, prior to
- 9 construction.
- 10 MR. VALDRON: Okay. And is that
- 11 likely to have any effect on routing?
- 12 MR. MATTHEWSON: No, it won't have --
- 13 we don't anticipate it to have an effect on
- 14 routing. It may have an effect on tower spotting,
- 15 of individual placement of towers, to the nature
- 16 of the field studies.
- 17 MR. VALDRON: Okay. Thank you.
- 18 All right. Now I would like to just
- 19 explore issues with respect to Crown land versus
- 20 private land. And you talked about some of your
- 21 considerations. The First Nations, however,
- 22 particularly Peguis, bring other considerations,
- 23 and I just want to check to determine if this
- 24 showed up for your process.
- One of the considerations for Peguis

- 1 is that with respect to exercise of traditional
- 2 way of life, their position is that this is
- 3 non-compensable in the same way that the private
- 4 land is compensable. So if we are in fact using
- 5 Crown lands or wildlands for the purpose of
- 6 hunting or trapping or fishing, it's not as if
- 7 interference with that would be something that
- 8 could be easily remedied, the way that crossing a
- 9 farmer's field would. Was that brought to your
- 10 attention?
- MS. BRATLAND: Yes, it was.
- 12 MR. VALDRON: Okay. And another
- 13 concern that Peguis has, and wishes to continue to
- 14 bring to attention, is that with respect to the
- 15 impacts on nature, impacts on private land tend to
- 16 be very specific, quantifiable, and stuck to
- 17 boundaries; but impacts on Crown lands --
- 18 impacting, say, wildlife, game, et cetera -- tends
- 19 to bleed all over the place. The impacts or
- 20 effects can be unpredictable and can be subtle.
- 21 So for Peguis, the preference is that
- 22 if you were going to be affecting land, the
- 23 preference is to affect private land rather than
- 24 wildland, simply because of the unpredictability
- of these effects. Was Peguis bringing that to

- 1 your attention?
- MS. BRATLAND: Yes, we did hear
- 3 concerns from Peguis about the use of natural
- 4 Crown lands and the potential effects that could
- 5 have.
- 6 MR. VALDRON: Another key issue for
- 7 Peguis, of course, is that so many of their
- 8 members are in Winnipeg, 5,000 approximately. So
- 9 if you are looking for areas for Peguis members to
- 10 try and practice their traditional ways and
- 11 traditional activities from Winnipeg, a major --
- 12 the major area is principally southeast Manitoba;
- 13 otherwise you are travelling six or seven hours.
- 14 And did the engagement process highlight that?
- 15 Was that part of the considerations in routing?
- MS. BRATLAND: Yes, it was.
- 17 MR. VALDRON: Okay. All right.
- 18 Well, thank you very much. I
- 19 appreciate your taking your time.
- MR. MATTHEWSON: Thank you for the
- 21 questions.
- MR. VALDRON: And thank you to the
- 23 Commission.
- THE CHAIRMAN: Thank you very much.
- 25 All right. That brings us to the next

- 1 on the list. I believe Manitoba Wildlands is not
- 2 here, right? Okay. So then we will move on to
- 3 Southeast Stakeholders -- oh, sorry, Manitoba
- 4 Metis Federation is next. My apologies. I'm
- 5 starting at the wrong spot. Thank you.
- 6 MS. STRACHAN: Good afternoon,
- 7 Mr. Chair, Commissioners. Good afternoon to the
- 8 panelists. My name is Megan Strachan, counsel for
- 9 the Manitoba Metis Federation, or MMF.
- I would invite any of the experts on
- 11 the panel to answer these questions as you feel
- 12 appropriate.
- 13 My understanding is that the EPRI-GTC
- 14 methodology requires the use of four different
- 15 models, and that's the macro corridor model, the
- 16 alternative corridor model, the alternative route
- 17 evaluation model, and the preference determination
- 18 model. And that's correct?
- 19 MS. BRATLAND: Those are the four
- 20 models, yes.
- MS. STRACHAN: And I understand that
- 22 there were three perspectives that were
- 23 identified: Natural, built, and technical. And
- 24 those were considered the key perspectives for
- 25 Manitoba Hydro, and they were included at all

- 1 stages of the process in each one of these models.
- 2 Is that correct?
- MS. BRATLAND: Natural, built, and
- 4 technical were the three perspectives. There was
- 5 a fourth perspective, called simple average. When
- 6 those are all considered, balanced against one
- 7 another.
- 8 MS. STRACHAN: Thank you.
- 9 And so I understand that these -- the
- 10 three perspectives plus the average, these were
- 11 considered in each of the four models?
- 12 MS. BRATLAND: They were considered in
- 13 the alternate corridor model and the alternate
- 14 route evaluation model. They are also represented
- 15 within the preference determination model, but
- 16 there are more perspectives brought to bear in
- 17 that model.
- 18 MS. STRACHAN: Thank you. And so I
- 19 understand that none of these three perspectives
- 20 specifically, of natural, built, and technical,
- 21 included any kind of specific criteria to Metis
- 22 land use or Metis harvesting. Is that correct?
- 23 MS. BRATLAND: There were no specific
- 24 criteria labeled as such, but there were criteria
- 25 that were understood to represent the types of

- 1 land features and uses that might be valued by
- 2 different First Nation and Metis communities.
- 3 MS. STRACHAN: And I suspect that the
- 4 answer to my next question will be the same, but
- 5 I'm going to ask it anyway.
- I also understand that specifically,
- 7 impacts on Aboriginal rights weren't considered in
- 8 the three perspectives as sort of a specific
- 9 criteria?
- 10 MS. BRATLAND: No, there was no
- 11 specific criteria for Aboriginal rights.
- 12 MS. STRACHAN: I have a few questions
- 13 specific to the alternate corridor evaluation
- 14 model. So were hunting and trapping locations
- 15 used as criteria in that model?
- MS. BRATLAND: Hunting and trapping
- 17 locations were underneath the built perspective.
- 18 However, there was no data to support that at the
- 19 time of the development of this model.
- 20 MS. STRACHAN: And so does that mean
- 21 that it wasn't calibrated in the model?
- MS. BRATLAND: It was calibrated into
- 23 the model, but we didn't have data to represent
- 24 it.
- MS. STRACHAN: I'm sorry, can you

- 1 explain how it was calibrated if there was no
- 2 data?
- MS. BRATLAND: One moment, please.
- 4 MR. GLASGOW: So in the workshop, I
- 5 believe it was noted as a criteria of concern, and
- 6 so we were able to get input from stakeholders
- 7 regarding the relative preference and the weight.
- And so it was in the model. However,
- 9 after each workshop, we do detailed research to
- 10 see if we can identify data sets that can be used
- 11 to model that criteria.
- In that phase, as I understand it,
- 13 that's when we identified that we don't have a
- 14 data set that could be used to apply that criteria
- in the model. And so, when we don't have data
- 16 that represents this, we can't run it in a GIS
- 17 model.
- 18 That's what we mean when we say it was
- 19 calibrated, in that we understand the values and
- 20 the weights the stakeholders placed on that. But
- 21 when we didn't have data, we were unable to
- 22 implement that in the corridor model.
- MS. STRACHAN: Thank you very much.
- 24 MS. BRATLAND: Just to build on what
- 25 Mr. Glasgow said, this is the alternate corridor

- 1 model, so that's that first stage of mapping, to
- 2 start to develop routes within. The
- 3 identification of hunting and trapping locations
- 4 was something that came to us much later, with the
- 5 use of the ATK reports, and was factored into
- 6 routing when we received it.
- 7 MS. STRACHAN: Thank you.
- 8 And so at the stage of alternate route
- 9 corridor evaluation, I understand it is sort of a
- 10 planning stage. Are you able to tell me if the
- 11 Metis use of lands, or the suitability of lands
- 12 for use by Metis, or the exercise of Aboriginal
- 13 rights, was considered when the criteria were
- 14 being selected?
- MS. BRATLAND: So, as I understand
- 16 your question, it refers to the development of the
- 17 criteria in the next model, the alternate route
- 18 evaluation model?
- 19 MS. STRACHAN: No, I'm still talking
- 20 about the alternative corridor evaluation model.
- MS. BRATLAND: Sorry. Can you repeat
- the question, then, now that I'm clear?
- 23 MS. STRACHAN: Sure. I was wondering
- 24 if you are able to tell me if there was any
- 25 discussion around Metis use of lands, or the

- 1 suitability of lands for use by the Metis, when
- 2 these criteria were being selected?
- 3 MS. BRATLAND: When the criteria were
- 4 being selected, there was certainly discussion
- 5 about the use of natural lands and the practice of
- 6 traditional harvest or contemporary use of the
- 7 lands, and the types of lands that would be most
- 8 used by that, from past projects, past experience
- 9 and knowledge.
- 10 MS. STRACHAN: And so could you tell
- 11 me, was undeveloped Crown land -- and by that I
- 12 mean land that's free of a legal restriction, like
- 13 being an ecological reserve, or something like
- 14 that -- was this kind of undeveloped Crown land
- 15 considered to be a criteria as part of the
- 16 alternative route corridor evaluation model?
- MR. MATTHEWSON: No, there was no
- 18 category for undeveloped Crown land. We did
- 19 utilize categories of Crown land with special
- 20 codes, which were -- we discussed in an IR, as
- 21 well, about what the special codes represented.
- 22 And generally those were undeveloped lands,
- 23 protected for management of wildlife -- sorry, not
- 24 necessarily protected, but designated for
- 25 management of wildlife as one of the purposes for

- 1 that parcel of land.
- 2 The measure -- as we move forward, the
- 3 measure of intactness was a way that we could
- 4 quantify some of those intact, large intact
- 5 forested areas. But there was not a direct
- 6 connection to undeveloped, because some of those
- 7 intact parcels did have, as you mentioned, some
- 8 type of legal restriction on them, like an
- 9 ecological reserve or a wildlife management area.
- 10 MS. STRACHAN: I just have a follow-up
- 11 question about intactness. Is it possible that
- 12 land that was found to be intact would include
- 13 both Crown lands and private lands? Or would it
- only have been Crown lands?
- MR. MATTHEWSON: It would have been
- 16 both.
- MS. STRACHAN: Okay. Thank you.
- 18 So I understand, then, that
- 19 undeveloped Crown lands weren't included as a
- 20 specific criteria, and so they also were not
- 21 determined to be an area of least preference in
- 22 the alternative route corridor evaluation model;
- 23 is that correct?
- MR. MATTHEWSON: That's correct.
- 25 MS. STRACHAN: What kinds of lands

- 1 were put in the category of being an area of least
- 2 preference?
- 3 MR. MATTHEWSON: As outlined in
- 4 Table 5-3 of chapter 5, there's a section that
- 5 outlines all the different areas of least
- 6 preference that Manitoba Hydro considered in the
- 7 study areas.
- 8 Some examples to provide are wildlife
- 9 refuges, mines and quarries that are active,
- 10 contaminated sites, campgrounds and picnic areas,
- 11 airports, schools, day-care parcels, heritage
- 12 sites, Provincial parks, known archeological
- 13 sites.
- 14 Those are a variety of the different
- 15 areas of least preference.
- MS. STRACHAN: And why were these
- 17 particular kinds of lands chosen as areas of least
- 18 preference?
- 19 MR. MATTHEWSON: These categories were
- 20 chosen by the stakeholders in the alternate
- 21 corridor evaluation model workshops. Some of them
- 22 are designated by -- there are features to avoid
- 23 when routing a transmission line, due to --
- 24 sometimes a physical constraint; an extreme slope,
- 25 or a long water crossing; or there is some type of

- 1 regulation limiting their development. As an
- 2 example, a protected area, like an ecological
- 3 reserve, or the Watson P. Davidson Wildlife
- 4 Management Area, or areas that would require some
- 5 type of extensive mitigation or compensation to
- 6 traverse, such as an airport or an aircraft
- 7 landing area. While we do have some transmission
- 8 lines in close proximity to those, there are
- 9 special mitigation measures that we have to do in
- 10 our structure designs to mitigate the effects.
- MS. STRACHAN: Did the need to pay
- 12 compensation play a role at all in making that
- 13 determination?
- 14 MR. MATTHEWSON: Yes, compensation was
- 15 considered.
- 16 MS. STRACHAN: And so, sticking with
- 17 determining whether an area is one of least
- 18 preference, was its suitability for use by the
- 19 Metis for harvesting or traditional activities
- 20 considered?
- MR. MATTHEWSON: Not specifically, no.
- MS. STRACHAN: So I wonder if you
- 23 could just offer some clarification, still in the
- 24 alternative corridor evaluation model, on what the
- 25 "no special lands" factor or criteria is?

- 1 MR. MATTHEWSON: So each of the green
- 2 boxes are the layers in this case, special
- 3 features. They cover the entire study area, so
- 4 the entire study area has to be classified by one
- 5 of these categories.
- 6 So in this case we have a list of the
- 7 special features that the stakeholders identified,
- 8 and then if it was not on that list, it would be
- 9 called "no special land" -- it would be like an
- 10 "Other" category.
- 11 MS. STRACHAN: Okay. So in this
- 12 "Other" category, that would likely include
- 13 potentially undeveloped Crown lands that don't
- 14 have some sort of other designation on them; is
- 15 that fair?
- 16 MR. MATTHEWSON: Yes. If they weren't
- 17 captured by one of the other categories, then yes.
- 18 MS. STRACHAN: Thank you.
- I have a couple of questions now on
- 20 the alternative route evaluation model. So I
- 21 understand this model also doesn't include any
- 22 criteria that are specific to Metis use or Metis
- 23 harvesting. Is that correct?
- 24 MS. BRATLAND: Correct. Similar to
- 25 the alternate corridor model, there are criteria

- 1 that capture the types of lands that would support
- 2 land uses that we've heard in the past that could
- 3 be a value to Metis land uses.
- 4 MS. STRACHAN: Thank you. I just have
- 5 a few questions left, on the preference
- 6 determination model.
- 7 And so I understand that this model is
- 8 the one model of the four that numerically ranks
- 9 and weighs feedback from the perspective of
- 10 community; that's correct?
- MS. BRATLAND: Correct.
- MS. STRACHAN: And the community
- 13 perspectives group, so the group that came up with
- 14 the numerical ranking, was composed of Manitoba
- 15 Hydro staff and consultants?
- 16 MS. BRATLAND: Correct. It was the
- 17 First Nation and Metis engagement team that would
- 18 have been engaged with First Nations communities
- 19 and the MMF.
- 20 MS. STRACHAN: So this community
- 21 perspectives group, its mandate was to consider
- 22 feedback from stakeholder groups and the public
- 23 organizations and Aboriginal groups, consider all
- of the perspectives, and assign a single value to
- 25 each route that they assessed; is that right?

- 1 MS. BRATLAND: Yes.
- MS. STRACHAN: So for each route,
- 3 30 per cent of the route score was represented by
- 4 the single value that represented this whole host
- 5 of stakeholders?
- 6 MS. BRATLAND: Correct. As I noted in
- 7 my presentation, it was a very challenging task.
- 8 MS. STRACHAN: I imagine it would be.
- 9 I understood from the presentation
- 10 that, for instance, if a route was strongly
- 11 preferred by the public but may not have been
- 12 preferred by First Nations or Metis, it could
- 13 still be given a score of 1, because it was most
- 14 preferred from one of the perspectives, sort of in
- 15 the community group; is that fair?
- MS. BRATLAND: No, the score of 1
- 17 would be reserved for a route that was considered
- 18 to balance the concerns from both perspectives,
- 19 and take advantage of preferences from those
- 20 perspectives.
- 21 MS. STRACHAN: So what I'm thinking of
- 22 specifically is the -- I think it was the DKT
- 23 example. And perhaps I misunderstood the
- 24 presentation, but my impression there was that
- 25 that was a line that was routed predominantly on

- 1 Crown land, which was preferred from the
- 2 perspective of the public, and it was given a
- 3 score of 1, meaning that it was more preferred.
- 4 MS. BRATLAND: I'm just going to check
- 5 my notes. One moment.
- 6 Yes, you are correct.
- 7 MS. STRACHAN: I have one more
- 8 clarification about the presentation, and this was
- 9 dealt with on Slide Number 48.
- I believe you mentioned that at one
- 11 point, the costs were so equal that you had tried
- 12 to factor in additional methods of costing to try
- 13 and get some separation between the different
- 14 routes, such as the cost of relocating homes or of
- 15 acquiring private lands. I was wondering, was the
- 16 cost of compensating Metis or First Nations
- 17 considered at all in this additional cost
- 18 calculation?
- MS. BRATLAND: No.
- 20 MS. STRACHAN: Thank you. Those are
- 21 all of my questions.
- THE CHAIRMAN: Thank you very much,
- 23 Ms. Strachan.
- 24 That brings up next -- as I asked
- 25 earlier, I don't believe Manitoba Wildlands is

- 1 here, so that will bring us to the Southeast
- 2 Stakeholders Coalition.
- 3 Mr. Toyne, I just wanted to mention
- 4 before you get started, we are likely to take a
- 5 break at -- we will take a break at 3. We will
- 6 make it a bit shorter, because we started late;
- 7 maybe ten minutes. But would you rather we took
- 8 it now, or would you rather you start, and then we
- 9 take it?
- MR. TOYNE: Why don't we take a break.
- 11 THE CHAIRMAN: Okay. We will be back
- 12 at 5 after 3, and then we will start with
- 13 Mr. Toyne.
- 14 (Recessed at 2:53 to 3:05 p.m.)
- 15 THE CHAIRMAN: All right. It is just
- 16 about 3:05, so we are about to start with
- 17 questioning from the Southeast Stakeholders
- 18 Coalition, and Mr. Toyne.
- 19 MR. TOYNE: All right. Thank you very
- 20 much, Mr. Chair.
- 21 And just for the benefit of the
- 22 witness panel, and for the Commission, what I've
- 23 tried to do is group all of my questions together
- 24 through each of the different stages of the
- 25 methodology. If it turns out that I've made a

- 1 mess of that, I apologize, if we sort of get
- 2 confused bouncing back and forth.
- But I do have a couple of questions
- 4 that don't really fit in that chronology, so I
- 5 will start with those.
- Just to confirm this -- because I
- 7 thought we had confirmed it the other day, but
- 8 then the presentation this morning seemed to
- 9 suggest otherwise -- the decision to adopt this
- 10 EPRI-GTC methodology, that decision was made by
- 11 Manitoba Hydro before the Bipole III report was
- 12 released; correct?
- MR. MATTHEWSON: Yes, we've confirmed
- 14 it was before.
- 15 MR. TOYNE: All right.
- Now, I hope that Manitoba Hydro
- doesn't object, but I'm going to make reference to
- 18 a couple of the slides from this morning. If you
- 19 would be kind enough to pull up Slide 17. Yes,
- 20 that's the one. All right.
- 21 So this is one of the questions that
- 22 doesn't quite fit into the methodology pathway or
- 23 funnel, so I just want to make sure that I
- 24 understand this.
- So the ability to effectively avoid

- 1 impacts or effects depends on Hydro accurately
- 2 assessing your ability to either mitigate or
- 3 compensate those effects; is that a fair
- 4 statement?
- 5 MR. MATTHEWSON: Can you rephrase,
- 6 just so I'm clear?
- 7 MR. TOYNE: As it came out, it was a
- 8 little clunky; let me try again.
- 9 So if Manitoba Hydro, say,
- 10 underestimates your ability to mitigate a
- 11 particular effect, or if you underestimate your
- 12 ability to compensate a particular effect, you may
- 13 not take sufficient steps to avoid that effect.
- I think that's a clearer path to where
- 15 I was headed. Would you agree with me?
- MR. MATTHEWSON: Yes, with the
- 17 knowledge that we have at the time of initial
- 18 route planning, we may not be avoiding all effects
- 19 at that time, which is why we go through the
- 20 multiple rounds of engagement, to garner that new
- 21 information.
- 22 MR. TOYNE: So the idea is that as the
- 23 process goes on, your understanding of your
- 24 ability to mitigate and compensate those effects
- 25 should get better, and your ability to take

- 1 appropriate steps to avoid them should similarly
- 2 get better?
- 3 MR. MATTHEWSON: Correct.
- 4 MR. TOYNE: Okay.
- 5 So if we could talk about the first
- 6 step -- at least as I understand the first step in
- 7 the way that you applied this methodology, and
- 8 that's to identify potential border crossings. So
- 9 the first part of that was to develop a list of
- 10 regional criteria, right?
- MR. MATTHEWSON: There were
- 12 constraints, yep, regional constraints along the
- 13 border crossing zone.
- 14 MR. TOYNE: As I understand it, once
- 15 those constraints were taken into account, there
- 16 were really two major routing options that were
- 17 identified. There was a north/south route on the
- 18 more western portion of the preliminary planning
- 19 area, and there was a more remote north/south
- 20 route on the more easterly portion of the
- 21 preliminary planning area, through the Sandilands
- 22 Provincial Forest. Is that right?
- MS. BRATLAND: We're just going to
- look up the reference in the document. One
- 25 moment.

- 1 MR. MATTHEWSON: Are you referring to
- 2 Map 5-2, when you were talking about preliminary
- 3 planning area?
- 4 MR. TOYNE: Yeah. So when I use the
- 5 phrase "preliminary planning area", that would be
- 6 what I'm referring to.
- 7 So, as I understand it, one option was
- 8 north/south on the western side, and another
- 9 option was also north/south on the more easterly
- 10 side. And again, this is still at the very early
- 11 stages of planning.
- 12 MR. MATTHEWSON: At this stage of the
- 13 planning, we were simply looking at areas within
- 14 the border crossing zone itself, not any
- 15 particular routes that ran in a north/south or
- 16 east/west direction.
- 17 MR. TOYNE: Right. So it's not as if
- 18 you were actually drawing those segments that then
- 19 connected into routes that you talk about doing
- 20 later in the process, but at this very early stage
- 21 there was really two ways to get to the border
- that are being considered. There's the broad
- 23 western and the broad eastern, both going in a
- 24 north/south direction?
- MR. MATTHEWSON: Are you referring

- 1 to -- just so I'm clarifying, east and west, are
- 2 you referring to the corridor that's on that map,
- 3 or the white area that comes out of the Dorsey
- 4 Station on the west and the Riel Station on the
- 5 east? Is that -- when you are referring to east
- 6 and west, is that ...?
- 7 MR. TOYNE: I don't believe so, but if
- 8 it turns out that's what I'm referring to, then
- 9 yes.
- 10 I'm sorry, I'm confusing you, asking
- 11 you questions about how you picked the route; I'm
- 12 not doing that intentionally.
- MR. MATTHEWSON: At preliminary
- 14 planning, we don't pick routes, so that's why I'm
- 15 confused. I'm trying to give you the best
- 16 information with respect to what we did in the
- 17 preliminary planning stage.
- MR. TOYNE: Well, if we can't figure
- 19 that out, let's move on.
- So regardless, eventually, the four
- 21 border crossings on the bottom of this map, 5-2,
- 22 are identified as potential border crossings. We
- 23 have Gardenton West, Gardenton East, Piney West,
- 24 and Piney East?
- MR. MATTHEWSON: Correct.

- 1 MR. TOYNE: Okay. Most, if not all,
- 2 of the maps that went up on the screen earlier
- 3 today excluded the Gardenton West border crossing,
- 4 right?
- 5 MR. MATTHEWSON: That's correct.
- 6 MR. TOYNE: And that's because it was
- 7 eliminated fairly early on?
- 8 MR. MATTHEWSON: Yes, it was.
- 9 MR. TOYNE: And the reason it was
- 10 eliminated fairly early on was given the -- the
- 11 potentially viable routes to reach it were simply
- 12 unacceptable, from a number of different
- 13 perspectives; is that a fair statement?
- MS. BRATLAND: In CEC IR 15, we
- 15 discuss the reasons for the Gardenton removal.
- MR. TOYNE: So the answer to my
- 17 question is yes, or no?
- MS. BRATLAND: The answer to your
- 19 question is that we eliminated the western area
- 20 from the route planning region, and then the
- 21 western border crossing, which is also discussed
- in the EIS, because of the amount of development
- 23 in the area, both in terms of rural residential
- 24 development, the amount of agricultural land in
- 25 the area, and the amount of transmission

- 1 development that was already in the area,
- 2 undergoing or proposed.
- 3 MR. TOYNE: All right.
- 4 Now I'm going to make a suggestion.
- 5 You know what, actually let me -- I will direct a
- 6 question, I think, to Mr. Glasgow first.
- 7 How often, sir, is this methodology
- 8 used to select points where a transmission line
- 9 will cross an international border?
- 10 MR. GLASGOW: I'm not aware of another
- 11 project off the top of my head, although I haven't
- 12 been involved in every project where this
- 13 methodology has been used.
- MR. TOYNE: Fair enough. So you
- 15 haven't been involved in any projects where that's
- 16 happened, and to the extent this methodology has
- 17 been used without your involvement, you aren't
- 18 aware of it having been used to select a border
- 19 crossing?
- 20 MR. GLASGOW: That's what I said.
- 21 MR. TOYNE: So the suggestion to the
- 22 folks for Manitoba Hydro on the panel, I'm going
- 23 to suggest to you that once you had reached this
- 24 stage of the pre-planning or preliminary planning,
- 25 you would have been able to select one of these

- 1 border crossings in discussions with Minnesota
- 2 Power without running through this entire
- 3 methodology. Would you agree or disagree?
- 4 MS. BRATLAND: I agree, because that's
- 5 what we did. Selecting the border crossing
- 6 occurred before we applied the EPRI-GTC
- 7 methodology to this project -- sorry, removing the
- 8 Gardenton West border crossing happened before we
- 9 applied the EPRI-GTC methodology and tools.
- 10 MR. TOYNE: Right. And then the -- I
- 11 apologize; the question I asked must have been
- 12 confusing.
- So what I'm suggesting is that once
- 14 you had eliminated Gardenton West, you didn't have
- to use this methodology to determine which of
- 16 these three border crossings you would rely on,
- 17 and I'm asking if you agree or disagree with that.
- MS. BRATLAND: I agree. We did not
- 19 have to use the methodology.
- MR. TOYNE: Okay.
- 21 And would you agree or disagree with
- 22 the following suggestion: That at this point in
- 23 the planning, you had sufficient information that
- 24 would have allowed you to pick which of those
- 25 three border crossings was Manitoba Hydro's

- 1 preference, without going through the EPRI-GTC
- 2 methodology?
- 3 MS. BRATLAND: I would disagree.
- 4 MR. TOYNE: How many power lines does
- 5 Manitoba Hydro currently have that cross the
- 6 international border?
- 7 MS. BRATLAND: I'm going to confer
- 8 with my colleagues. I believe that was noted in
- 9 the presentation given by the first panel, on
- 10 project description.
- We don't have Mr. Mailey's
- 12 presentation in front of us, so we are going to
- 13 say approximately five, subject to check.
- MR. TOYNE: Of those approximately
- 15 five IPLs, how many of them used the EPRI-GTC
- 16 methodology to determine where they crossed the
- 17 international border?
- MS. BRATLAND: None.
- 19 MR. TOYNE: If we could now turn to
- 20 what I understand is the second stage; that's the
- 21 alternative corridor generation evaluation. I've
- 22 got a question that falls into this methodology,
- 23 but I don't have a precise place to put it, and it
- 24 is a question that goes to Mr. Glasgow.
- There is a reference in that IR 37,

- 1 the Coalition IR 37, about stakeholders who had
- 2 access to, I think, data sets or technical GIS
- 3 data being invited to participate in developing
- 4 the criteria, and that that was done at your
- 5 recommendation, sir.
- 6 And just to follow up on the questions
- 7 that were asked earlier, why was it that you
- 8 recommended that only stakeholders with access to
- 9 data sets be invited, as opposed to stakeholders
- 10 who might be able to generate them but don't yet
- 11 have them?
- 12 MR. GLASGOW: Could you please repeat
- 13 the question?
- MR. TOYNE: I did talk for about 30 or
- 15 40 seconds there; so let me try again.
- So you recommended to Manitoba Hydro
- 17 that they invite stakeholders who had data sets to
- 18 participate in developing the criteria; correct?
- 19 MR. GLASGOW: Is that what it says in
- 20 the IR?
- 21 MR. TOYNE: This one is not a trick
- 22 question.
- 23 MR. GLASGOW: Yes, I recommended that
- 24 Manitoba Hydro invite representative organizations
- 25 so that they could use the data that they hold to

- 1 model the study area.
- 2 MR. TOYNE: Right. So to build on
- 3 some of the questions that were asked earlier, why
- 4 weren't groups that, say, represented important
- 5 stakeholder interests, but that may not have had
- 6 the data sets or been the technical knowledge
- 7 holders invited?
- 8 So, for example, Peguis First Nation
- 9 or the Manitoba Metis Federation, they could have
- 10 obtained data and provided it, given the
- 11 opportunity; but because they weren't invited,
- 12 they didn't have that opportunity. Why did you
- 13 make that recommendation?
- 14 MR. GLASGOW: So I believe the
- 15 specific question you just asked was discussed at
- 16 length in the previous conversation. I don't have
- 17 anything in addition to add to that.
- 18 MR. TOYNE: Okay. So at the next
- 19 step, the alternative corridor generation, four
- 20 corridors are generated. We have built, natural,
- 21 engineering, and the average. And as I understand
- 22 it, those corridors were generated for each of the
- 23 three border crossings. Correct?
- 24 MR. MATTHEWSON: That's correct.
- MR. TOYNE: Now, if a border crossing

- 1 had already been selected without using the
- 2 methodology, those four corridors would have been
- 3 generated for just that particular border
- 4 crossing. Right?
- 5 MR. MATTHEWSON: Hypothetically if we
- 6 had one start point and one end point, there would
- 7 only be one set of four corridors created from
- 8 start point to end point.
- 9 MR. TOYNE: All right. And I
- 10 understand that for analytical purposes, the three
- 11 non-average perspectives -- built, natural, and
- 12 engineering -- were given equal weights of
- one-third, one-third, one-third. Is that correct?
- MR. GLASGOW: Okay. When we implement
- 15 the alternate corridor model, we create four
- 16 corridors. One corridor places five times
- 17 emphasis on the natural factors, and one time
- 18 emphasis on the engineering or technical, and one
- 19 time emphasis on built. The other corridor places
- 20 five times emphasis on natural; the other corridor
- 21 five times emphasis on engineering; and then the
- 22 fourth corridor places equal emphasis on those
- 23 three perspectives.
- MR. TOYNE: So the engineering
- 25 corridor prefers the engineering criteria by a

- 1 multiple of five; built corridor, the built
- 2 criteria by a multiple of five?
- 3 MR. GLASGOW: That's correct.
- 4 MR. TOYNE: Okay. And then the simple
- 5 average, that's where the one-third, one-third,
- 6 one-third comes in?
- 7 MR. GLASGOW: Yes. Simple average, it
- 8 is an equal weight of the three perspectives.
- 9 MR. TOYNE: All right. Now, when we
- 10 are talking just about the three non-average ones,
- 11 is there a reason why the methodology uses a
- 12 multiple of five as opposed to a multiple of four,
- or a multiple of six, or some other number?
- MR. GLASGOW: When we developed the
- 15 methodology, we tested several different
- 16 sensitivities. And we had a group of academic
- 17 experts in this area, and we did probably four or
- 18 five hundred hours of testing different
- 19 sensitivities, and we arrived at five times.
- 20 That's why we used that on this project, and
- 21 pretty much every other project that we've used
- 22 this methodology on.
- 23 MR. TOYNE: Was any thought given to
- 24 whether or not using the simple average corridor
- 25 was appropriate, given the part of Manitoba that

- 1 this was going through, and the purposes that the
- 2 transmission line was being built for?
- 3 MR. GLASGOW: Could you please repeat
- 4 the question?
- 5 MR. TOYNE: Yes. Again, as it came
- 6 out, it sounded a little awkward.
- 7 So was any thought given to using a
- 8 different fourth corridor perspective, given the
- 9 part of the province that this line was going
- 10 through and the purpose for which it was being
- 11 built?
- Does that make more sense?
- MS. BRATLAND: As I understand your
- 14 question -- please correct me if I'm wrong -- you
- 15 are asking is -- did we give consideration to just
- 16 using a simple average corridor to guide route
- 17 development?
- 18 MR. TOYNE: Did you consider using
- 19 something other than the simple average corridor
- 20 as the fourth corridor option?
- MS. BRATLAND: No.
- MR. TOYNE: And why not?
- 23 MS. BRATLAND: Because we felt we had
- 24 the appropriate perspectives represented with the
- 25 three corridors and the simple average as the

- 1 fourth.
- 2 MR. TOYNE: All right. And as I
- 3 understand it, it is in this alternative corridor
- 4 generation phase where the areas of least
- 5 preference come into play; that's right?
- 6 MR. GLASGOW: The alternate corridor
- 7 model does have a list of areas of least
- 8 preference. I'm not saying that's the only place
- 9 they are considered, but -- you are correct.
- 10 MR. TOYNE: So we will come back to
- 11 the second point that you made.
- 12 But one of those areas of least
- 13 preference for this project was buildings; right?
- MR. MATTHEWSON: That's correct.
- MR. TOYNE: Now, if we can put
- 16 Slide 18 up on the screen, if that's something
- 17 that you are able to do. Right, yeah. All right.
- 18 And I take it that one of the reasons
- 19 why that's one of the areas of least preference is
- 20 to reflect the first siting principle up on the
- 21 screen, avoiding or limiting effects to
- 22 residences?
- MR. MATTHEWSON: Sorry, and
- 24 environmental effect, the socio-economic
- 25 environmental effect, which is agriculture.

- 1 MR. TOYNE: Now I also understand --
- 2 and this was in response to one of the IRs -- that
- 3 it was not simply buildings that were an area of
- 4 least preference, but there was also a small
- 5 buffer around the buildings, and the buffer was
- 6 50 metres; is that correct?
- 7 MR. GLASGOW: Yeah. Honestly, that's
- 8 just a -- art of mapping the buildings. We map
- 9 the buildings with a point, and we create a buffer
- 10 around that point to create an area, and that's
- 11 used as the area of least preference. And the
- idea is to map the building using that method.
- So we are trying to represent the
- 14 buildings themselves as a physical constraint to
- 15 transmission line construction. There are other
- 16 components, such as proximity to buildings and
- 17 building density, that considers buildings as
- 18 well.
- 19 MR. TOYNE: All right. Now, the
- 20 50-metre buffer around each building, is that
- 21 simply a reflection of the computer program or the
- 22 level of detail that's available, or is there some
- 23 sort of analytical or methodology-related reason
- 24 for why it is a 50-metre buffer as opposed to
- 25 something else?

- 1 MR. GLASGOW: I need to verify where
- 2 50 metres came from; it is not in the model that
- 3 I'm looking at.
- Without seeing the specific reference,
- 5 I can say that in general, the way we model
- 6 buildings as an area of least preference is we are
- 7 trying to consider the building and the area that
- 8 would be within the right-of-way of the building.
- 9 Okay?
- 10 So not only are we concerned with the
- 11 building itself, but usually half the distance of
- 12 the right-of-way. But I would have to see the
- 13 specific reference to 50 metres to know what you
- 14 are talking about.
- MR. TOYNE: You know, let me go
- 16 grab -- I think I have it on my desk. I will just
- 17 be one second. Hang on.
- 18 All right. The IR that I was
- 19 referring to, without having the reference, was
- 20 SSC IR 005.
- 21 MR. GLASGOW: Okay. I see your
- 22 reference. Thank you.
- MR. TOYNE: All right. So it is
- 24 actually a bit more restrictive than I recalled
- 25 when I was putting my list of questions together.

- 1 So there is a 50-metre buffer that's put around
- 2 occupied houses; is there a similar buffer that's
- 3 applied to either unoccupied houses, to the extent
- 4 they have been identified, or other buildings?
- 5 MR. GLASGOW: I believe at this stage
- of the process, all buildings are modelled with a
- 7 50-metre buffer to represent the area of physical
- 8 constraint because the right-of-way is 100 metres.
- 9 MR. TOYNE: Okay. So for someone who
- 10 has got a philosophy as opposed to a technical
- 11 background, the reason it is 50 is solely because
- it is half the right-of-way? No other reason?
- MR. GLASGOW: Yeah. For example, if
- 14 you have two buildings beside one another, and you
- 15 are modeling them with a point, okay, so that
- 16 takes up no space; in reality, those buildings do
- 17 take up space.
- 18 So in order to create an area where
- 19 the model would not put a right-of-way between
- 20 those buildings, this building has a 50-metre
- 21 buffer, this building has a 50-metre buffer, and
- that creates a block so the right-of-way can't get
- 23 through there.
- 24 So the routing algorithm considers
- 25 that the area of least preference, the centre of

- 1 the building plus 50 metres. Not the edge of the
- 2 building.
- 3 MR. TOYNE: Right. Okay. So one of
- 4 the ways to avoid the right-of-way going either
- 5 through or very close to a building is this
- 6 50-metre buffer at this stage?
- 7 MR. GLASGOW: It is intended to keep
- 8 the right-of-way from crossing a building, in the
- 9 context of the alternate corridor evaluation.
- 10 Understand that we are considering the entire
- 11 study area, and so this is a way we inform the
- 12 computer that there is a structure there.
- MR. TOYNE: Right. And at least from
- 14 a technical perspective -- I will get into the
- 15 other perspective in a second -- but from a
- 16 technical perspective, you would be able to
- increase the size of that buffer to, say,
- 18 75 metres, or 100 metres? There is no technical
- 19 impediments to that?
- 20 MR. GLASGOW: I'm not aware of a
- 21 technical reason one could not change that. But
- the reason it was modelled at 50 metres is that's
- 23 half the distance of the right-of-way.
- 24 MR. TOYNE: Right. And was there any
- 25 reason that Manitoba Hydro didn't use a larger

- 1 buffer than 50 metres around buildings?
- 2 MR. GLASGOW: Just to be clear, there
- 3 is a proximity-to-buildings layer within the model
- 4 which does consider a wider buffer around
- 5 buildings.
- 6 MR. TOYNE: And can you remind me, if
- 7 you've got it there, what that distance is?
- 8 MR. GLASGOW: There is multiple
- 9 distances. They go from the right-of-way to
- 10 100 metres, 100 to 400 metres, 400 to 800 metres,
- 11 and greater than 800 metres.
- 12 MR. TOYNE: And those are all areas of
- 13 least preference?
- 14 MR. GLASGOW: Those are not areas of
- 15 least preference, but they are modelled with
- 16 relative suitability, with the most suitable being
- 17 further away from the building.
- 18 MR. TOYNE: Right. Let's just stick
- 19 with areas of least preference for right now.
- 20 So there is no technical impediments
- 21 to Manitoba Hydro using a larger buffer around
- 22 residences; the question is whether or not
- 23 Manitoba Hydro considered extending the buffer
- 24 beyond 50 metres for residences for the purposes
- of areas of least preference?

- 1 MR. MATTHEWSON: While during
- 2 alternate corridor development and the areas of
- 3 least preference, the -- for the modelling of
- 4 alternate corridors, 50 metres is the number that
- 5 was used. And then the distances away from the
- 6 buildings, and the weights that those were
- 7 determined, as illustrated in Table 5-3, those
- 8 were through stakeholder -- the workshop; they
- 9 developed those ranges, and the weights, and how
- 10 far away, and what weight should be given to each
- 11 one of those.
- When it comes to route planning,
- 13 that's a different scenario, when there is
- 14 physical segments being drawn on a map, on how
- 15 Manitoba Hydro avoids homes. It is not simply
- 16 looking at a 50-metre buffer from avoiding homes;
- 17 we are trying to draw route segments that have as
- 18 great a separation as possible while drawing route
- 19 segments.
- 20 MR. TOYNE: I understand how that
- 21 applies to other aspects of the process, but I'm
- 22 just asking about it at this stage, for the
- 23 generation of alternative corridors, whether
- 24 Manitoba Hydro gave consideration to a larger
- 25 buffer around occupied homes than 50 metres. And

- 1 the sense I get from your answer is no.
- 2 MR. MATTHEWSON: No, we did not.
- 3 MR. TOYNE: Okay.
- 4 This might be a more technical
- 5 question to start, and then we will end up back
- 6 with Manitoba Hydro. Would there be any technical
- 7 impediments to putting some sort of a buffer like
- 8 this around entire communities, as opposed to just
- 9 individual buildings?
- 10 MR. GLASGOW: There could be a
- 11 technical impediment. If areas of least
- 12 preference are too large, there may not be a
- 13 corridor that connects Point A to B.
- 14 MR. TOYNE: Right. So when I say
- 15 "technical," I meant in the -- you know, like the
- 16 computer sense. So there is nothing that stops
- 17 you --
- 18 MR. GLASGOW: Yes. It could be a
- 19 failure in the process if you don't have an area
- 20 that connects the start point for the end point,
- 21 so that could be a technical impediment, yes.
- MR. TOYNE: Stick with me with this
- 23 quasi-hypothetical for a minute.
- 24 If Manitoba Hydro had done some sort
- of a buffer around communities in this particular

- 1 part of the province, do you know if that sort of
- 2 a failure that you just referred to might have
- 3 taken place?
- 4 MR. GLASGOW: I don't know.
- 5 MR. TOYNE: Okay. And I assume I know
- 6 the answer to this question, but I'll ask anyways:
- 7 Did Manitoba Hydro give any thoughts to putting
- 8 some sort of a buffer around communities, as
- 9 opposed to just buildings, for the purposes of
- 10 generating alternative corridors?
- MR. GLASGOW: So we try to model
- 12 communities with building density. And so there
- is a layer that the stakeholders were able to
- 14 weigh and value, called building density. And
- 15 that's the way that we model communities.
- You know, in the past, when we were
- 17 developing this methodology, there is several
- 18 different definitions of a community. Maybe it is
- 19 a municipal boundary, or maybe it is -- maybe
- 20 there is not a municipal boundary; maybe it is a
- 21 cluster of buildings.
- 22 So our point was to have an objective
- 23 method for identifying communities, and we used
- 24 building density as that measure.
- MR. TOYNE: And is building density an

- 1 area of least preference?
- 2 MR. GLASGOW: Building density is a
- 3 measure of building density across the entire
- 4 study area, with the idea being the areas that are
- 5 more dense are less suitable, and the areas that
- 6 are less dense are more suitable, with --
- 7 considering that layer only.
- 8 MR. TOYNE: So the answer to my
- 9 question is no; building density is not an area of
- 10 least preference?
- MR. GLASGOW: Building density is not
- 12 on the list of areas of least preference in the
- 13 alternate corridor model.
- 14 MR. TOYNE: The question that I was
- 15 attempting to ask is whether or not Manitoba Hydro
- 16 considered putting some sort of a buffer around
- 17 individual communities. And I take your point
- 18 that there might be different ways to decide what
- 19 a community is, whether it is a municipal boundary
- 20 or something else.
- I take it that Manitoba Hydro didn't
- 22 even get to that point, because that wasn't even
- 23 an option they were prepared to consider; is that
- 24 a fair statement?
- MS. BRATLAND: I just wanted to point

- 1 out that under building density, an area with more
- 2 than ten buildings per acre was given a
- 3 suitability of 9, which is the next closest thing
- 4 to an area of least preference. So I would say
- 5 that's a relatively close consideration to an area
- 6 of least preference.
- 7 MR. GLASGOW: In addition, land uses
- 8 considered in the built environment, such as
- 9 residential land use, and that's also valued by
- 10 the stakeholders.
- MR. TOYNE: And the factors that you
- 12 are referring to, those are criteria that aren't
- 13 areas of least preference, but you are raising
- 14 them because they are, in your view, close to an
- 15 area of least preference? Is that a fair
- 16 statement?
- 17 MR. GLASGOW: It was the external
- 18 stakeholders that participated in this workshop
- 19 that created the values in this model. So it is
- 20 not necessarily our view. But as facilitators of
- 21 that workshop, we can say that that's how those
- 22 stakeholders chose to model those areas.
- 23 MR. TOYNE: And when we are talking
- 24 about stakeholders, those are the technical
- 25 knowledge holders with the data sets that you

- 1 recommended be invited?
- 2 MR. GLASGOW: Yes.
- 3 MR. TOYNE: Do you think you might
- 4 have got a different set of areas of least
- 5 preference if you had broadened the scope of the
- 6 people that you actually spoke to? Say, actually
- 7 spoke to some of the people who lived in the
- 8 communities where this line might go?
- 9 MR. GLASGOW: We typically develop an
- 10 alternate corridor model -- it is not
- 11 project-specific; more of a regional-specific.
- 12 Because we find that we get more objective input
- 13 when we are not talking about a specific project,
- or someone's specific backyard; we are talking
- 15 more of a regional -- in general, where the area
- 16 is more suitable for transmission lines.
- 17 MR. TOYNE: So it is easier to ignore
- 18 specific concerns if you don't ask for them? At
- 19 least on a regional basis?
- 20 MS. BRATLAND: We invited regional
- 21 information holders.
- One thing I would like to point out is
- 23 that one of those regional participants were
- 24 regional planners, who understand the level of
- 25 community development and plans for community

- 1 development in different regions. We also invited
- 2 the Association of Manitoba Municipalities, who
- 3 were unable to attend.
- 4 MR. TOYNE: I will make another
- 5 suggestion; I suspect I know the answer.
- If the buffer around buildings was
- 7 larger than just 50 metres, or if there was some
- 8 sort of a buffer around communities, would you
- 9 agree with me that a lot of the concerns that have
- 10 been expressed by landowners throughout all of the
- 11 different rounds of engagement would largely have
- 12 been taken care of at the outset of this process?
- 13 Would you agree with that?
- MS. BRATLAND: No, I would not.
- MR. TOYNE: And then just to go back
- 16 to a point that Mr. Glasgow had made earlier;
- 17 conceptually, some of these areas of least
- 18 preference continued to have a fairly strong
- 19 impact on the routing process going forward, while
- 20 others can have a progressively weaker impact as
- 21 they go forward. Is that a fair statement?
- 22 MR. GLASGOW: Conceptually, if these
- 23 areas of least preference are avoided in the
- 24 beginning phases, they are probably not considered
- 25 as much if they are no longer in play. But if

- 1 they are, then certainly they would be considered.
- 2 MR. TOYNE: All right. And is it fair
- 3 to say that some of the -- or, for example, the
- 4 area of least preference that relates to
- 5 buildings, as the process went on, that was one of
- 6 those areas of least preference that no longer had
- 7 the same sort of impact as it would have during
- 8 the alternative corridor generation process?
- 9 MR. MATTHEWSON: I would say it had a
- 10 greater impact during route planning than the
- 11 alternative corridor model -- process.
- 12 MR. TOYNE: Just to make sure I
- 13 understand that, so in the alternative corridor
- 14 process, buildings are areas of least
- 15 preference -- and I think in a couple of the IRs,
- 16 there is a use of a phrase, a "no-go area"? Is
- 17 that another way to describe areas of least
- 18 preference? Or am I mixing up --
- MR. MATTHEWSON: Manitoba Hydro
- 20 doesn't refer to them as "no-go areas". We refer
- 21 to them as areas of least preference.
- MR. TOYNE: Okay. So at the
- 23 alternative corridor stage, buildings are areas of
- least preference; those are not areas that are
- 25 considered for routing purposes. But once we are

- 1 into the alternative route generation and
- 2 evaluation process, that's no longer the case, and
- 3 they are considered as potentials for routing
- 4 purposes. Is that a fair statement?
- 5 MR. MATTHEWSON: So when route
- 6 planning, certainly the areas of least preference
- 7 are a large factor in drawing route segments.
- 8 However, as we move forward, there are more
- 9 effects identified, and trade-offs that are
- 10 identified on the landscape, as we get more and
- 11 more information through the public engagement and
- 12 the First Nation-Metis consultation process.
- So that's why they are not considered
- 14 a strict no-go area, for the purposes of routing.
- 15 As our siting principles state, we are trying to
- 16 avoid and limit the effects on residences and
- 17 buildings as much as possible.
- 18 MR. TOYNE: Right. I thought that you
- 19 had just said that the building area of least
- 20 preference was even more important going forward
- 21 in the process; is that not true?
- MR. MATTHEWSON: Well, it becomes more
- 23 important in -- not necessarily the exact
- 24 footprint of that area of least preference, but it
- 25 now becomes into the proximity. We are trying to

- 1 route lines that are -- we are trying to reduce
- 2 the proximity to those buildings and areas of
- 3 least preference as much as possible, avoiding
- 4 those higher-density residential areas, where
- 5 feasible.
- 6 MR. TOYNE: All right. I must be
- 7 confused by something else you said, then.
- 8 Can you pull up Slide 20. This is the
- 9 one that has the alternative route evaluation on
- 10 it. It must be the other Slide 20. Sorry, my
- 11 bad. That one is not on the list; I apologize.
- 12 MS. BRATLAND: Was it a visual? Or
- 13 a --
- 14 MR. TOYNE: It would be on the screen
- 15 that's currently dark.
- MS. BRATLAND: Are you referring to
- 17 the alternative route evaluation model? If you
- 18 just give us a little more -- we can pull up the
- 19 right thing.
- MR. TOYNE: Yeah, it should be --
- 21 yeah, because -- it has a number 20 down on the
- 22 bottom right corner.
- MS. BRATLAND: What does it display on
- 24 the slide, so we can navigate to it?
- MR. TOYNE: That's the one that has

- 1 the different percentage numbers.
- 2 MS. BRATLAND: That's the alternative
- 3 route evaluation model.
- 4 MR. TOYNE: Sorry, it has a number 20
- 5 on the handout.
- 6 MS. BRATLAND: Is that it?
- 7 MR. TOYNE: Yes.
- 8 In the alternative corridor model, as
- 9 I understand it, that first criteria, the
- 10 relocated residence within the right-of-way,
- 11 that's represented by the buildings area of least
- 12 preference. So that criteria in the corridor part
- of the model is a no-go area; but then once we are
- 14 into the alternative route evaluation model, it is
- 15 less than one-third of -- one-third of the
- 16 criteria that are considered. Is that a fair
- 17 statement, or is my math off?
- 18 MR. GLASGOW: These models have
- 19 different uses in the methodology. If you recall
- 20 the funnel, and the way we talked about how we
- 21 start out with a wide area, and we use a certain
- 22 level of detailed data, and as we work down
- through the funnel and the area gets more focused,
- 24 we collect more detailed data.
- 25 So the corridor model is used to

- 1 identify the entire study area and identify
- 2 general corridors that are suitable for alternate
- 3 route development. This model is used to evaluate
- 4 specific routes that have been identified by
- 5 routing professionals, and it is used to score
- 6 those routes and compare the routes to one
- 7 another.
- 8 So you are kind of comparing apples to
- 9 oranges when you compare the different models. I
- 10 just wanted you to understand how the models were
- 11 used in the methodology.
- 12 MR. TOYNE: Just so I'm clear, in the
- 13 first model, the corridor model, residences within
- 14 the right-of-way are sufficiently important that
- 15 they are an area of least preference. And when we
- 16 switch fruits, we are then into the routing model;
- 17 residences within the right-of-way are now
- 18 significantly less important?
- MR. GLASGOW: Actually, in the
- 20 alternate route evaluation model, I believe
- 21 they're the most important thing within the built
- 22 environment, at -- is it 27 per cent?
- 23 MR. TOYNE: 27.1.
- 24 MR. GLASGOW: Is there anything that
- 25 has a higher number in the built environment?

- 1 MR. TOYNE: In the first model that
- 2 Manitoba Hydro used, that criteria was actually at
- 3 43.4 per cent; but then at one of the stakeholder
- 4 workshops we heard about, they slashed it to 27.1.
- 5 So it did drop.
- 6 MR. GLASGOW: To answer your question,
- 7 it is the most important criteria in the built
- 8 model.
- 9 MR. TOYNE: And the built model at
- 10 this stage, is it still representing at one-third,
- 11 one-third, one-third?
- MR. GLASGOW: We used a model with
- 13 four different emphasis. One has placed five
- 14 times emphasis on the built environment; the other
- 15 places five times emphasis on the natural
- 16 environment.
- 17 MR. TOYNE: Right. Sorry, you did say
- 18 that. So in the simple average score, the built
- 19 perspective would represent a one-third interest?
- MR. GLASGOW: That's correct.
- 21 MR. TOYNE: Okay. All right.
- So if we could go back to the
- 23 alternative route corridor model, the apple that
- 24 you were talking about a minute or two ago. My
- 25 understanding is that there is 132 different

- 1 factors that were considered across the three
- 2 perspectives: 27 engineering factors, 46 natural,
- 3 and 59 built.
- 4 I don't know if any of you've added
- 5 those up; I also don't know if the way I did it
- 6 was accurate, but does that sound at least right,
- 7 that there is in excess of 100 factors that were
- 8 taken into account across the three perspectives?
- 9 MS. BRATLAND: We will go with what
- 10 you say, subject to check.
- MR. TOYNE: Okay.
- 12 This is what I think is a conceptual
- 13 question, so perhaps this is something that
- 14 Mr. Glasgow can answer.
- 15 If my math is right -- let's say we
- 16 are at 132 factors -- isn't that -- by taking that
- 17 many factors into account, aren't you diluting the
- 18 impact or the importance of a lot of those
- 19 factors?
- 20 MR. GLASGOW: This model was developed
- 21 with input from external stakeholders, and they
- 22 identified the siting criteria and the relative
- 23 importance and relative suitability of the siting
- 24 criteria.
- With that said, specific to buildings,

- 1 I will list the factors that deal with buildings.
- 2 There is proximity to buildings, building density,
- 3 land use, and residential viewpoints. To the
- 4 extent that they are historic buildings, they are
- 5 listed in several different layers. And then of
- 6 course there is the physical constraint of the
- 7 building.
- 8 So I would say, you know, buildings
- 9 are pretty prominent throughout the model, and
- 10 they are not just one of 130 factors.
- MR. TOYNE: Right. I got that when I
- 12 painstakingly counted and recounted and counted
- 13 for a third time to make sure I was close to the
- 14 total.
- 15 I guess maybe another way to ask it
- is, do you ever get to a point where there is too
- 17 many factors being taken into account in one of
- 18 these perspectives? Like, if 59 is not too many,
- is there some number that is too many?
- 20 MR. GLASGOW: With the alternate
- 21 corridor model, we seek to model the input from
- 22 the stakeholders, and so we don't have an
- 23 artificial limit. What is important is the weight
- 24 that is placed on each of the features.
- For example, proposed development

- 1 within the built model -- and for those of you
- 2 that aren't looking at, we are using Table 5-3 in
- 3 the Environmental Impact Assessment. They can't
- 4 really read it up there, but --
- 5 MR. TOYNE: You are lucky Gaile is not
- 6 here.
- 7 MR. GLASGOW: So the weights represent
- 8 the relative importance. So if you look within
- 9 the built model, proximity to buildings gets
- 10 10 per cent; building density gets 15 per cent.
- 11 There's 25 per cent to buildings already. So
- 12 that's a quarter of the built model; that's before
- 13 we consider the 16 per cent lane use controls,
- 14 which is considered residential land use,
- 15 proximity to historic sites, landscape character.
- So the weights are the way the
- 17 stakeholders give more emphasis to some factors;
- 18 and those factors that may not be as important,
- 19 such as proposed developments, would get less
- 20 emphasis. That is the mechanism by which this
- 21 model controls the large number of factors in the
- 22 model.
- MR. TOYNE: All right. Just to go
- 24 back to the point you made a minute ago, there may
- 25 not be an artificial limit that gets set; is there

- 1 an optimal number?
- 2 And I'll tell you why I'm asking. In
- 3 the Bipole III report, the predecessor Commission
- 4 was critical of Manitoba Hydro for using -- what
- 5 was it, 23 or 28 criteria? And now we have blown
- 6 by that by several multiples.
- 7 So is there an optimal number here, or
- 8 is literally the sky the limit?
- 9 MR. GLASGOW: I would say this model
- 10 is representative of an optimal number, based on
- 11 the input we received from the stakeholders and
- 12 the data that was available.
- MR. TOYNE: When we are using
- 14 "stakeholders" at this point, we are talking about
- 15 the stakeholders who both had the technical data
- 16 and actually got the invitation to attend?
- 17 MR. GLASGOW: That's the stakeholders
- 18 that I'm referring to.
- 19 MR. TOYNE: Right. All right. And
- 20 then all of those criteria -- and this builds on a
- 21 point you made earlier -- are used to generate
- 22 suitability services, and those suitability
- 23 services are then used to generate composite
- 24 corridors?
- MR. GLASGOW: That's correct.

- 1 MR. TOYNE: And one of the questions I
- 2 had, there is a reference in the EIS to the top
- 3 three of all potential corridors, or the top three
- 4 of all potential routes, as it relates to these
- 5 composite corridors. I'm wondering if you can
- 6 just explain that from the conceptual or
- 7 theoretical perspective.
- 8 MR. GLASGOW: Please repeat the
- 9 question.
- MR. TOYNE: Sorry.
- 11 So there is a reference in the EIS to
- 12 these corridors somehow representing or being
- 13 connected to the top 3 per cent of optimal paths.
- 14 It is on page 5-22 of the EIS.
- MR. GLASGOW: Yes.
- 16 MR. TOYNE: I wonder if you can
- 17 explain that in more detail.
- 18 MR. GLASGOW: The routing algorithm
- 19 that is used to evaluate the suitability services
- 20 that are based on this model consider every
- 21 possible route to get from Point A to B, and
- 22 basically theoretically scores the routes, based
- 23 on the relative suitability for a new corridor.
- So we look at the top 3 per cent,
- 25 based on this model, and we form a corridor.

- 1 Okay? So the top 3 per cent of paths to get from
- 2 Point A to B forms a corridor. And so the way we
- 3 get from this model to, say, the built corridor,
- 4 is we model built factors with five times more
- 5 emphasis than other factors. We run the
- 6 algorithm, and it identifies the corridor that
- 7 basically models the built preferences.
- 8 MR. TOYNE: All right. So this next
- 9 series of questions, I think, bridges the corridor
- 10 part of the model into the route part of the
- 11 model. So when the different route segments that
- 12 Mr. Matthewson was talking about being drawn
- 13 earlier, when they are being drawn, they are being
- 14 drawn within these composite corridors that were
- 15 identified; is that right?
- MR. MATTHEWSON: They are being guided
- 17 by the composite corridors. There are times when
- 18 we have to go outside of those corridors to avoid
- 19 a feature like dense urban development.
- 20 MR. TOYNE: Right. Okay. So the
- 21 composite corridors have a pretty significant
- 22 effect on where those route segments are drawn,
- 23 but they're not dispositive; right? So if a route
- 24 might go just a little bit outside of a composite
- 25 corridor, that's not a disqualifying feature?

- 1 MR. MATTHEWSON: Correct.
- 2 MR. TOYNE: When we're talking about
- 3 the corridors, at least on the maps I've seen, it
- 4 is not as if they are being painted with a
- 5 paintbrush; there is all sorts of gaps -- or at
- 6 least they look like they're gaps to me -- in
- 7 those corridors.
- 8 So those route segments, when they're
- 9 being drawn in the corridors, you try to respect
- 10 where those gaps are, but you may not be able to;
- 11 is that a fair statement?
- MR. MATTHEWSON: Yes.
- 13 MR. TOYNE: So we could then move into
- 14 what I understand is Step 3 of the process, when
- 15 you are actually determining the preferred border
- 16 crossing in Round 1.
- 17 Once these corridors have been
- 18 identified, then there is people who draw these
- 19 different routes that Mr. Matthewson was referring
- 20 to, and eventually, when they are put through the
- 21 computer, I think the number is in excess of
- 22 three-quarters of a million potential routes were
- 23 identified.
- 24 How big or how small of a difference
- in a path from Point A to Point B was required

- 1 before you consider it to be a separate route?
- 2 MR. GLASGOW: A different combination
- 3 of segments was a different route. So a route is
- 4 a combination of segments that get between the
- 5 termination points.
- 6 MR. TOYNE: So when we are talking
- 7 about routes, at this point we are talking about
- 8 them at a fairly high level; there were -- what,
- 9 87 routes that were originally drawn, and then we
- 10 got up into the mid-100-teens for the mitigative
- 11 segments? So those 750,000 we're talking about
- 12 are variations connecting those 114, 115, 116
- 13 route segments?
- 14 MR. MATTHEWSON: Yes, that is correct.
- 15 MR. TOYNE: And if I remember
- 16 correctly from your PowerPoint presentation, and I
- 17 think at this point you had switched to the green
- 18 laser pointer from the pink or the purple one, the
- 19 route that you had shown, it went one direction,
- 20 it went backwards, it went up, it went down, it
- 21 went all over the place; it wasn't even close to
- 22 what I would call a viable route.
- 23 And my understanding is that virtually
- 24 all of those 750,000 routes that were generated
- 25 were similarly garbage routes. Is that fair to

- 1 say?
- 2 MR. GLASGOW: Yes. So we are seeking
- 3 to use an objective process to go from every
- 4 possible combination of segments, which was
- 5 approximately 750,000, to a reasonable set of
- 6 alternatives for us to consider.
- 7 And so, yes, we tried to eliminate
- 8 those routes that were not reasonable, using a
- 9 systematic process.
- 10 MR. TOYNE: All right. And one of the
- 11 ways that that was done was the -- and I apologize
- 12 if I stumble over describing it in the technically
- 13 accurate way -- reducing the number of routes with
- 14 reference to route length. So any route that was
- 15 120 times longer than the shortest of those
- 16 quarter of a million or three-quarters of a
- 17 million potential routes, they were eliminated; is
- 18 that one of the ways that you start to narrow it
- 19 down?
- 20 MR. GLASGOW: I think it would be
- 21 120 per cent. Not 120 times, but --
- MR. TOYNE: Did I say 120 times?
- 23 Sorry, yes.
- MR. GLASGOW: Yes.
- But generally, what we are trying to

- 1 do is we're trying to come up with an objective
- 2 method to eliminate these unreasonable segment
- 3 combinations which one could call routes.
- 4 So we used 120 per cent as a
- 5 threshold. So we were able to go from 750,000
- 6 possibilities to -- like, was it 1,500? 15,000
- 7 possibilities. So that was a significant -- and
- 8 again, we could have done that manually,
- 9 subjectively, but we were trying to use an
- 10 objective method to do that, a quantitative
- 11 method.
- MS. BRATLAND: I will just refer you
- 13 to SSC IR 089, which talks about the 120 per cent.
- MR. TOYNE: If we could pull up
- 15 right -- Slide 20. I hope this is the right one.
- 16 Sorry, on the other screen. Yes, that is the one.
- 17 All right.
- 18 So once we've started to eliminate a
- 19 lot of routes that are generated, these are the
- 20 criteria that are applied to determine which of
- 21 those 15,000 or 6,500 routes are going to advance
- into the preference determination model?
- MS. BRATLAND: As I noted in my
- 24 presentation, the criteria are one tool that are
- 25 used by the team in terms of screening forward

- 1 routes for further consideration.
- 2 So the emphasis of five times
- 3 preference will give you a built score. We use
- 4 statistics to understand which of those routes in
- 5 the top percentiles from each perspective, and
- 6 then consider information about trade-offs, other
- 7 important mitigations and concerns when screening
- 8 forward.
- 9 MR. TOYNE: Right. So if we could
- 10 just talk about this for a second, because I think
- 11 accurate terminology is important.
- 12 When you say "screen forward", what I
- 13 hear is "not eliminate". Is that an accurate way
- 14 to explain the phrase that Manitoba Hydro has now
- 15 started to use?
- MS. BRATLAND: I believe I've
- 17 consistently used the term "screen forward", and
- 18 yes, you could also consider that as not
- 19 eliminating.
- MR. TOYNE: Okay.
- MS. BRATLAND: The project team,
- though, as I indicated, in those workshops, at all
- 23 steps, reviews visually what the results are of
- 24 these decisions. So we do put consideration into
- 25 what is lost and what is eliminated.

- 1 MR. TOYNE: So when you say "screen
- 2 forward", it is also appropriate to say "not
- 3 eliminated"?
- 4 MS. BRATLAND: I think it is better if
- 5 we consistently use the terminology "screen
- 6 forward".
- 7 MR. TOYNE: Right, and we all
- 8 understand why you think that.
- 9 The 750,000 potential routes, they are
- 10 examined, and a subset of them are screened
- 11 forward, I guess, and then these are the criteria
- 12 that are used to determine which ones will then be
- 13 screened forward a second time?
- 14 MS. BRATLAND: The criteria and
- 15 statistics are one consideration when we look at
- 16 what routes to screen forward, as I indicated in
- 17 my presentation and in my previous response.
- 18 MR. TOYNE: All right.
- 19 Now, we heard a bit yesterday about
- 20 some of the feedback that Mr. Joyal and his team
- 21 had received about the importance of, in
- 22 particular, the first three criteria up there in
- 23 the built perspective. And just to confirm this
- 24 with this panel, after receiving all of that
- 25 feedback about how important those criteria were,

- 1 Manitoba Hydro reduced their statistical
- 2 significance in the alternative route evaluation
- 3 model?
- 4 MS. BRATLAND: As Mr. Matthewson noted
- 5 in his presentation and Mr. Joyal noted yesterday,
- 6 for each project, the alternative route model is
- 7 calibrated with consideration of the feedback we
- 8 receive and the types of decisions that we need to
- 9 be making in that region under consideration.
- 10 The criteria here represent the
- 11 feedback we received on this project. One of the
- 12 new criteria that had to be represented was
- 13 breaking out land use -- agricultural land use
- 14 into two criteria; that was based on feedback from
- 15 stakeholders.
- We also understood the importance of
- 17 proposed developments within the area. We
- 18 highlighted for you earlier the discussion around
- 19 the fact that there are many proposed developments
- 20 that are actively under construction in some
- 21 cases, with noting new basements and what-not, as
- 22 we do our field tours.
- So the criteria were adjusted to
- 24 reflect the fact that those proposed developments
- 25 were a key concern that we heard in the area, as

- 1 well as to better reflect that agricultural
- 2 criteria.
- 3 So it wasn't really about -- we didn't
- 4 try to reflect a very high concern by knocking it
- 5 down; we needed to make room in this perspective
- 6 for additional consideration for those other
- 7 things.
- 8 MR. TOYNE: So to go back earlier to
- 9 the questions that I had about areas of least
- 10 preference. So if the concerns reflected in the
- 11 building area of least preference, and the buffer
- 12 concern, if they had been carried forward into
- 13 this particular model, and if buildings and
- 14 buffers around buildings -- and even that buffer
- 15 around communities that I had talked to -- were
- 16 applied, would it have been possible to remove
- 17 those top three criteria? Because you wouldn't be
- 18 putting -- you wouldn't be contemplating putting a
- 19 line in those areas, and you then would have had
- 20 more room to work with those other new and
- 21 important criteria that you just referred to?
- MS. BRATLAND: I would just like to
- 23 remind everyone that this is the alternate route
- 24 evaluation model. Those other models are for
- 25 planning purposes, and serve a different role in

- 1 this process.
- The problem, conceptually, that I
- 3 believe you would run into if you buffer things
- 4 like buildings and residences in an area with a
- 5 fair bit of development and residential
- 6 development on one end, is that ultimately you
- 7 could force yourself into undeveloped areas. And
- 8 we wanted to be able to develop routes that could
- 9 include different trade-offs of land uses,
- 10 including fairly undeveloped areas with more
- 11 natural features, as well as more developed areas
- 12 with agriculture and some proximity to homes.
- 13 This still reflects the fact that
- 14 residences and agriculture are key concerns, and
- 15 that was carried forward into the evaluation.
- MR. TOYNE: Maybe this is more of a
- 17 conceptual question, then, for Mr. Glasgow.
- 18 So if residences, and potentially even
- 19 communities, were considered no-go for the
- 20 purposes of the alternative route evaluation
- 21 model, would that conceptually present a problem
- 22 with running the numbers, running the criteria,
- 23 from a technical perspective?
- 24 MR. GLASGOW: Buildings are considered
- 25 areas of least preference in an alternate corridor

- 1 model.
- 2 MR. TOYNE: Right. If we carried
- 3 through that heightened concern for buildings in
- 4 the corridor model into the alternate route
- 5 evaluation model, from a technical perspective,
- 6 would the model still work if those top three
- 7 criteria -- relocated residences, potential
- 8 relocated residences, proximity to residences --
- 9 if they were simply no-go areas?
- 10 MR. GLASGOW: This model is used to
- 11 evaluate routes that have been identified by a
- 12 siting expert. I couldn't imagine evaluating
- 13 routes without considering buildings. So
- 14 buildings are in here, and it is the most
- 15 important criteria.
- 16 MR. TOYNE: I will try to ask it a
- 17 different way, and I apologize that my questions
- 18 seem to be confusing.
- 19 So right now, in the alternate route
- 20 evaluation model, the people that Mr. Matthewson
- 21 referred to that are drawing routes, they can draw
- the right-of-way over somebody's residence?
- MR. GLASGOW: Yes, based on their
- 24 expert judgment, considering all the factors in
- 25 the area. If they choose to do so, there is

- 1 probably going to be a very good reason to do so.
- 2 MR. TOYNE: You would certainly hope
- 3 there is a very good reason to do so. But the
- 4 question that I've got then is, right now, the
- 5 model allows routes to be drawn over top of
- 6 residences, or within 100 metres of residences, or
- 7 within 400 metres of residences.
- 8 The question I'm trying to ask -- and
- 9 I guess I'm struggling a bit -- is, if you took
- 10 those three options off the table, so that routes
- 11 couldn't be drawn over a house, or within
- 12 100 metres of a house, or within 400 metres of a
- 13 house, technically, the model can still function.
- 14 Is that a fair statement?
- 15 MR. GLASGOW: It may not be possible
- 16 to draw routes, alternative routes that connect
- 17 your end points with those more constrained
- 18 criteria that you mentioned, within 400 metres of
- 19 a house. I've never seen a project that didn't
- 20 have at least one house within 400 metres.
- MR. TOYNE: All right. So why don't
- 22 we leave that one in there. So if we just took
- 23 the first two out, technically speaking, the model
- 24 would still function. So if you couldn't have a
- 25 route that went over a house, and if you couldn't

- 1 have a right-of-way that was within 100 metres of
- 2 a residence.
- 3 MR. GLASGOW: Yes, it is possible to
- 4 build a project without relocating a residence, if
- 5 that's what you are asking.
- 6 MR. TOYNE: I guess that's part of
- 7 what I'm asking. What I'm trying to get at is if
- 8 those first two criteria in built were simply
- 9 no-go areas, where Mr. Matthewson's route drawers
- 10 couldn't put a route, would the model still
- 11 function?
- MR. GLASGOW: It depends on the
- 13 project. I can't say for certain that the model
- 14 would still function in this area if we eliminated
- 15 all options within 100 metres of a residence.
- MR. TOYNE: I think this is maybe
- 17 another more conceptual question for Mr. Glasgow.
- 18 So if we did take out those first two
- 19 criteria, would those be considered some sort of
- 20 external constraint that dictates where routes can
- 21 or can't be drawn, similar, say, to the
- 22 discretionary buffer that Manitoba Hydro has
- 23 talked about that deals with some but not all
- 24 tornado impacts on transmission lines?
- MR. GLASGOW: Sorry, if a constraint

- 1 was added, would it be an external constraint? Is
- 2 that what you are asking me?
- 3 MR. TOYNE: I guess. Maybe a
- 4 different way to ask it is, how does this
- 5 particular model interact with other external
- 6 constraints that are placed on the individuals
- 7 that are drawing the routes?
- 8 MR. GLASGOW: I think, when the
- 9 individuals draw the routes, Mr. Matthewson
- 10 demonstrated the objective to avoid, minimize,
- 11 mitigate, I believe.
- MR. TOYNE: So maybe if we can go down
- 13 to the engineering criteria, so you will see the
- 14 second one there says "Index of proximity to
- 15 existing 500-kilovolt lines."
- 16 All right. As I understood it from
- 17 the presentation, that particular criteria
- 18 represents the proximity to existing 500-kilovolt
- 19 lines, to the extent that the route that's been
- 20 drawn is outside the 10-kilometre buffer that's
- 21 been imposed by Manitoba Hydro system planners.
- Or did I misunderstand that too?
- 23 MS. BRATLAND: You misunderstood that.
- 24 That is a measure of how long a route is within a
- 25 proximity. You can picture a heat map, so if you

- 1 are closer for longer, it is worse.
- 2 So it was a consideration of a
- 3 relative measure.
- 4 MR. TOYNE: All right. So then when
- 5 the segments were being drawn so that they could
- 6 be evaluated under this model, the 10-kilometre
- 7 buffer wasn't being taken into account.
- 8 MR. MATTHEWSON: The 10-kilometre
- 9 buffer was taken into account only during the
- 10 routes that were used for Round 1. Any subsequent
- 11 routes after that, we are looking at drawing
- 12 routes in proximity to that 500 line. And we
- 13 actually had routes that went through evaluation
- 14 that were right adjacent to the 500 line.
- MR. TOYNE: So just so I've got it.
- 16 So we're in Round 1; we're about to start drawing
- 17 routes. The routes that are going to be drawn,
- 18 for Round 1 purposes, will respect the
- 19 10-kilometre buffer. Right?
- 20 MR. MATTHEWSON: Yes, that's correct.
- 21 MR. TOYNE: Okay. Now, the routes
- that respect the 10-kilometre buffer will then be
- 23 evaluated on this particular model, and one of the
- 24 criteria that they are evaluated on is the index
- of proximity to existing 500-kV lines?

- 1 MR. MATTHEWSON: Yes, the routes that
- were drawn that respected the 10-kilometre buffer
- 3 were evaluated using the proximity index -- the
- 4 proximity of the 500-kV lines. And the routes
- 5 that were drawn within the 10-kilometre buffer,
- 6 which were the mitigative segments, were also
- 7 evaluated in the same manner.
- 8 MR. TOYNE: Right. I guess, then,
- 9 conceptually, what I'm suggesting be done for
- 10 residences at this stage was done for existing
- 11 500-kilovolt lines. Is that a fair statement?
- 12 MS. BRATLAND: Can you please outline
- 13 for us conceptually what exactly you are
- 14 suggesting, just so we can give you an accurate
- 15 response?
- MR. TOYNE: All right. So from the
- 17 engineering perspective, there is a 10-kilometre
- 18 buffer constraint on the drawing of routes.
- 19 Routes are drawn that respect that 10-kilometre
- 20 buffer and then they are also assessed on their
- 21 proximity to the 500-kilovolt line.
- The question is, is -- that also could
- 23 have been done for the relocated residences, so
- 24 that could have been an external constraint that
- was imposed, just like the 10-kilometre buffer for

- 1 the lines, and then the proximity criteria there
- 2 could have still been applied.
- 3 MS. BRATLAND: I want to again point
- 4 to the fact that we have two different tools and
- 5 two different steps that we are talking about
- 6 here. When we talk about constraints, areas of
- 7 least preference, those are considerations for the
- 8 route planning team. This is an evaluation model,
- 9 that helps the team look at these criteria and
- 10 weigh the strengths and weaknesses of routes and
- 11 measure how well they perform against each of
- 12 these criteria.
- So as much as a 10-kilometre buffer
- 14 was an initial constraint that was ultimately
- 15 relaxed, and mitigative routes were drawn within
- 16 that buffer, it was still very important to
- 17 measure the index of proximity to existing
- 18 500-kilovolt lines, as there is not only that
- 19 500-kilovolt line in the study area, but also
- 20 Bipole III, which is under construction.
- 21 Similarly with homes, as much as we
- 22 tried to avoid homes, the proximity to residences
- 23 was variable, depending on what route segments
- 24 were planned. It was important to measure how
- 25 well any given route performed against that

- 1 criteria to inform our decision-making associated
- 2 with that.
- 3 MR. TOYNE: So maybe another way to
- 4 ask it, because I think I might still be
- 5 struggling either to get the question out or to
- 6 get the answer I'm looking for: The relocated
- 7 residences, and the potential relocated
- 8 residences, those could have been treated the same
- 9 as the 10-kilometre buffer, for the purposes of
- 10 drawing routes during Round 1; is that a fair
- 11 statement?
- 12 MR. GLASGOW: I think they probably
- 13 were treated very similarly. You probably do have
- 14 some routes that are within 10 miles of a 500-kV
- 15 line -- excuse me; 10 kilometres of a 500-kV line
- in Round 1, even though we are trying not to have
- 17 routes within there.
- 18 Similarly, you probably had some
- 19 routes that were within 100 metres of a residence,
- 20 even though we are trying not to have routes
- 21 there.
- 22 So what this model is used for is to
- 23 score and evaluate routes that have been
- 24 identified.
- 25 MR. TOYNE: So the 10-kilometre buffer

- 1 that we heard a lot about, and all of the
- 2 rationale for it, for the purposes of drawing
- 3 routes during Round 1, it was only partially
- 4 respected? Is that what you were trying to say,
- 5 Mr. Glasgow?
- 6 MR. MATTHEWSON: Yes. The routes that
- 7 were planned for Round 1, as found on Map 5-11,
- 8 there are routes that were drawn that did not
- 9 respect the 10-kilometre buffer entirely. Those
- 10 were in areas where there was ease of access,
- 11 paralleling opportunities, and we were encroaching
- 12 it. We were still 8 to 10 kilometres away; there
- 13 was still adequate separation -- or there was
- 14 still separation. Trying to honour that. But due
- 15 to other constraints, we did have to infringe on
- 16 that 10 kilometres when initial route planning.
- MR. TOYNE: So everything we heard
- 18 earlier in the week about how important this
- 19 10-kilometre buffer is, how it's mandatory, that
- 20 wasn't even respected by the people at Manitoba
- 21 Hydro drawing these route segments?
- MR. MATTHEWSON: As Mr. Swatek
- 23 recognized, when we drew those route segments in
- 24 the north/south orientation, for those short
- lengths, that we were within the 10 kilometres.

- 1 These routes were all evaluated by the system
- 2 planners before they went into route planning, and
- 3 they felt that because of the short distance -- we
- 4 were within the 10 kilometres -- it was acceptable
- 5 and measured risk.
- 6 MR. TOYNE: So then the buffer that
- 7 we've heard about, it is really a discretionary
- 8 soft buffer; it is not actually a hard buffer that
- 9 really governs, regardless?
- 10 MS. BRATLAND: I'm just going to jump
- in to build on Mr. Matthewson's response there.
- 12 The technical constraint provided by
- 13 the system planners, just like the constraint
- 14 about proximity to homes, is one of the many
- 15 concerns that we have to balance. It is a very
- 16 important constraint. And you can imagine the
- 17 dynamic in a room, when we are sitting with the
- 18 engineers, and we are saying, "We really need to
- 19 be able to violate this buffer, so we can get
- 20 further away from homes," because that's also a
- 21 very important concern.
- 22 So that element that those route
- 23 planners worked into the trade-offs that could be
- 24 evaluated was within full consideration of the
- 25 potential risk that would have to be accepted

- 1 should those routes go forward. And the fact that
- 2 there was an index of proximity measure, to be
- 3 able to evaluate that reliability concern, was
- 4 also a very important consideration.
- 5 MR. TOYNE: All right. So is the --
- 6 what was previously been referred to as a buffer,
- 7 is that, for the purposes of Round 1 routes, is
- 8 that wholly reflected in index of proximity to
- 9 existing 500-kilovolt lines? Or is it an external
- 10 constraint on where those lines are being drawn?
- 11 MS. BRATLAND: I believe it is both.
- 12 It is a consideration in planning and a
- 13 consideration in evaluation.
- 14 MR. TOYNE: All right. And since we
- 15 are approaching the end of the day, I just want to
- 16 make sure I've got this, so that I can, I guess,
- 17 move on in the morning.
- 18 The external constraint aspect of that
- 19 buffer, a similar external constraint could have
- 20 been placed on the drawing of route segments with
- 21 respect to the first two criteria under the built
- 22 category?
- 23 MR. GLASGOW: I would say it is very
- 24 similar, in that we are trying to stay further
- 25 away from the 500-kV line for reliability

- 1 purposes. When identifying routes, we are trying
- 2 to stay further away from residences, to avoid --
- 3 to minimize impacts. So they were treated in a
- 4 similar fashion.
- 5 MR. TOYNE: All right. So for the
- 6 purposes of drawing routes at this stage, you
- 7 could have a buffer of a certain distance from a
- 8 power line, and you could also have a buffer
- 9 that's a certain distance from a house. Manitoba
- 10 Hydro chose to have a buffer from a power line,
- 11 but did not choose to have a buffer from
- 12 residences? Is that an accurate statement, given
- 13 everything that we've just heard?
- MR. MATTHEWSON: No.
- 15 MR. TOYNE: All right. So then if
- 16 there was a buffer on relocated residences, would
- 17 you still need to have it as one of the built
- 18 criteria?
- 19 It strikes me as very strange that you
- 20 would give 27 per cent weighting to something that
- 21 simply couldn't happen if it was an external
- 22 constraint.
- MS. BRATLAND: I believe in my
- 24 previous response I pointed out the fact that it
- 25 is important to evaluate these routes with these

- 1 considerations as when developing the routes,
- 2 because of the types and different land uses in
- 3 the area. Route options are developed that have
- 4 different elements of these considerations, with
- 5 residences being one very important consideration.
- 6 And reliability considerations, from the existing
- 7 500, also an important consideration in planning
- 8 and evaluating routes.
- 9 MR. TOYNE: All right. I think I may
- 10 have figured out how to finally get us off and
- 11 onto something else.
- 12 So, Mr. Matthewson, when the
- individuals drawing the routes during Round 1, it
- 14 would have been possible for them to draw routes
- 15 that fully respected the 10-kilometre buffer from
- 16 pre-existing 500-kilovolt lines; is that a fair
- 17 statement?
- MR. MATTHEWSON: Yes, it would have
- 19 been possible, but there would have been less
- 20 segments to consider.
- 21 MR. TOYNE: Right. I appreciate that,
- 22 so we can get into the potential impacts of that.
- 23 So it would be possible for routes to
- 24 be drawn that respected the 10-kilometre buffer;
- 25 it also would have been possible for routes to be

- 1 drawn that avoided having residences located
- 2 within the right-of-way. Is that correct?
- 3 MR. MATTHEWSON: Yes.
- 4 MR. TOYNE: And it also would have
- 5 been possible to draw routes that not only had no
- 6 residences located within the right-of-way, but
- 7 also had no residences within 100 metres of the
- 8 edge of the right-of-way. Correct?
- 9 MR. MATTHEWSON: It would be possible
- 10 to do if you were just taking that as one
- 11 consideration in route planning. There are a
- 12 whole variety of other landscape features on the
- 13 landscape which would constrain that possibility.
- MR. TOYNE: Right. So it is a
- technical possibility, and there may be reasons
- 16 why Hydro wouldn't want to pursue it?
- MR. MATTHEWSON: No, there are other
- 18 effects that would be -- there are other potential
- 19 effects that may be affected -- sorry, considered
- 20 when route planning. If we were to increase our
- 21 avoidance of homes, it forces us to have a larger
- 22 effect on some other feature, potentially.
- 23 MR. TOYNE: Right. But technically,
- 24 it would have been possible for the people drawing
- 25 the routes to completely avoid relocated

- 1 residences and residences within 100 metres?
- MR. MATTHEWSON: We are not sure on
- 3 the possibility of that, for us to be able to join
- 4 the segments from the start points we have to the
- 5 border crossings that we have, if that would be
- 6 feasible.
- 7 MR. TOYNE: All right.
- 8 Mr. Chair, I see it is 4:30, and your
- 9 mic is flashing. But there's no feedback yet,
- 10 so ...
- 11 THE CHAIRMAN: I think we will end it
- 12 there, then, unless you have one short question.
- 13 But otherwise we are going to end it there and
- 14 start in the morning.
- MR. TOYNE: Thank you.
- 16 THE CHAIRMAN: We will see you all at
- 17 9:30 tomorrow morning.
- 18 Are there any documents to file?
- MS. JOHNSON: Yes, there are.
- 20 MH026 will be the first part of the
- 21 presentation we heard this morning. 027 is the
- 22 second part. 028 are the meeting notes on SIL.
- 23 029 are the undertaking responses. 030 are the
- 24 informal questions that were replied to. And 031
- 25 is the weather study.

		Page 732
1	(EXHIBIT MH-26: First part of Hydro	
2	Routing Presentation)	
3	(EXHIBIT MH-27: Second part of Hydro	
4	Routing Presentation)	
5	(EXHIBIT MH-28: Meeting notes on SIL)	
6	(EXHIBIT MH-29: Undertaking	
7	responses)	
8	(EXHIBIT MH-30: Informal questions	
9	that were replied to)	
10		
11	(EXHIBIT MH-31: Weather study)	
12		
13	(Adjourned at 4:30 p.m.)	
14		
15		
16		
17		
18		
19		
20		
21		
22		
23		
24		
25		
1		

1	OPETATAL BYANTNEDIA GEDUTETANDE	Page 733
1 2	OFFICIAL EXAMINER'S CERTIFICATE	
3		
4		
5	Cecelia Reid and Debra Kot, duly appointed	
6	Official Examiners in the Province of Manitoba, do	
7	hereby certify the foregoing pages are a true and	
8	correct transcript of my Stenotype notes as taken	
9	by us at the time and place hereinbefore stated,	
10	to the best of our skill and ability.	
11		
12		
13		
14		
15	Cecelia Reid	
16	Official Examiner, Q.B.	
17		
18		
19	Debra Kot	
20	Official Examiner Q.B.	
21		
22		
23		
24		
25		

This document was created with Win2PDF available at http://www.win2pdf.com. The unregistered version of Win2PDF is for evaluation or non-commercial use only. This page will not be added after purchasing Win2PDF.